Gc-MS Analysis and Anti-Bacterial Activity of Lantana Camara Extracts

1 Al–Itabi A. O.
2 Aknur T.
1,2 Alfarabi Kazakh National University Department of Fundamental Medicine/Kazakhstan

Abstract: Scientists from all over the world are currently investigating medicinal plants. Plants have long been used as a source of medicine by humans due to their low cost and long history of use. Due to technological limitations, most traditional medicines in the past were derived from plants. In this study, the anti-bacterial and phytochemical properties of Lantana camara extracts from Iraq were analyzed. The extract composition was analyzed using GC/MS. The broth dilution assay to evaluate the antimicrobial activity of each extract. The aerial parts of the Lantana camara herb were extracted with n-hexane, ethanol, and methanol. The anti-bacterial activity of the extract's was evaluated. The n-hexane extract was found to have a 400 μg/mL minimum inhibitory concentration (MIC), against Proteus vulgaris, while the ethanolic and methanolic extracts showed similar anti-bacterial activity at 100 μg/mL. While the lowest inhibitory concentration of n-hexane and ethanolic extract was 400 μg/mL, and methanolic extract was 200 μg/mL against Bacillus subtilis. This means that the methanolic extract is more effective and inhibits bacterial growth at lower concentrations. This article will be useful for researchers studying the biological activity, phytochemical composition, and anti-bacterial activity of Lantana camara.

Keywords: Lantana camara, n-Hexane extract, Ethanol extract, anti-bacterial activity. GC-MS

1. Introduction

There are many compelling reasons to pursue the discovery of anti-bacterial plants with potential medical applications. We urgently need new methods of treating bacterial infections as antibiotic resistance continues to rise. For hundreds of years, people have turned
to medicinal plants as a source of new compounds that kill bacteria to treat everything from common colds to bacterial infections. Unlike antibiotics, medicinal plants are typically less expensive and more accessible. This is especially true in developing nations, where access to medical care and antibiotics may be limited [1,2]. Due to their low cost and wide availability, medicinal plants are rapidly gaining favour as a primary source of healthcare for underserved communities [3]. Medicinal plants are used more frequently because of their importance in medicine and the activity of the secondary metabolites they contain [4].

Lantana camara is a small shrub with triangular stems. Its maximum dimensions are 1–3 meters in height and 2.5 meters in width. The leaves are ovate in shape, crenate-serrate, rugose on top and scabrous on the underside, and pointed either acutely or sub-acutely. They are between 3 and 8 centimeters in length and 3 and 6 centimeters in width and are a bright green color. The plant's leaves and stems are covered in coarse hairs [5].

There is a wide range of possible shades of red, orange, and white because of the gradual color changes that occur as these colors age. Flowers with yellow throats bloom for a long time due to the axillary head's role in their nearly constant bloom and gradual color change. The axillary head is constantly covered in yellow-throated flowers. The calyx is tiny, the corolla tube is short, and the lobes on the 6-7 mm broad limb are all different sizes. The flower clusters, or inflorescences, are set up in pairs in the axils of the leaves on opposite sides of the plant. About 24–40 dead flowers were discovered inside. The plant's root system quickly recovers from repeated cuttings and produces new shoots [6].

Lantana camara is an essential plant that has been utilized in alternative medical practices for many years. The *Lantana camara* is a species that belongs to the genus Lantana, the division Magnoliophyte, the class Magnoliopsida, the order Lamiales, and the family Verbenaceae. It has been used as a treatment for a wide range of diseases in different countries all over the world. Medical professionals have successfully used the leaves to treat a wide variety of conditions, including but not limited to: wounds, rheumatism, ulcers, catarrhal infections, cancer, tetanus, malaria, asthma, ulcers, eczema, bilious fever, tumors, chicken pox, swelling, sores, Measles, ataxy of the abdominal viscera; fevers; the common cold; and hypertension. Patients in Ghana suffering from bronchitis frequently consume tea made from the boiled plant. A combination of powdered root and milk is given to children suffering from stomachaches or worms. When applied to the skin, lantana oil helps heal minor cuts and prevents wounds from becoming more widespread. Both leprosy and scabies were treated with decoctions used to the affected areas of the skin [7,12].

It has been reported that an aqueous extract of *L. camara* has anti-inflammatory properties in albino rats. In the carrageenan-induced paw oedema test with rats, extract treatment (500 mg/kg body weight) significantly reduced paw volume [13]. An antiulcerogenic effect of a methanol extract of *L. camara* leaves was observed in rats with ethanol, aspirin and cold-resistant stress-induced gastric lesions. When the affected rats were pretreated with the extract (200 and 400 mg/kg body weight), it significantly reduced the severity of ulcers caused by aspirin, ethanol, and cold restraint stress. The extract's antiulcerogenic activity was dose-dependent.
across all models [14]. It has been demonstrated that calcium oxalate urolithiasis can be prevented in male albino rats exposed to ethylene glycol and ammonium chloride by administering an ethanolic extract of the leaves of L. camara. Following treatment with the extract, there was a notable reduction in the accumulation of calcium and oxalate and an increase in the amount of calcium, oxalate, and creatinine that was excreted in the urine [15]. Rats that had been given alloxan to make them diabetic found that a methanol extract of L. camara leaves lowered their blood sugar. When rats with diabetes caused by alloxan were given an oral dose of 400 milligrams per kilogram of body weight of a methanol extract of L. camara leaves, their blood sugar levels dropped to 121.94 milligrams per deciliter [16].

Several different cultivars of the Lantana camara plant have been found to have properties that stop bacteria from growing on their leaves and flowers. The anti-bacterial activity of three solvent extracts of leaves and flowers from four different kinds of L. camara was found to be very strong against Escherichia coli, Bacillus subtilis, and Pseudomonas aeruginosa, but not so strong against Staphylococcus aureus [17]. The leaves and roots of Lantana camara are said to kill bacteria when they are extracted with ethanol. The effectiveness of the anti-bacterial treatment was evaluated in vitro using Microdilution assays. The extracts successfully eliminated two multi resistant strains of Escherichia coli and Staphylococcus aureus and other bacteria, including Proteus vulgaris, Pseudomonas aeruginosa, Vibrio cholera, and others [18].

Using the broth microdilution and agar well diffusion method, methanolic extracts of various Lantana camara parts were examined for antimicrobial action against ten bacteria and five fungi. Both Gram-positive Bacillus cereus and Gram-negative Salmonella typhi were inhibited by L. camara leaf extract [19]. A typical plant pathogen, Alternaria sp., was used to see if Lantana camara could stop plant diseases caused by it. The food poisoning plate method was used to compare the antifungal activity of extract concentrations of 10, 15, and 20 mg/mL. At a 20 mg/mL concentration, L. camara was very effective against the fungus Alternaria sp [20]. Both ethanol and hot water extracts of L. camara were looked at to see if they could stop white rot and brown rot fungi. The other extract worked just as well [21].

2. Methodology

Collection of plant

From August 1st, 2021, through December 30th, 2021, fresh aerial parts of Lantana camara were collected from Baghdad City. Deionized water was then used to wash them once more. Finally, they were allowed to air-dry at room temperature. The dried plant was then broken up into smaller pieces and kept in a cool, dark place until an extract was needed.

Chemical solvents

Maceration is one of the simplest methods of extraction. It entails soaking coarse and powdered plant material in solvents such as n-hexane (99%), ethanol (99.99%), and methanol (99.8%). Extraction of bioactive compounds from plants using this method is standard and does not cost very much. Polar compounds can be extracted with methanol and ethanol, while nonpolar compounds are extracted with n-hexane and other nonpolar solvents [22,24].
Preparation of Extracts by Maceration method

Lantana camara's aerial parts were removed by maceration with solvents of different polarities. In a nutshell, 800 mL of n-Hexane, 800 mL of ethanol, and 500 mL of methanol were used to treat 100 g of powder, 95 g of powder, and 90 g of powder, respectively. The supernatant was filtered out in the dark at 25 degrees Celsius for 48 hours. To further purify the extracts and isolate the bioactive compounds, this procedure was repeated, and the solvent in the supernatant was evaporated using a vacuum rotary evaporator [25].

GC/MS analysis

The condition of GC/MS is as follows:

1. The type of detector used was a mass spectrometer (MS), the injection technique used was a split (80.1), the injector temperature was 260 degrees Celsius, the injector volume was one microliter, the carrier gas was helium, the flow rate was 1 milliliter per minute, and the mode used was scanned 50-550.

2. The capillary columns used were HP-5MS and measured 30 millimeters in length, 0.25 millimeters in diameter, and 0.25 micrometers in thickness.

3. temperature program: 60 degrees Celsius for four minutes, then three degrees Celsius per minute up to 100 degrees Celsius for two minutes, and then four degrees Celsius per minute up to 260 degrees Celsius for five minutes.

4. Scan Range (50–500) and (EM) Detector for the Mass Spectrometer (70 V).

5. By comparing the average peak area of each component to the total measurement area, we were able to calculate the relative percentage amount of each element. Because of this, we were able to figure out how much each part made up of the whole. The MS Solution software was the system's operating system and data collection tool.

Preparation of bacteria

The pathogenic bacteria (*Proteus vulgaris* and *Bacillus subtilis*) were obtained from the BPC laboratory analysis center.

Preparation of Mueller-Hinton broth

Mueller-Hinton broth powder requires 21 grams per liter of water. Use a mixer to combine and dissolve them combine and dissolve them thoroughly. To ensure sterilization, add them to the final storage containers (like a conical flask) and autoclave at 121 degrees for 15 minutes [26].

Broth dilution assay

The broth dilution assay was utilized to perform the Minimum Inhibitory Concentration (MIC) test. The minimal inhibitory concentration (MIC) test determines the lowest concentration of antimicrobial agent that significantly slows growth. A suspension with a turbidity of 0.5 Mc Farland was used to prepare the bacteria. The dilutions of the aerial part extract were 400, 200, 100, 50, 25, 12.5, 6.25, and 3.125 µg/ml (W/V). The extract was then given a bacterial suspension, and it was incubated for 24 hours at 37 degrees Celsius. The MIC was the lowest, clearest concentration. Three times of experiments were conducted on each tested specimen [27].

3. Results and Discussion

Maceration method

The solvents n-hexane, ethanol, and methanol were used to extract the 100 g of air-dried whole plants. A crude extract evaporated the organic solvent at 30–40 °C under low pressure.

During the maceration extraction method, the aerial parts of *Lantana camara* are broken down and put into a container. The container is
then covered, and it stays that way for at least three days. The polarity of the solvents can influence the maceration method. *Lantana camara* aerial parts were extracted in the following order: n-hexane in 800 ml, ethanol in 800 ml, and methanol in 500 ml. The percentage yields of the extracts were 2% (light green), 3.6% (dark green), and 3.3% (dark green) for n-hexane, ethanol, and methanol, respectively. These findings demonstrated that the aerial parts of *Lantana camara* were more soluble in ethanol.

GC/MS analysis of n-Hexane extract

The chromatograms of the aerial part of the *Lantana camara* plant reveal that different compounds remain in the plant for varying amounts of time. The GC/MS chromatogram of the n-hexane extract (111) distinct compounds, as shown in Figure (1). The bioactive compound in the aerial part of *Lantana camara* contributes to the plant's medicinal value.

![Figure (1): GC/MS of the n-Hexane extract of aerial part of lantana camara.](image)

In *Lantana camara* n-Hexane extract, the most essential phytochemical compounds are Eucalyptol, Naphthalene1,2,3,5,6,8a-hexahydro-4,7-dimethyl-1-(1-methylethyl)-, (1S-cis), Alpha Tocospiro A,trans-Geranylgeraniol Caryophyllene oxide, 9,12,15-Octadeicatrienoic acid, methyl ester (ZZZ)-, Phytol, Neophytadiene, Alfa-Copaene, , Vitamin E, Alpha amyrin and Iso spathulenol. As Table (1) shows, this chemical is used for a wide range of biological purposes, including:

<table>
<thead>
<tr>
<th>No</th>
<th>Compounds</th>
<th>Area %</th>
<th>RT (min)</th>
<th>Biological activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Eucalyptol</td>
<td>0.25</td>
<td>4.6</td>
<td>anti-inflammatory antioxidant [28]</td>
</tr>
<tr>
<td>2</td>
<td>Alfa-Copaene</td>
<td>0.58</td>
<td>15.196</td>
<td>Anticancer antigenotoxic Antioxidant [29]</td>
</tr>
<tr>
<td>3</td>
<td>Naphthalene1,2,3,5,6 ,8a-hexahydro-4,7- dimethyl-1-(1-methylethyl) (1S-cis)</td>
<td>0.78</td>
<td>18.257</td>
<td>Antimicrobial anti-inflammatory [29]</td>
</tr>
<tr>
<td>4</td>
<td>Caryophyllene oxide</td>
<td>0.71</td>
<td>19.476</td>
<td>Antitumor Antioxidant Analgesic anti-inflammatory [30,31]</td>
</tr>
<tr>
<td>5</td>
<td>Neophytadiene</td>
<td>0.23</td>
<td>23.996</td>
<td>anti-inflammatory antimicrobial [32]</td>
</tr>
<tr>
<td>6</td>
<td>9,12 Octadecatrienoic acid (Z,Z), methyl ester</td>
<td>0.42</td>
<td>28.11</td>
<td>Anti-inflammatory Immunomodulatory [33]</td>
</tr>
<tr>
<td>7</td>
<td>9,12,15-Octadecatrienoic acid, methyl ester, (ZZZ)</td>
<td>1.29</td>
<td>28.214</td>
<td>Anti-inflammatory immunomodulatory [33]</td>
</tr>
<tr>
<td>8</td>
<td>Phytol</td>
<td>0.50</td>
<td>28.406</td>
<td>Antioxidant anti-Inflammatory Analgesic [34]</td>
</tr>
<tr>
<td>9</td>
<td>Alpha Tocospiro A</td>
<td>0.34</td>
<td>38.114</td>
<td>anti-inflammatory anti-diabetic [35]</td>
</tr>
<tr>
<td>10</td>
<td>trans-Geranylgeraniol</td>
<td>0.35</td>
<td>39.712</td>
<td>Anticancer [36]</td>
</tr>
<tr>
<td>11</td>
<td>Vitamin E</td>
<td>0.39</td>
<td>41.258</td>
<td>Antioxidant anti-inflammatory [37]</td>
</tr>
<tr>
<td>12</td>
<td>Alpha amyrin</td>
<td>0.33</td>
<td>45.145</td>
<td>Antioxidant [38]</td>
</tr>
<tr>
<td>13</td>
<td>Iso spathulenol</td>
<td>0.25</td>
<td>20.348</td>
<td>Antioxidant anti-Inflammatory [39]</td>
</tr>
</tbody>
</table>

GC/MS analysis of an ethanolic extract

The chromatograms of the aerial part of the *Lantana camara* plant reveal that different compounds remain in the plant for varying amounts of time. The GC-MS chromatogram of the ethanolic extract shows [28] distinct...
Compounds, as displayed in Figure (2). The bioactive compound in the aerial part of Lantana camara contributes to the plant's medicinal value.

Figure (2): GC/MS of the ethanolic extract of the aerial part of lantana camara.

Alfa Copaene, Caryophyllene, Neophytadiene, and 9, 12, 15 Octadecatrienoic Acid, Methyl Ester (ZZZ), are the most essential phytochemical compounds found in Lantana camara ethanol extract. This chemical has a wide range of biological activities, as shown in Table (2).

Table (2): GC/MS of an ethanolic extract and biological activity of each compound.

<table>
<thead>
<tr>
<th>No</th>
<th>Compounds</th>
<th>Area%</th>
<th>RT (min)</th>
<th>Biological activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Alfa Copaene</td>
<td>0.32</td>
<td>15.196</td>
<td>Anticancer antigenotoxic Antioxidant [28]</td>
</tr>
<tr>
<td>2</td>
<td>Caryophyllene</td>
<td>0.61</td>
<td>16.145</td>
<td>Antioxidant antimicrobial anticancer [30,31]</td>
</tr>
<tr>
<td>3</td>
<td>Neophytadiene</td>
<td>0.95</td>
<td>23.996</td>
<td>Anti-inflammatory antimicrobial [32]</td>
</tr>
<tr>
<td>4</td>
<td>9,12,15 Octadecatrienoic Acid, Methyl Ester (ZZZ)</td>
<td>0.95</td>
<td>28.209</td>
<td>Anti-inflammatory immunomodulator [33]</td>
</tr>
</tbody>
</table>

GC-MS analysis of a methanolic extract

The chromatograms of the aerial part of the Lantana camara plant reveal that different compounds remain in the plant for varying amounts of time. The methanolic extract's GC-MS chromatogram reveals 43 distinct compounds, as shown in Figure (3). The bioactive compound in the aerial part of Lantana camara contributes to the plant's medicinal value.

Figure (3): GC-MS of the methanolic extract of the aerial part of lantana camara.

The main phytochemical compounds found in Lantana camara methanol extract are Mequinol, Methoxy-4-vinyl phenol, 7, 10, 13-Hexadecatrienoic acid, methyl ester, Hexanedioic acid, dioctyl ester and Squalene. This chemical has a wide range of biological activities, as shown in Table (3).

Table (3): GC-MS of methanolic extract and biological activity of each compound.

<table>
<thead>
<tr>
<th>No</th>
<th>Compounds</th>
<th>Area%</th>
<th>RT (min)</th>
<th>Biological activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Mequinol</td>
<td>0.55</td>
<td>8.731</td>
<td>Topical treatment of melasma [40]</td>
</tr>
<tr>
<td>2</td>
<td>Methoxy-4-vinylphenol</td>
<td>1.11</td>
<td>13.956</td>
<td>Anti-bacterial [41]</td>
</tr>
<tr>
<td>3</td>
<td>7,10,13-Hexadecatrienoic acid, methyl ester</td>
<td>0.66</td>
<td>28.204</td>
<td>Antimicrobial Antioxidant Anti-inflamatory[42]</td>
</tr>
<tr>
<td>4</td>
<td>Hexanedioic acid, dioctyl ester</td>
<td>0.42</td>
<td>34.326</td>
<td>Antioxidant antidiagnostic [43]</td>
</tr>
<tr>
<td>5</td>
<td>Squalene</td>
<td>0.76</td>
<td>37.777</td>
<td>Anti-bacterial antioxidant Antitumor [43]</td>
</tr>
</tbody>
</table>

Broth microdilution assay

In the anti-bacterial analysis, minimum inhibitory concentration was used. The aerial part extract is prepared in three different solvents: n-hexane, ethanol, and methanol, and the bacteria analyzed are Proteus valguris and Bacillus subtilis in various concentrations of \{3.125, 6.25, 12.5, 25, 50, 100, 200 and 400\} Micrograms per milliliter. A lower concentration was created by diluting the
highest. There are remarkable positive results in the anti-bacterial analysis. To determine how well an anti-bacterial agent works, we need to know its minimum inhibitory concentration (MIC) value. A low MIC value could mean that the bioactive compound is very effective or that microorganisms will not likely become resistant to it. Figures 4 and 5 show what happens to Proteus vulgaris and Bacillus subtilis when the MIC value of each extract is changed by changing the concentration used. MIC values for Proteus vulgaris and Bacillus subtilis were between 100 and 400 [µg/ml].

Figure (4) minimum inhibitory concentration (MIC) value for proteus vulgaris.

4. Conclusion
This study demonstrated that extracts taken from the aerial parts of Lantana camara contain different compounds that have a lot of different biological activities and the ability to inhibit the growth of different species of bacteria.

5. Acknowledgement
The author would like to thank the Department of Fundamental Medicine at Al-Farabi Kazakh National University and his supervisor for helping, inspiring, and encouraging him as he wrote this review article.

6. Conflict of interest
The authors of this article declare that there are no conflicts of interest.
7. References
4. ORAIBI, Amjad I.; ABDULHAMZA, Hayder M. Chemical profiling of nonpolar compounds of Onopordum acanthium using GCMASS. Pharmacognosy Journal, 2022, 14.6s.
23. SIMORANGKIR, Murniati; NAINGGOLAN,

34. YEUNG, Andy Wai Kan, et al. Resveratrol, a popular dietary supplement for human and animal

[9]