

Study of the quality and validity of the water of the River Tigris (Al-Gharraf stream) within the city of Nasiriya- Iraq

Dr. Mustafa T. Mustafa ¹, Dr. Khalid I. Hassoon ², Dr. Hussain M. Al-Shemari ³, Modher H. Abd ⁴

¹*Head of building and construction engineering department,College Technical engineering*

 ²Remote sensing Center, Directorate of space Technology and Communications, Ministry of Science & Technology, BaghdadIiraq
 ³Dept. of Civil Engrg. College of Engineering university of Kufa Najaf, Iraq
 ⁴Surveying Technical Engineer

Abstract:

Despite the importance of water for life, drinking, irrigation, power generation and industrial use. This study concerns the study of the quality and validity of water by applying the arithmetic weight index (AWI) for the water quality of irrigation , where the selection of the eleven variables acidity (PH), Total Dissolved Solid (T.D.S), <u>Alkalinity</u>(ALK), Electrical Conductivity (E.C), Calcium(Ca), <u>Chloride</u> (CL), <u>Sodium</u> (Na), Sulfate (SO4), Potassium (k), <u>Total <u>suspended solids</u> (T.S.S), Total hardness (TH) to show the water quality of the study area. The water samples collected from the river were examined and numbered 17 for two seasons. The study reveals that the water quality index has increased along the stream which indicates the water is completely unfit for irrigation use(arithmetic weight rating almost stations were between poor and very poor water). civilizations around this stream are probably lead to degrading water quality, which could be a menace to the public.</u>

Keywords: Weight arithmetic index, Water quality index, Al-Gharraf River, Weight arithmetic index, WQI, Water **pollution**

[1]Introduction:

Water pollution is to spoil the quality of river water and the water of agricultural banks, seas and oceans, making this water unusable. Water is contaminated by human, plant, animal, mineral, industrial, agricultural or chemical residues that run into water sources. Assessment of water quality can be defined as the analysis of physical, chemical and Biological characteristics of water. In recent years we have noticed that the quality of the Tigris and Euphrates rivers, which are the main sources of water in Iraq, began to deteriorate at a high and rapid rate during its course and up to the mouth of the Shatt al-Arab in the Arabian Gulf [1]. Water quality indices are such approaches which minimize the data volume to a great extent and simplify the expression of water quality status. The water quality index can be evaluated on the basis of various physical, chemical and bacteriological parameters. Numerous water quality indices have been formulated all over the world which can easily judge out the overall water quality within a particular area promptly and efficiently [2]. The Index of arithmetic weight Water Quality (AW-WQI) method is used to indicate the impact of selected pollutants resulting from human and industrial activities of Nasiriya city on Tigris River (al-Garraf). Categorization of water quality started in the midtwentieth century by Horton in 1965[3].

[2] MATERIALS AND METHODS

[2.1]STUDY AREA

Nasiriya is located between latitude (30°36′00″ _ 32°00′00″ N) and longitude (45°36′00″ _ 47°12′00″ E) as showing Figure (1). Kut dam was established on the Tigris River between (1934 and 1939), with the aim of controlling the Tigris River for agricultural purposes .The Tigris River branch after the Kut to two branches the first province of Maysan and the second extends towards the city of Thi-Qar, called Garraf River, which is located in the southeastern part of Iraq. Enter Nasiriya and passes ALfagr, Qala'at Sikar, Al Rifai and Al Nasr and the (168 km) distance from the beginning branches of the river into two branches Shatt Al bdai, which ends in the marsh leading to Hammar, while the second section is the Shatt al-Shatra, which passes in Shatrah, Garraf and ends in the marshes leading to Hammar also, a total length of (230) km from its starting point to its outlet in the marshes of Nasiriya. The level of water at the top of the Garraf is (17.4) m, and the Al bdai regulates ten meters and for the purpose of maintaining this rise in the water level, four systems were established on the Gharraf River.

[2.2]Field work and laboratory work

The Natural and chemical properties of water are considered as a fundamental criterion to evaluate the validity and quality of that water. In the present study, the hydro chemical characteristics are included (17) site, distributed on the al-Garraf stream from the beginning of its entry to the city of al-fagr and the end of al-Gharraf as shown in Figure (1). Table (1) and (2) illustrates the site's name, their latitudes and longitudes and Concentrations of Physical, Cation and Anion elements in the research area, where they were examined models taken from seventeen for a period of month 04/FEB/2017 and 11/MAY/2017. These concentrations reach to the lowest level at entering Thi Qar city for two seasons. This gives an indication of the extent of the effect of pollutants brought by the water of al-hay as the last part of Kut city.

[2.3]Water quality and validity of use

The influence of water for different uses is determined by the physical, Cation and Anion characteristics. The quality of water depends on the concentrations of physical contaminants, which includes elements such as (PH, Ec, TDS, and TSS), the group of Cation elements such as (Ca, TH, Na and K) and Anion characteristics such as (Cl, So4 and ALK) [4]. Worldwide multi-specifications were developed for irrigation and drinking water, including the limits of concentrations of positive and negative ions in the water. The main specifications that use in this study are Iraqi standard for irrigation as shown in Table (3). These specifications are depended on the concentration of each individual ion and its effect and do not base on the presence within the group. The most important use AW-WQI in this study to determine the general indicator of water quality [5].

[2.3.1]Calculations of the WQI

Water quality index (WQI) is one of the best effective tools to communicate evidence on the quality of water to policy makers and the concerned citizens as it is a significant parameter for the management and assessment of surface water [6]. To calculate the WQI, the following steps were used: In the first step, unit weight (*Wi*) for various parameters is the following formula pro-posed by Tiwari and Mishra [7].

Al-Kufa University Journal for Biology / VOL.10 / NO.1 / Year: 2018

Print ISSN: 2073-8854 & Online ISSN: 2311-6544

 $w_i = \frac{k}{(Vstandard)}$(1)

Where:

K = proportionality constant.

V Standard = The Iraqi standard permissible.

The constant of proportionality K in the above equation can be determined from the following conditions.

 $k \sum \frac{1}{(V standard)} \dots (2) = w_i \sum$

Where:

Wi = Relative unit weight of n^{th} Parameter.

Si = Standard permissible value for n^{th} Parameter.

K= Proportionality constant.

In the second step, Quality rating (Qi) is calculated as

Qi= (Vactual -Videal)/ (Vstandard -Videal)*100(3)

Where:

Qi = Quality rating of i^{th} Parameter for a total of n water quality parameters.

Vactual = Actual value of the water quality parameter obtained from laboratory analysis.

Videal= Ideal value of that water quality parameter can be obtained from the standard tables.

V ideal for pH = 7 and for other parameters, it is equal to zero.

Then, the overall WQI was calculated using the formula

 $WQI = \sum_{i=1}^{i=n} Qi * Wi$

Based on the calculated WQI, the classification of water quality types is given according to [7] as shown in Table (4).

[2.3.2]Quality Rating and Weighting

Quality rating or sub index (Qi) was calculated using The 'standards' for the irrigation water, recommended by the Iraqi standard and unit weights are given in Tables (5) and (6).

The variation of (AW-WQI) with the sample location is shown in Figure (2). It is observed that the value of (AW-WQI) increases with the progress of Gharraf stream from location 1 to 17, then the variation becomes turbulently reaching to the maximum value in location 15 for date:4/FEB/2017,while the variation of (AW-WQI) with the sample location is shown in Figure (3). It is observed that the value of (AW-WQI) increases with the progress of Gharraf stream from location 1 to 17, then the variation becomes turbulently reaching to the maximum value in location 12 for date:11/MAY/2017.

[2.4]Results and Discussion

These results gave a guide of the deterioration of water quality during the flow of the Gharraf stream within the city of Nasiriya due to factors resulting from two major kinds, point source, and non-point source pollution. In (date: 04/FEB/2017) was observed that all the parameters under study almost follow the same developmental curve except pH (Water alkalinity is evidence of the lack of available carbon dioxide), so4 (due to the impact of sewage, soil drainage and the industrial waste water), and T.S.S (are made up of inorganic materials include anything drifting or floating in the water, from sediment, silt, and sand to plankton and algae. In addition, Organic particles from decomposing materials can also contribute to the TSS concentration), which recorded irregular high concentration at various stations. In (date: 11/MAY/2017) was observed that all the parameters under study almost follow the same developmental curve except T.H (is formed by the presence of calcium and magnesium ions and is formed by bicarbonate or sulfate), and so4 (low water levels divorced), which recorded irregular high concentration at various stations.

Based on the index values of the quality of water of the Gharraf stream it is found that there is an increase in the values of the index along the river from its entry of alfagr to the end of it. This increase in arithmetic weight index mean that water quality was decreased due to several reasons; such as, the influence of irrigation water, Sanitation without treatment, impact of soil components where rainwater works on the cliff of parts of the soil to the river, thus increasing the concentrations of variables, and reducing the quality of water, impact of factories scattered widely along the river and low water levels divorced.

Figure (1): Location of the study area (Al- Gharraf stream)

64

	Name				Physical Pro	operties			CatIor	n (mg/l)		Anion (mg/l)			
	Name	Ε	N	Ph	EC(µs/cm)	TSS	TDS	Ca	TH	Na	K	Cl	So4	ALK	
Loc_01	ALfagr	590787	3532154	7.85	1494	60	1016	121	486	142.8	4.0	153	413	128	
Loc_02	ALfagr	592576	3530998	8.01	1568	44	1022	127	508	146.0	4.4	148	281	136	
Loc_03	ALfagr	598393	3528445	8.18	1471	30	1018	120	482	143.2	4.0	146	405	128	
Loc_04	Gala sgar	600462	3526145	8.24	1477	58	1020	120	482	142.4	4.0	148	408	128	
Loc_05	Gala sgar	602363	3521365	8.25	1476	60	1026	120	482	145.2	4.0	140	386	128	
Loc_06	Gala sgar	603622	3517553	8.31	1474	36	1030	120	482	146.4	4.0	143	395	128	
Loc_07	Al-Rifai	604402	3510336	8.31	1472	70	1032	120	482	144.8	4.0	144	392	126	
Loc_08	Al-Rifai	604618	3503113	8.39	1467	42	1036	120	482	145.2	4.0	146	497	126	
Loc_09	Al-Rifai	605139	3497376	8.43	1497	22	1026	121	486	142.0	4.0	144	397	128	
Loc_10	Alnsar	606572	3490151	8.40	1480	56	1030	121	486	145.2	4.0	140	374	128	
Loc_11	Alnsar	607111	3488073	8.42	1480	72	1028	121	486	143.2	4.0	143	404	128	
Loc_12	Albdai	610310	3480678	8.42	1478	66	1024	120	482	144.4	4.0	144	408	128	
Loc_13	Alshatra	610775	3476436	8.43	1481	28	1022	120	482	145.2	4.0	153	408	128	
Loc_14	Alshatra	612325	3472145	8.58	1485	36	1018	120	482	144.8	4.0	149	413	128	
Loc_15	Alshatra	614373	3468526	8.80	1484	28	1022	120	482	145.6	4.0	144	394	128	
Loc_16	Algarraf	617100	3464176	8.67	1502	40	1036	121	486	145.2	4.0	149	398	130	

65

Loc_17	Algarraf	618738	3462765	8.34	1532	56	1040	122	490	146.8	4.4	137	402	132
	Ma	ıx.		8.8	1568	72	1040	127	508	146.8	4.4	153	497	136
	Mi	n.		7.85	1467	22	1016	120	482	142	4	137	281	126
	Me	an		8.355	1489.294	47.294	1026.2353	120.8	485.2	144.6	4.047	145.4	398.5	128.6
	SI	D		0.224	25.45772	15.999	6.9957971	1.704	6.366	1.408	0.133	4.358	39.62	2.32

 Table (1): Test results using (ph-meter &oakton pcs testr 35) devices and Test results conducted in the Department of the Environment Water / Najaf Governorate (date: 4/FEB/2017).

	Location	Physical Properties	CatIon (mg/l)	Anion (mg/l)
URL: http://www http://iasj.ne En	v.uokufa.edu.iq/journals/in t/iasj?func=issues&jld=1298 nail: biomgzn.sci@uokufa.e	dex.php/ajb/index &uiLanguage=en du.iq		66

Al-Kufa University Journal for Biology / VOL.10 / NO.1 / Year: 2018

Print ISSN: 2073-8854 & Online ISSN: 2311-6544

	Name	Ε	Ν	Ph	EC(µs/cm)	TSS	TDS	Ca	TH	Na	K	Cl	So4	ALK
Loc_01	ALfagr	590787	3532154	8.4	828	34	564	73	294	74.7	2.4	90	181	74
Loc_02	ALfagr	592576	3530998	8.4	790	58	446	72	290	73.5	2.1	88	186	72
Loc_03	ALfagr	598393	3528445	8.3	808	34	482	73	294	75.6	1.8	89	171	72
Loc_04	Gala sgar	600462	3526145	8.3	808	24	598	73	294	74.7	2.4	89	181	72
Loc_05	Gala sgar	602363	3521365	8.3	818	48	560	73	294	75.6	2.4	88	171	74
Loc_06	Gala sgar	603622	3517553	8.4	816	56	486	73	294	76.2	2.4	88	176	74
Loc_07	Al-Rifai	604402	3510336	8.5	836	52	598	76	304	77.7	2.4	98	217	76
Loc_08	Al-Rifai	604618	3503113	8.4	816	60	562	73	294	77.4	2.4	89	202	74
Loc_09	Al-Rifai	605139	3497376	8.4	816	38	556	73	294	76.8	2.4	89	204	74
Loc_10	Alnsar	606572	3490151	8.4	827	42	494	73	294	76.5	2.1	90	182	76
Loc_11	Alnsar	607111	3488073	8.3	851	68	488	76	304	78.0	2.1	94	208	76
Loc_12	Albdai	610310	3480678	8.6	848	38	680	76	304	79.5	2.4	92	246	76
Loc_13	Alshatra	610775	3476436	8.4	846	36	450	76	304	75.9	2.4	93	205	76
Loc_14	Alshatra	612325	3472145	8.4	855	40	646	76	304	76.5	2.4	94	214	76
Loc_15	Alshatra	614373	3468526	8.6	881	36	602	77	308	89.7	3.9	98	208	78
Loc_16	Algarraf	617100	3464176	8.5	866	54	526	77	308	79.2	2.4	100	214	78
Loc_17	Algarraf	618738	3462765	8.5	872	16	628	77	308	76.5	2.4	102	220	78

URL: http://www.uokufa.edu.iq/journals/index.php/ajb/index http://iasj.net/iasj?func=issues&jld=129&uiLanguage=en Email: biomgzn.sci@uokufa.edu.iq 67

Max.	8.6	881	68	680	77	308	89.7	3.9	102	246	78
Min.	8.3	790	16	446	72	290	73.5	1.8	88	171	72
Mean	8.418	834.2353	43.176	550.94118	74.53	299.2	77.29	2.4	92.41	199.2	75.06
SD	0.095	25.43504	13.566	69.401432	1.841	6.366	3.553	0.424	4.57	20.7	2.015

Table (2): Test results using (ph-meter &oakton pcs testr 35) devices and Test results conducted in the Department of the Environment Water / Najaf Governorate (date: 11/MAY/2017).

Al-Kufa University Journal for Biology / VOL.10 / NO.1 / Year: 2018

Print ISSN: 2073-8854 & Online ISSN: 2311-6544

 Table (3): Irrigation water Iraqi standards

Water quality parameters	Standards
PH	4-8.6
Total Dissolved Solid (T.D.S) mg/l	2500
Alkalinity (ALK) mg/l	200
Electrical Conductivity (E.C) mg/l	2250
Calcium(Ca)mg/l	450
Chloride (Cl) mg/l	250
Sulfate (SO4) mg/l	200
Potassium (k) mg/l	100
Total suspended solids	60
(T.S.S) mg/l	
Total hardness (TH) mg/l	300
Sodium (Na) mg/l	250

Table (4): Water quality index scale.

WQI	Water quality
0-25	Excellent
26-50	Good
51-75	Poor
76-100	Very poor
>100	Unsuitedable

Table (5): Arithmetic weight index calculation for 04/FEB/2017

No	Sites	par.	Ph	EC	TDS	TSS	ALK	TH	Ca	Na	K	Cl	SO4	WQI
		Wi	0.694	0.002	0.019	0.023	0.029	0.002	0.013	0.059	0.099	0.023	0.029	
1	Loc_0)1	53.12	66.40	40.64	100.0	64	162.00	26.88	57.12	4.0	61.20	206.5	61.879
2	Loc_0)2	63.12	69.68	40.88	73.33	68	169.33	28.22	58.40	4.4	59.20	140.2	64.499
3	Loc_0)3	73.75	65.37	40.72	50.00	64	160.66	26.66	57.28	4.0	58.40	202.5	71.016
4	Loc_0)4	77.50	65.64	40.80	96.66	64	160.66	26.66	56.96	4.0	59.20	204.0	78.327
5	Loc_0)5	78.12	65.60	41.04	100.0	64	160.66	26.66	58.08	4.0	56.00	193.0	78.713
6	Loc_0	6	81.87	65.51	41.20	60.00	64	160.66	26.66	58.56	4.0	57.20	197.5	77.511
7	Loc_0)7	81.87	65.42	41.28	116.6	63	160.66	26.66	57.92	4.0	57.60	196.0	83.075
8	Loc_0	8	86.87	65.20	41.44	70.00	63	160.66	26.66	58.08	4.0	58.08	248.5	83.493
9	Loc_0	19	89.37	66.53	41.04	36.66	64	162.00	26.88	56.80	4.0	57.60	198.5	80.428
10	Loc_1	0	87.50	65.77	41.20	93.33	64	162.00	26.88	58.08	4.0	56.00	187.0	84.416
11	Loc_1	1	88.75	65.77	41.12	120.0	64	162.00	26.88	57.28	4.0	57.20	202.0	88.398
12	Loc_1	2	88.75	65.68	40.96	110.0	64	160.66	26.66	57.76	4.0	57.60	204.0	87.433
13	Loc_1	3	89.37	65.82	40.88	46.66	64	160.66	26.66	58.08	4.0	61.20	204.0	81.673
14	Loc_1	4	98.75	66.00	40.72	60.00	64	160.66	26.66	57.92	4.0	59.60	206.5	89.548
15	Loc_1	5	112.5	65.95	40.08	46.66	64	160.66	26.66	58.24	4.0	57.60	197.0	97.451
16	Loc_1	6	104.3	66.75	41.44	66.66	65	162.00	26.88	58.08	4.0	59.60	199.0	93.963
17	Loc_1	7	83.75	68.08	41.60	93.33	66	163.33	27.11	58.72	4.4	54.80	201.0	82.336

Table (6): Arithmetic weight index calculation for 11/MAY/2017

No	Sites	par.	Ph	EC	TDS	TSS	ALK	TH	Ca	Na	K	Cl	SO4	WQI
		Wi	0.694	0.002	0.019	0.023	0.029	0.002	0.013	0.059	0.099	0.023	0.029	
1	Loc_(01	87.50	36.80	22.56	56.66	37	98.00	16.22	29.88	2.4	36.0	90.50	74.28
2	Loc_(02	87.50	35.11	17.84	96.66	36	96.66	16.00	29.40	2.1	35.2	93.00	78.22
3	Loc_(03	81.25	35.91	19.28	56.66	36	98.00	16.22	30.24	1.8	35.6	85.50	69.72
4	Loc_(04	81.25	35.91	23.92	40.00	36	98.00	16.22	29.88	2.4	35.6	90.50	68.24
5	Loc_(05	81.25	36.35	22.40	80.00	37	98.00	16.22	30.24	2.4	35.2	85.50	72.10
6	Loc_(06	87.50	36.26	19.44	93.33	37	98.00	16.22	30.48	2.4	35.2	88.00	77.80
7	Loc_(07	93.75	37.15	23.92	86.66	38	101.3	16.88	31.08	2.4	39.2	108.5	82.37
8	Loc_(08	87.50	36.26	22.48	100.0	37	98.00	16.22	30.96	2.4	35.6	101.0	78.93
9	Loc_(09	87.50	36.26	22.24	63.33	37	98.00	16.22	30.72	2.4	35.6	102.0	75.30
10	Loc_1	10	87.50	36.75	19.76	70.00	38	98.00	16.22	30.60	2.1	36.0	91.00	75.65
11	Loc_1	11	81.25	37.82	19.52	113.3	38	101.3	16.88	31.20	2.1	37.6	104.0	76.14
12	Loc_1	12	100.0	37.68	27.20	63.33	38	101.3	16.88	31.80	2.4	36.8	123.0	84.79
13	Loc_1	13	87.50	37.60	18.00	60.00	38	101.3	16.88	30.36	2.4	37.2	102.5	75.11
14	Loc_1	14	87.50	38.00	25.84	66.66	38	101.3	16.88	30.60	2.4	37.6	107.0	75.94
15	Loc_1	15	100.0	39.15	24.08	60.00	39	102.6	17.11	35.88	3.9	39.2	104.0	84.19

16	Loc_16	93.75	38.48	21.04	90.00	39	102.6	17.11	31.68	2.4	40.0	107.0	82.74
17	Loc_17	93.75	38.75	25.12	26.66	39	102.6	17.11	30.60	2.4	40.8	110.0	76.53

Figure (2): Variation of AW-WQI with Sample Location for 04/FEB/2017

References

1- Saadi, Hussein Ali et al. (1986), Hydrology, University of Basrah, Iraq

2- Bharti N. and Katyal D., (2011) "Water quality indices used for surface water vulnerability assessment", *Int. J. Environ. Sci.*, Vol.2, No. 1, pp154-173.
3-Horton R. K., (1965) "An index number system for rating water quality", *J. Water Pollut.Control Fed.*, Vol. 37, No. 3, pp 300–306.

4- Al-Obeidi, Basem Khudair and et al. (2011), Study of the quality and quantity of groundwater in Anbar province and its suitability for human and agricultural use Baghdad University, Iraq.

5-Hussain, H. M., Joshi, H., Singhal, D. C., Kumar, S., & Rao, M. S. (2012). Development of an index of aquifer water quality within GIS environment. *Iran J Earth Sci*, *4*, 44-50.

6- N.C. Kankal, M.M. Indurkar, S.K. Gudadhe and S.R. Wate; Water Quality Index of Surface Water Bodies of Gujarat, India; Asian J. Exp. Sci., Vol. 26, No. 1, 2012; 39-48.
7- T. N. Tiwari and M. Mishra, "A Preliminary Assignment of Water Quality Index of Major Indian Rivers," *Indian Journal of Environmental Protection*, Vol. 5, No. 4, 1985, pp. 276-279.