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Abstract: Water pollution is a primary environmental 

concern on a global level due to the constant discharge of 

many pollutants into the aquatic environment. Treating heavy 

metals found in wastewater has attracted attention to novel 

technologies in recent years. The utilization of biological 

processes has been investigated because they are dependable, 

straightforward, and eco-friendly. Through this review, the 

researchers attempt to disseminate information regarding the 

environmental dangers of heavy metals, the function of heavy 

metal processing. Different microalgae use different external 

and internal processes microalgae species use different 

external and internal processes. An in-depth discussion is 

provided on the assessment of microalgae's processing 

potential and the usage of biochar generated from algae in the 

removal of heavy metals. Bioremediation of heavy metals 

alone is not a viable business plan. As a result, additional 

work is being done to create integrated treatment plans to 

make this procedure more affordable and long-lasting. This 

review describes recent developments in the use of microalgae 

for heavy metal therapy. Additionally, the challenges must be 

met to improve this process's efficiency, economy, 

sustainability, and cleanliness are covered. From the 

comments in this review, it can be inferred that 

bioremediation can be crucial to the sustainable processing of 

heavy metals and the development of the bio-economy  

 

Keywords: Algae, Adsorption, Bioremediation, Biochar, 

Metals. 

 

 

1.Introduction  

Water pollution is a global environmental 

concern, as deteriorating water quality results 

from continuously releasing many pollutants 

into the aquatic environment [1]. It is known 

that pollution with heavy metals not only 

affects the environment but also causes toxic 

effects that harm human health [2]. 

      As a result of the constant discharge of 

pollutants such as heavy metals, agricultural 

pesticides, industrial waste, and other 

pollutants, Water in a polluted environment 

contains numerous organic and inorganic 
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pollutants [3]. Most pollutants may come from 

domestic, industrial, or agricultural effluents, 

and their physical and chemical compositions 

vary according to their source [4]. 

Subsequently, the degradation of water 

resources due to pollution with heavy metals 

and other metals became a source of concern 

for environmental organizations and 

governments around the world, as the 

accumulation and stability of heavy metals in 

the food chain increased the risk of their 

toxicity even when they were present in low 

concentrations in Water [5]. Because these 

heavy metals are distinguished by their 

resistance to breakdown and are particularly 

prone to accumulating in the bodies of living 

organisms, they are one of the most 

challenging types of environmental pollution to 

control [6]. 

    In the past twenty years, the global interest 

in heavy metals has increased due to 

environmental pollution and the toxicity of 

some of these metals [Cd, Pb], even if they are 

found in low concentrations [7, 8]. 

Bioremediation alternative greener methods for 

removing heavy metals from liquid waste 

include bioaccumulation, bioabsorption, and 

physical treatments. Biotreatment is considered 

economical and environmentally friendly 

because it is readily available and occurs 

naturally when processing large amounts of 

heavy materials [9, 10]. Recently, 

microorganism-based biological treatment has 

attracted the attention of researchers worldwide 

because of its effectiveness, high efficiency, 

low cost, and environmental friendliness. Due 

to their high affinity and rapid adsorption 

kinetics, some microalgae and bacteria are 

potential biosorbents for inorganic compounds, 

including heavy metals [11, 12]. An 

inexpensive, green substance made of carbon is 

called biochar. The high carbon content, high 

cation exchange capacity, broad surface area, 

and stable structure of biochar are just a few of 

its unique benefits [13]. This review aims to 

disseminate information regarding the 

environmental dangers posed by heavy metals, 

the function of bioremediations employed in 

heavy metal processing, the many microalgae 

strains utilized for heavy metal removal, and 

their modes of action for remediation. 

2. Heavy metals: 

      Due to their hazardous nature, heavy metals 

have drawn the most attention from researchers 

of all contaminants. It is possible to categorize 

them as elements having atomic densities of 

more than 5 g/cm [14]. Natural waterways 

typically include minim levels of heavy metals, 

but many are dangerous even at shallow doses 

[15]. Metals such as arsenic, cadmium, nickel, 

zinc, cobalt, chromium, copper, and lead are 

among the most common minerals in Water 

and cause significant health problems if they 

are released in large concentrations. They also 

cause environmental problems and may lead to 

higher costs for water treatment [16]. 

  There are some necessary minerals for the 

growth of algae. These are called trace 

elements, such as Mn
+2

, Ni
+2

, Cu
+2

, Mo
+2

, and 

Fe
+2

. They are used as micronutrients. In 

contrast, heavy metals such as Hg
+2

, Sn
+2

, 

Au
+2

, Cd
+2

, pb
+2

, Sr
+2

, and Ti
+2

 have no 

essential biological function and are toxic to 

algae [17]. The environment becomes 

contaminated with heavy metals due to direct 

or indirect human activity. Heavy metals are 

harmful and non-biodegradable, which is why 

they are still present in Water. On the other 

hand, when heavy metals build up in soft 

tissues without being digested by the body, 

they become poisonous [18]. 

      Heavy metals have adverse effects on 

living organisms in general. Among the 

adverse effects they cause on plants are a 

decrease in seed germination and an effect on 

fat content. It is one of the damages caused by 

the cadmium element; the reduction in the 

activity of enzymes and plant growth caused by 

the chromium element; the inhibition of 
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photosynthesis caused by the copper and 

mercury elements; and the element lead affects 

chlorophyll production and plant growth [19]. 

As for effects on animals, heavy metals cause 

cancer, organ damage, nervous system damage, 

effects on growth and development, and, in 

severe cases, death [20]. To prevent the adverse 

effects of heavy metal toxicity in the Water, 

adequate treatment of these wastes must occur 

before they are released into bodies of Water. 

The main goal of treatment is to eliminate any 

current or potential threat to human, animal, or 

environmental health, Bioremediation is 

classified into two categories: the treatment 

using plants and the treatment with 

microorganisms [21]. Microbiological 

treatment removes various pollutants using 

microorganisms [bacteria, fungi, and algae]. 

This technique relies on biological activity to 

reduce or destroy the toxicity of the pollutants 

[22]. 

 Cadmium 

      Cadmium and its compounds have been 

identified by the International Agency for 

Research on Cancer as being carcinogenic to 

humans [23]. Cadmium is a highly toxic 

element that accumulates in the kidneys in high 

concentrations. Cadmium can cause bone 

damage or kidney impairment. Studies 

conducted on humans and animals revealed 

that osteoporosis is a direct effect of exposure 

to cadmium, along with disturbances in 

calcium metabolism [24]. Another study 

conducted on freshwater fish showed that 

cadmium accumulates mainly [about 75%] in 

the kidneys, liver, and gills [25]. It can also be 

deposited in the heart and other tissues [26]. It 

causes pathological changes of varying severity 

in the mentioned organs [27]. Cadmium is 

highly soluble in Water compared to other 

metals. Inhaling high concentrations of 

cadmium can cause severe lung damage, so the 

researchers confirmed that smokers are more 

susceptible to cadmium poisoning than non-

smokers because tobacco plants, like other 

plants, can absorb and accumulate cadmium 

from the soil [28]. According to the Agency for 

toxic Substances and Disease Registry 

[ATSDR], over 500,000 workers in the United 

States are exposed to hazardous cadmium 

annually [24, 29]. Cadmium has a lengthy half-

life of roughly 25 to 30 years and accumulates 

in plants and mammals. Epidemiological 

evidence suggests that exposure to cadmium at 

work and in the environment may be linked to 

several-malignancies, including those of the 

breast, lung, prostate, nasopharynx, pancreas, 

and kidneys [27]. In trace amounts within the 

body, heavy metals are harmful to human 

health, even in low-level contaminated food 

and Water is one way to get exposed to 

contaminants. It has been demonstrated that 

lead and cadmium are absorbed by and 

accumulate in organs like the kidneys and liver. 

They have also been linked to various illnesses, 

including cardiovascular disease, kidney 

dysfunction, developmental problems, and 

neurological diseases [30]. 

 Chromium 

      Chromium occurs in several-oxidation 

states, but Cr [III] [chromium trivalent] and Cr 

[VI] [chromium hexavalent] are of paramount 

biological importance. There is a significant 

difference between chromium trivalent and 

chromium hexavalent about toxicological and 

environmental properties [31]. 

    In amounts ranging from 50 to 200 g per 

day, trivalent chromium is necessary for 

humans. The metabolism of insulin depends on 

chromium. All plants contain the element; 

however, it is unknown if it is an essential 

nutrient. However, it is also necessary for 

animals [32]. The chromium's oxidation state 

affects its kinetics. Most of the trivalent form 

of chromium consumed daily is consumed with 

food. According to [33], the body only absorbs 

0.5–3% of the total absorption of trivalent 

chromium. Contact with chromium-containing 

items, for instance, can lead to widespread skin 



Alzurfi  S. K., AL-Kufa University Journal for Biology-2023, Vol.15, Issue: 2  Page: 99-121 
 

[102] 

 

exposure to the metal. Leather, preserved 

wood, or soil with vines. Chromium exposure 

at work may be considerably influenced by 

airborne particles [34]. 

    Effects on humans from occupational 

exposure to high levels of chromium or its 

compounds, primarily Cr [VI], by inhalation 

may include psychotropic effects, potential 

hematologic effects, effects on the stomach and 

blood, effects on the liver and kidneys, and 

increased risks of lung cancer and death [35]. 

    When both Cr [III] and Cr [VI] at high levels 

are parenterally injected into animals, effects 

on the fetus appear, with the hexavalent form 

accumulating in the fetuses to a much greater 

extent than the trivalent. Effects on the fetus 

from exposure to chromium have not been 

reported in humans. Chromosomal aberrations 

have been observed in some humans 

occupationally exposed to hexavalent 

chromium compounds and other substances 

[34]. In sensitive people, exposure to Cr [VI] 

and Cr [III] compounds has been linked to 

allergic reactions [such as asthma and 

dermatitis]. The general populace frequently 

has chromium eczema due to exposure to 

chromium in everyday items. Workers who 

frequently come into contact with high 

concentrations of chromium salts are less at 

risk than those who work with materials that 

contain traces of these salts [36]. Trivalent 

chromium is typically less hazardous to 

environmental species than hexavalent 

chromium. Hexavalent chromium in the 

environment is primarily a result of human 

activity. Chromium is reasonably stable in this 

oxidation state in pure air and Water, however 

it comes into contact with organic matter found 

in living things, soil, and Water, it is reduced to 

the trivalent state. [37]. According to numerous 

studies, chromium is a hazardous element that 

impairs plant metabolic processes, hinders crop 

growth and yield, and lowers the quality of 

vegetables and grains [38]. Chromite [Cr], 

especially Cr [VI], is a highly bioavailable HM 

that has not been shown to play any part in 

plant physiology. It has been discovered that 

chromium is highly harmful to plants. This 

toxicity is also determined by chemical 

speciation, which is regulated by other 

parameters, including soil pH, redox potential, 

organic matter, and microbial population [39]. 

 Nickel 

     Nickel is a metal that is widely distributed 

in the environment. It is a crucial component of 

approximately 100 different minerals, which 

have a wide range of industrial and commercial 

applications [40]. A minor portion of nickel's 

global usage is utilized in the jewelry sector for 

plating and alloying with gold and silver. 

However, it is widely utilized in a many other 

applications, including stainless steel and 

nickel hydride batteries in hybrid and electric 

automobiles, it has developed into a common 

substance in contemporary culture [41]. Nickel 

is linked to several environmental problems, 

including greenhouse gas emissions, habitat 

damage, and air, Water, and soil 

contamination. Because nickel deposits are 

frequently found in low-grade ores [containing 

only 1% to 2% nickel], the extraction and 

refining of the metal requires much energy. 

Due to the increased energy demand, mainly 

met by fossil fuels, greenhouse gas emissions 

into the environment have increased 

significantly [42]. 

      Nickel is a ferromagnetic element naturally 

present in the earth's crust. Usually, oxygen, 

sulfur, and sulfur oxides and sulfides are 

involved. Nickel may be found in soil, 

meteorites, and volcanic emissions. The ocean 

contains around eight billion tons of nickel. 

Nickel is utilized in a wide range of industries, 

including the creation of alloys, electroplating, 

the creation of nickel-cadmium batteries, and 

as a catalyst in the chemical and food sectors, 

thanks to its unique physical and chemical 

qualities. The widespread use of products 

containing this metal causes nickel pollution of 
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the environment. It has been determined that 

some microbes, plants, and animal species 

require nickel as an essential nutrient, although 

there is no evidence to support its nutritional 

significance for humans [43]. Human exposure 

to high nickel concentrations leads to several 

health problems, such as cancer, asthma, and 

heart disease [44]. Nickel-enriched enzymes 

are found in archaea, bacteria, algae, primitive 

eukaryotes, and plants [45 ,46, 47,48]. 

     Nickel plays crucial roles in a wide range of 

physiological and morphological processes, 

including seed germination and productivity, 

and is necessary for the healthy growth and 

development of plants. However, nickel 

impacts plant metabolism, inhibits enzyme 

activity, and has an electron transfer effect on 

photosynthesis at high concentrations [49]. 

 Arsenic 

      The element arsenic is present in nature in 

various forms, including rocks, Water, air, 

vegetation, and wildlife. It can exist in both 

organic and inorganic forms as a mineral [50]. 

Most arsenic compounds have no taste or odor 

and are readily soluble in Water, which 

increases health hazards [51]. Mining 

operations, the processing of fossil fuels, and 

the burning of household and commercial 

garbage all require human resources. In sulfide 

ores, which also contain other metals including 

copper, lead, silver, and gold, arsenic can be 

found in natural sources. These natural sources 

are susceptible to arsenic release due to mineral 

degradation and rapid evaporation. Under 

reduction conditions, it can also result from the 

absorption of metal oxides and slow down the 

dissolving of iron and manganese oxides [52]. 

Because it is harmful and thought to be 

carcinogenic at doses as low as 0.01 g/ml, 

arsenic is regarded as a very toxic heavy metal. 

Arsenic enters the body primarily through 

breath, contact with the skin, and ingestion. 

After then, it has impacts the kidneys, bladder, 

skin, lungs, heart, and central nervous system. 

Arsenic dermatitis, leukocytosis, 

hyperkeratosis, hyperglycemia, miscarriage, 

and immune system changes Plant metabolism 

is impacted by it. disrupts the balance of 

carbon, amino acids, proteins, nitrogen, sulfur, 

and other metabolic pathways, which results in 

a phosphate imbalance in DNA [53]. 

According to a guideline by the US 

Environmental Protection Agency, arsenic is 

one of the most dangerous heavy metals. The 

oxidation state of arsenic—that is, arsenic, 

arsenic, and arsenic—determines its physical 

and chemical characteristics. The inorganic 

form of arsenic is the most dangerous. In 

physical therapy, microalgae are frequently 

seen attempting to detoxify arsenic by 

changing its inorganic form into an organic 

one. Chelated or functional groups, such as 

phosphates and nitrates, can convert them [54]. 

Arsenic has a close connection to human 

existence and is utilized extensively in more 

than 50 different industries, including the 

military, metallurgy, pesticides, the silicate 

industry, semiconductors, processing, feed, and 

cosmetics. In addition to extensively used 

rulers, arsenic-containing insecticides, male 

insecticides in hybrid rice, and arsenic-

containing herbicides were also widely utilized 

in agricultural productivity. Arsenic is 

simultaneously the most harmful carcinogen 

that endangers people's health. Lung, skin, and 

bladder cancer can all be brought on by arsenic 

exposure in addition to acute and subacute 

arsenic poisoning [55,56, 57,58]. Investigating 

effective and inexpensive techniques to 

eliminate arsenic from the environment is 

necessary. 

3. Bioremediation  

Bioremediation is a technique used to remove 

environmental pollutants from an ecosystem 

based on microorganisms such as bacteria, 

fungi, and algae It also uses plants to eliminate 

hazardous pollutants and restore the ecosystem 

to its original state [59]. Alternatively it might 

be defined as a process that relies on biological 
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mechanisms to reduce, break down, detoxify, 

or turn pollutants into a harmless state. In the 

past two decades, there have been recent 

developments in biological remediation 

techniques aimed at effectively treating 

polluted environments in an environmentally 

friendly manner at a meager cost compared to 

chemical or physical treatment methods [60]. 

The biological treatment process can be 

classified into two main types: in-situ and off-

site. The processes that are in-situ include 

adding nutrients to the polluted environment to 

stimulate microorganisms to break down 

pollutants, adding new types of organisms, or 

modifying the original organisms to break 

down a specific pollutant using genetic 

engineering [61, 62]. Off-site treatment 

operations involve moving contaminated media 

from its original site to a different treatment 

site based on the type of contaminants present, 

the cost of treatment, the geographical location, 

or the geology of the contaminated site [63]. 

Bioremediation combines the methods used by 

numerous fields. Opportunities for novel 

bioremediation methods appear as each 

profession develops and as new cleanup 

requirements materialize. New methods for 

bioremediation will be available as novel, 

better known at the ecological, biochemical, 

and genetic levels [64]. So, Bioremediation is a 

remediation technology that is widely used and 

is constantly developing. Although many 

problems that initially restricted its usage have 

been resolved, some still need more research 

[65].  

 Phytoremediation by Algae 

      Macroalgae and microalgae can be used to 

remove pollutants or convert them biologically, 

such as nutrients, heavy metals, hydrocarbons, 

and carbon dioxide from polluted air [66]. In 

general, microalgae have proven their 

efficiency in removing heavy metals. Algae 

absorb heavy metals through rapid absorption 

on the cell surface, which is called physical 

absorption, then these ions slowly move to the 

cytoplasm in the process of chemical 

absorption [67]. On the other hand, algae can 

use some elements in ctiyical biological 

processes, as iron is involved in photosynthesis 

and electron-transporting proteins [68]. In 

addition, microalgae produce oxygen as a by-

product of photosynthesis, which aerobic 

bacteria can use to decompose organic 

pollutants in wastewater. As a result, 

microalgae can help reduce the need for 

mechanical ventilation during wastewater 

treatment [69]. Algae treatment is one of the 

most efficient advanced methods of removing 

pollutants in a safe and environmentally 

friendly manner due to its ability to proliferate, 

its resistance to the harsh conditions 

surrounding it, and its low cost [70]. Some 

metals are essential to algae, such as 

magnesium, which is also used to manufacture 

of chlorophyll and some enzymes such as 

Kinases and ATPases [71]. However if heavy 

metals are present in high concentrations, they 

can cause symptoms of toxicity and the effects 

of free radicals. In a study conducted on 

Chlorella minutissima, it proved efficient by 

removing 62%, 84%, 74%, and 84% of Cu
+2

, 

Cd
+2

, Mn
+2

, and Zn
+2

 respectively, after 

planting it in sewage [72]. In Fez, Ante Kong, 

and New Delhi, India, arsenic was utterly 

removed from drinking water by the green 

algae Cladophora [73]. In a study used by 

Dominic et al.[74], Green algae like Chlorella 

vulgaris and two blue-green algae, 

Synechocystic salina and Gloeocapsa 

gelatinosa in the treatment of industrially 

contaminated Water, it was shown to be highly 

efficient in removing organic loads. Green 

algae such as Scendesmus sp., Chlorella sp., 

and blue-green algae like Nostoc sp have also 

been proven. High efficiency in removing 

nutrients, organic loads, and dissolved solids 

when used in the treatment of wastewater 

released after primary treatment [75]. Indicate 

[76] reference to the role of algae in the 

treatment of household waste water, as the 

removal rates of nutrients such as phosphate 

were high after three days of treatment. In a 
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study in which two types of green algae were 

used, Chlorella vulgaris and Chlorella 

reinhardtii, for wastewater treatment, the 

results showed a decrease in the value of COD 

by 59% and 46%, respectively [77]. 

 Mechanisms of Bioremediation by 

Algae 

      During the biotreatment process, 

microalgae not only remove nitrogen and 

phosphorus, but can also remove and break 

down other toxic substances such as heavy 

metals, organic pollutants, and hydrocarbons. 

They can also convert low concentrations of 

heavy metals such as cadmium and mercury 

into sulfides and carbonates with low solubility 

and less toxicity. It was observed that when 

green algae Chlamydomonas reinhardtii, red 

moss Cyanidioschyzon merolae and the blue-

green moss Synechoccocus leopoliensis are 

exposed to cadmium, these algae reduced the 

toxicity of the element by converting it to 

cadmium sulfide [78]. Another study showed 

that when red algae Galdieria sulphuraria  are 

exposed to mercury Hg
+2

, there was a 90% 

conversion of Hg
+2 

to beta-mercury sulfide [β-

HgS ] within 20 minutes [79]. Microalgae can 

form complexes with pollutants in wastewater 

thanks to their reactive clusters and active 

attachment sites. According to [80], this causes 

flocculation, which lowers the concentration of 

all of these total dissolved solids [TDS] and 

total suspended solids [TSS].  

      The bioaccumulation property carries out 

the mechanism of bioabsorption. Bioabsorption 

is one of the primary mechanisms by which 

algae absorb and destroy toxic pollutants 

relative to their large surface compared to their 

size, as they contain a large surface compared 

to their size and contain on the surfaces of their 

cells highly binding groups and effective 

systems [fig.1] for absorbing and storing 

polluting materials [81]. The cell wall in 

microalgae consists mainly of sugars [cellulose 

and alginate] and organic fats, providing many 

functional groups [such as amino and carboxyl, 

hydroxyl, imidazole, phosphate, sulfonate, 

thiol, etc.] capable of binding heavy metals 

[82]. In a study he conducted on the bluish-

green Lyngbya taylorii, he showed its high 

ability to absorb many heavy metals [83]. 

     As a property of bioaccumulation, it is a 

process by which algae accumulate toxic 

substances in the environment. This process 

occurs in two stages: the first is a rapid process 

similar to the process of bioabsorption, and the 

absorption of ions occurs in the cell, in contrast 

the second stage is slow and the ions are 

transferred into the cell by effective transport 

[84]. Heavy metals are efficiently transported 

through the cell membrane to the cytoplasm, 

where they are then bound by internal binding 

sites of proteins and peptides such as GSH 

metal transporters and oxidative stress-reducers 

[85,86]. For example, in a study of three types 

of green algae, Oedogonium sp., Hydrodictyon, 

and Rhizoclonium, it was found to accumulate 

heavy metals such as vanadium and arsenic in 

the wastewater of coal power plants [87]. 

Another study conducted on Chlorella vulgaris 

showed that this alga can accumulate and 

reduce nickel oxide nanoparticles. NiO means 

algae can be used in the bioprocess of 

nanomaterials [88]. 

 

Fig.1: Process of enzymatic breakdown of 

PAHs by heavy metals [89] 
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 Evaluation of various microalgae's 

potential for heavy metal remediation 

     Eukaryotic bacteria known as microalgae 

are prevalent in watery environments. It 

controls metabolism by using sunlight to repair 

carbon dioxide from the environment [90,91]. 

Microalgae can treat wastewater to reduce its 

nutritional load [91]. Microalgae have been 

used to treat wastewater worldwide for the past 

three decades [92,93]. Several published 

studies have suggested that microalgae can 

process heavy metals [93], where 

Soeprobowati and Hariyati [94] examined the 

potential of microalgae such as Chaetoceros 

sp., Spirulina sp., Chlorella sp., and 

Porphyridium sp. to remove heavy metals such 

as cadmium, copper, and lead [at a 

concentration of ˂ 0.5 mg l-1]. 

      In addition, Shokri Khoubestani et al. [95] 

used a bio-sorbent derived from microalgae 

containing protein [43.5%], carbohydrates 

[20.3%], and fat [9.2%]. To remove chrome 

[III] and chrome [VI] in batch mode 

experiments and evaluate the pH effect, the 

results showed that at pH 6, the absorption of 

Cr [III] was 98.3%, and at pH 1, the absorption 

of Cr [VI] was 47.6%. 

In another study, [96] studied Cd's bio-

absorption and removal kinetics [II]. Using C. 

vulgaris live and dead, the results showed that 

the bacterium C. vulgaris has a high cadmium 

absorption efficiency in all dead cells [96.8%] 

and living cells [95.2%]. So, we conducted 

experiments with microalgae, Scenedesmus 

incrassatulus, to remove chrome [VI], 

cadmium [II], and copper [II]. The results 

showed that Scenedesmus incrassatulus 

eliminated 25–78% of heavy metals, with 

chromium [VI] being removed heavily. 

       Scenedesmus sp. ability for bioabsorption 

was investigated by [86]. The biomass of 

Scenedesmus sp. accumulated 92.89% of 

chromium according to the results of the 

solution biomass for chrome removal [VI]. The 

microalgae cell contains a variety of functional 

groups, including positively charged amides, 

aldehydes, carboxylic acids, halides, and 

phosphates that aid in bioabsorption, according 

to infrared spectroscopy [FTIR] by 

transforming Fourier. Lesson on the 

Mechanism of Lead [II] Removal Using 

Microalgae S. obliquus, Danouche et al. [97] 

The findings demonstrated that S. obliquus 

absorbed lead [II] by bioabsorption [85.5%] 

and bioaccumulation [14.5%] whether inside or 

outside of cells. 

4. Adsorption 

Adsorption is a separation process in which 

molecules condense on the adsorbent surface 

due to the van der Waals force between them. 

The adsorption susceptibility of a compound 

increases with the increase of its molecular 

weight; the number of functional groups, such 

as double bonds or halogen compounds, 

increases; and the polarizability of the 

molecules increases [98]. This method removes 

organic pollutants, toxic compounds, and dyes 

from water waste that conventional methods 

cannot remove [99].  

     These components can be removed largely 

by adsorption on the surfaces of many porous 

natural materials such as activated carbon and 

zeolite [100], aluminum oxide, animal 

charcoal, silica gel [101], fly ash, and porous 

clays [102]. The adsorption isotherms represent 

the change in the amount of adsorbent that is 

obtained by a certain amount of adsorbent 

liquid to a specific concentration limit at a 

specific temperature and pressure, through 

which the adsorption capacity of the adsorbent 

is determined [103]. The adsorption of pure 

liquids to the surface differs because the 

solution contains multiple substances, each 

interacting with the others to compete for 

active sites on the surface of the adsorbent. 

Thus, when any change occurs in the 

concentration of the solution, the components 



Alzurfi  S. K., AL-Kufa University Journal for Biology-2023, Vol.15, Issue: 2  Page: 99-121 
 

[107] 

 

of the solution will replace each other. It is one 

of the properties of the solution that depends on 

the nature of the interactions between the solute 

and the solvent in the solution and the 

interactions that occur with the solid adsorbent 

surface [104]. A process similar to the 

adsorption process may occur, which is 

absorption, which is the penetration and spread 

of adsorbent particles on the surface of the 

adsorbent, and these particles are not collected 

on the surface of the adsorbent only, as 

happens in adsorption. 

     Many factors affect the adsorption process, 

including temperature, pH, ionic strength, 

amount of adsorbent, nature of the adsorbent, 

adsorption time, initial concentration, and the 

effect of the solvent [105]. Adsorption kinetics 

expresses the speed of withdrawal of adsorbent 

molecules from the solution and their adhesion 

to the adsorption surface, which requires 

overcoming the forces between molecules that 

impede the process of adsorption in the 

solution. [106]. Adsorption results from the 

bonding forces between the adsorbent and the 

adsorbent surface, regardless of the nature of 

the phases of the substance and the adsorbent 

element. Adsorption occurs between two 

phase: liquid-solid, liquid-gas, and gas-liquid 

[107]. Absorption methods are widely utilised 

to remove heavy metals from wastewater. 

Activated carbon is the most popular adsorbent 

and provides the best results, but its use is 

constrained by its high price. Its manufacturing 

and regeneration are costly [54].  

5. Biochar 

 Biochar and Magnetic Biochar 

     Biochar is a porous, carbon-based material 

made from the pyrolysis of organic matter. 

Biochar can be made from various ingredients, 

including plant materials and compost. The 

biomaterial consists mainly of cellulose, with 

some organic extracts and mineral components 

thrown in for good measure. The main 

elements present in biomass carbon are C, H, 

O, N, and S. The difference in the type of 

biomaterial results in the efficiency of the 

prepared biomass in terms of its adsorption 

capacity [108]. 

    Different raw materials were used to 

synthesize biochar, which has different 

compositions. According to [109], microalgae-

derived biochar comprises large aggregates that 

range in size from 10 to 100 m and has an 

uneven porosity of 1 m. Biochar produced from 

the pyrolysis of biomass and biochar formed 

from microalgae has different structural 

characteristics [110]. Various biomasses, 

including rice straw, bamboo cane, poplar 

leaves, waste from mangosteen shells, and 

gravel husk, are combined to create biochar. At 

temperatures between 300 and 700 °C, slow 

pyrolysis of microalgae yields 56.3-66.2% 

biochar. A temperature range of 350-950 °C 

produces 39-52% biochar from other biomass 

sources, such as sewage sludge. In the 400–

1000 °C temperature range, olive skin biochar 

yields 9.4–44.5% by weight of the biochar 

output [109]. According to most research, 

magnetic biochar is an essential adsorbent for 

heavy metals from wastewater and even Water 

contaminated with nuclear waste [111].An 

adsorbent, biochar can absorb organic 

pollutants well. Nowadays, many researchers 

have studied biochar adsorption on organic 

matter in the soil, such as PAHs [43] and 

phthalate acid esters [112]. Some studies also 

showed that the treatment effect of a 

wastewater treatment system containing 

biochar on organic pollutants was significantly 

improved compared to that without biochar 

[113]. Algae-based biochar has a good 

adsorption capacity to remove organic and 

inorganic pollutants from wastewater compared 

to other carbonaceous materials. For example, 

the removal of heavy metals by microalgae 

[Chlamydomonas sp.] is 94% with a 

biosorption capacity of 152mg Cr[VI] g-1 

[114]. Because magnetic biochar can be easily 

and quickly separated from aqueous media, 
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magnetic separation is an ideal solution to the 

biochar problem. Magnetic biochar is made by 

combining biochar with magnetic materials, 

which is a great way to eliminate metallic 

contaminants in aqueous solutions [115].  

     Due to its ability to magnetically separate 

materials, magnetic biochar has recently 

attracted much attention. Magnetic biochar is 

an excellent soil amendment, making it a more 

and more desirable option for removing heavy 

metals from contaminated soils[116]. 

     The use of biochar in treating of soil 

contaminated with abundant metals was 

investigated by [117]. Due to its numerous 

sources, high porosity rate, the presence of 

functional groups, and low price, biochar [BC], 

a carbon-based substance rich in pore structure, 

has become a promising adsorbent for the 

remediation of environmental contamination 

[118,57,119]. BC has undergone extensive 

research as a material for carbon sequestration 

and the stabilization of HM due to its full 

capacity to adsorb on the ion-exchange state of 

HM [120,121] .\ 

     In a different study, biochar and magnetic 

biochar were used as effective, affordable, 

secure, and environmentally friendly methods 

for removing heavy metals like cadmium. The 

biochar was made from palm fronds and 

activated with sodium hydroxide before being 

treated with two concentrations of cadmium in 

the Water [5 ppm and 10 ppm]. The 

effectiveness of eliminating cadmium [II] was 

enhanced by the charcoal [BC]. When we 

added 0.5 g of biochar to the solution, 

cadmium was removed at a rate of 98 percent. 

However, when magnetite-biochar [MBC], 

which has the property of being magnetic, was 

added to the biochar prepared by adding 

Fe3O4, the adsorption performance of heavy 

metals was significantly improved, and the 

removal efficiency was increased up to 100%. 

This explains why MBC has such an excellent 

adsorption performance [122]. 

     After preparing biochar, it must be 

characterized to determine its chemical make-

up and form. Isotherms, such as nitrogen 

adsorption isotherms, X-ray diffraction [XRD], 

Fourier- transform infrared spectrometry 

[FTIR], and X-ray spectroscopy [XPS] are 

typical analytical procedures for biochar, 

according to an overview of the material. By 

calculating the multilayer adsorption capacity 

under various partial pressures of nitrogen, 

nitrogen adsorption isotherms are utilized to 

calculate the surface area of biochar. The 

Brunauer, Emmett, and Telle [BET] multilayer 

adsorption model can be used to calculate the 

biochar's surface area. Carbon crystals are 

analyzed using XRD by determining the 

direction and strength of the diffracted rays. 

Graphite and non-graphite carbon are the two 

types into which carbon crystals are typically 

categorized. The small, sharp reflection pattern 

indicates graphite, whereas non-graphite 

carbon is indicated by the broad reflection 

pattern [123]. Using the Fourier transform 

function, FTIR may be used to identify the 

chemical functional groups on biochar based 

on the wave in the frequency domain of the 

light intensity. Different function groups are 

represented by vibration at various locations in 

the IR spectrophotometer [124]. 

    Figure 2 illustrates the impregnation-

pyrolysis, chemical co-precipitation, 

solvothermal, and reductive co-precipitation 

processes used to successfully create magnetic 

biochar, as reported in the literature [125]. 

These biochar composites are demonstrated to 

offer efficient absorption, quick separation 

utilizing external magnets, and simple 

recycling [126]. However, the traditional 

magnetic medium loading procedure raises the 

sorbent's price[127]. Pyrolysis, co-

precipitation, and the calcination process are 

three of the most often used methods reported 

by Thines et al. to create magnetic material 

[128]. A typical production technique was 

mentioned in the literature, such as traditional 

heating in an electrical furnace [129]. 
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Figure 2: A schematic of typical techniques for 

making magnetic biochar [130]. 

 Biochar applications: 

 Application of biochar in heavy metal 

removal 

           Over the past ten years, there has been 

an increase in interest in biochar because of its 

enormous potential for adsorbing minerals 

from aqueous solutions. Different heavy metals 

may co-exist with other pollutants in natural 

waterways, and as a result, other metals, ions, 

and organic contaminants compete for 

adsorption sites on the biochar surface. The 

competitive adsorption of heavy metals by 

biochar has only recently been examined in a 

few studies [131]. The mineral components of 

the biochar, which act as adsorption sites for 

heavy metals through sedimentation, are also 

crucial in the removal process. For example, 

the percentage of cadmium removal increased 

in the biochar of dairy manure due to the 

content of relatively soluble carbonates and 

phosphates and an increase in temperatures 

from 200 to 350 °C. The removal efficiency of 

cadmium was improved from 31.9 to 51.4 mg/g 

due to the increase in the proportion of metallic 

components in biochar, especially soluble ones 

such as carbonates [132]. Several studies 

revealed that biochar's ability to mitigate 

pollution includes micropore structure and 

surface physical adsorption and  includes 

micropore structure and surface physical 

adsorption and relates to organic compounds 

and inorganic ions that may primarily affect 

mineral fixation [133,134].  

       Heavy metals are often removed using 

magnetized biochar through electrostatic 

adsorption and the formation of functional 

aggregates. Iron oxides play an essential role as 

buoyant heavy metal element pollutants are 

treated using a magnetic biochemical approach, 

where the most common buoyant heavy metal 

pollutants are dealt with. By using magnetized 

biochar, the activators improve the prepared 

materials' chemical and physical properties and 

thus increase pollutant removal efficiency 

[135]. Initially, biochar was employed to 

encourage carbon sequestration and 

agricultural advantages, However 2005 

onward, the number of publications of indexed 

articles has grown exponentially due to the 

material's promising outcomes for pollution 

removal [136]. 

   Due to its low production cost and distinct 

physicochemical characteristics, which are 

helpful for many applications, biochar has 

caught the scientific community's attention in 

recent years [137]. 

 Organic pollutant treatment 

        The increase in global population over the 

past two decades has resulted in a greater 

demand for Water for both human consumption 

and industrial use, which has increased the 

volume of wastewater dumped into the aquatic 

environment. Several pollutants, including 

carcinogenic heavy metals, have been 

identified in wastewater streams and described 

in the literature [138]. hydrocarbons from 

petroleum , polycyclic aromatic hydrocarbons 

[PAHs] [139], organic dyes [140], phenols, 
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insecticides, medicines, and antibiotics for 

animals [141]. Organic pollutants have become 

one of the most critical environmental issues, 

along with heavy metals in Water, because they 

are rebellious and persistent in the environment 

[142]. Therefore, magnetic biochar is highly 

efficient in absorbing organic emissions, and 

the organic pollutants that are treated with 

magnetic biochar include phenols, pesticides, 

organic chlorine, antibiotics, and organic dyes 

[143]. Biochar  prepared from natural materials 

shows a high ability to absorb organic 

materials. In general, electrostatic bonding and 

hydrogen bonding are the primary tools for 

absorbing organic materials by biochar, which 

varies according to biological materials' 

chemical and physical properties [144]. The 

presence of non-carbon materials makes their 

surfaces inhomogeneous, resulting in different 

adsorption mechanisms for the adsorption of 

organic compounds [145]. 

        Designing the most effective, functional, 

and practical treatment approaches is still seen 

as problematic. The following processes were 

found to be the most promising among those 

that have been the research focus: chemical 

oxidation, electrocoagulation, membrane 

separation, reverse osmosis, filtering, 

adsorption, and biological treatment 

[146,147,148]. One of the most effective ways 

to remove various pollutants from wastewater 

and gaseous streams is adsorption [149,150]. 

         Clays, zeolites, and active carbon are 

common adsorbents, with the latter being 

extensively employed for effective 

micropollutant removal, particularly in the 

potabilization of Water. In Europe, coal and 

biomass such as coco coir or coco shells that 

can be transported over large distances are 

typically utilized to manufacture the active 

carbon. The advantage of sustainably generated 

substrates, biochar, as an alternative to 

currently employed active carbon is made 

possible by local leftover biomass and well-

regulated pyrolysis conditions [151]. While 

reducing greenhouse gas emissions and carbon 

sequestration are currently receiving much 

attention, the initial focus of interest in biochar 

was on improving agricultural productivity 

through the enhancement of soil fertility, 

increasing soil nutrient levels, and increasing 

soil water retention capacity [152, 153,154]. 

 Treatment of inorganic pollutants 

        Inorganic pollutants such as nitrates, 

phosphates, fluoride, and other inorganic 

pollutants are treated using magnetic biochar 

[143]. Among other pollutants, phosphorus is 

the most researched and the focus of attention 

among other inorganic pollutants, and the 

amount of magnetized biochar adsorbed ranges 

from 1.26 mg/g to 474.26 mg/g. Modified 

magnetic biochar has a higher ability to absorb 

phosphorus, as it was determined The 

adsorption powers of nitrate and fluoride on 

magnetic biochar were 15 mg/g and 9 mg/g, 

respectively. Removing inorganic anions 

includes surface complexes of adsorption, ion 

exchange, electrostatic interference, and co-

precipitation [155]. Recently, British Columbia 

[BC] has emerged as a new sorbent due to its 

exceptional qualities, including eco-

friendliness, abundance in functional groups 

and inorganic mineral species, containing 

micro and/or meso-porous structures, and high 

adsorption capacity, which were widely used to 

remove contaminants from wastewater 

[156,157]. However, biomass, reaction 

parameters, etc. correlated with BC and BC-

based composite material performances. For 

instance, whereas BC manufactured at lower 

temperatures contained more harmful 

compounds such as polycyclic aromatic 

hydrocarbons [PAH], polychlorinated dibenzo 

dioxins [PCDD], and polychlorinated dibenzo 

furans [PCDF], BC prepared at higher 

temperatures had a comparatively high pH 

value. Moreover BC that came from animal 

manure was ash-rich. According to several 

studies, BC-based composites can significantly 

improve the efficacy of pollutants removal 
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[158]. Recently, Taha et al., [159] processed 

rice straw with phosphoric acid as biomass to 

produce TBC for eliminating pesticides from 

Water. Surprisingly, within 10 minutes, the 

residual pesticide concentration was below the 

legal limit for drinking water 0.1 g/L .  

Furthermore, at pH 7.0, all pesticides [apart 

from oxamyl] could be eliminated in under two 

hours. According to [160], boosting TBC's 

aromaticity with phosphoric acid treatment can 

improve hydrophobic interactions and -

interactions, which helps to increase the 

adsorption coefficient. The adsorption 

capabilities of atrazine by BC, Na2S modified 

BC [BS], and KOH-modified BC [BK] were 

further disclosed by [161] to be 1.94 mg/g, 2.69 

mg/g, and 2.84 mg/g, respectively. Since BS 

and BK had relatively low H/C ratios, modified 

BC had abundant aromatic structure. More 

more aromatic surfaces and polyaromatic 

structures can provide electrons donor-acceptor 

interaction sites. The attraction between 

opposing quadrupoles can produce the - 

electron donor-acceptor interaction, which 

increases the removal rate, between the -

electron-deficient molecule [atrazine] and the -

electron-rich molecule [BK/BS]. 

6.Conclusion 

    Heavy metal pollution poses significant risks 

to both the environment and human health. 

Bioremediation, mainly using microorganisms 

and biochar, offers a promising and 

environmentally friendly approach to mitigate 

the impact of heavy metal contamination. 

Microalgae and bacteria can efficiently absorb 

and accumulate heavy metals, while biochar 

can adsorb and immobilize these contaminants. 

    Using microorganisms and biochar in heavy 

metal bioremediation has several advantages, 

including their effectiveness, cost-efficiency, 

and sustainability. However, further research is 

needed to optimize the application methods, 

understand the long-term effects, and ensure 

the safety of these techniques. 

     Implementing bioremediation strategies, 

such as phytoremediation using microalgae and 

modified biochar, can contribute to restoring 

polluted water bodies and contaminated soils. 

By utilizing these greener alternatives, we can 

work towards reducing the risks associated 

with heavy metal pollution and promoting a 

healthier environment for both ecosystems and 

human populations. However, further research 

at the molecular level is required to understand 

how algae resist heavy metals completely and 

to speed up cleanup and byproduct synthesis. 
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