Synthesis, characterization and anti-breast cancer activity of some maleimide derivatives

Authors

  • Saja Jassim Faisal Department of chemistry, College of Education for pure Sciences, University of Basrah, Basrah, Iraq.
  • Dakhil Zughayir Mutlaq Department of chemistry, College of Education for pure Sciences, University of Basrah, Basrah, Iraq.

DOI:

https://doi.org/10.36320/ajb/v14.i3.11165

Keywords:

synthesis, malemides, aryl hydrazide, anti-breast cancer

Abstract

This study included the synthesis of four compounds of maleimide derivatives. Novel compounds (K1-K4) resulted from the reaction between N-substituted maleimide and aryl hydrazide (benzohydrazide, p-toluic hydrazide or isonazide). The novel maleimide derivatives were identified using infrared spectroscopy (FT-IR), 1H- and 13 C-nuclear magnetic resonance (NMR) spectroscopy, and mass spectrometry, as well as the melting point of the preparing compounds. The MTT assay were used to examine the anti-breast cancer (MCF-7) activities of four compounds. The compounds K2 and K4 demonstrated anti-cancer activity against breast cancer cells.

Downloads

Download data is not yet available.

References

Bos co M, Carlone A, Cavalli A, Locatelli M, Mazzanti A, Ricci P, Sambri L,Melchiorre P. Organocatalytic asymmetric conjugate addition of 1,3-dicarbonyl compounds to maleimides. Angew Chem Int Ed 2006; 45: 4966–4970. DOI: https://doi.org/10.1002/anie.200600370

Ye W, Jiang Z, Zhao Y, Goh SLM, Leow D, Soh YT, Tan C-H. Chiral bicyclic guanidine as a versatile Brønsted base catalyst for the enantioselective Michael reactions of dithiomalonates and β-keto thioesters. Adv Synth Catal 2007; 349: 2454–2458. DOI: https://doi.org/10.1002/adsc.200700326

Jiang Z, Ye W, Yang Y, Tan C-H. Rate Acceleration of triethylaminemediated guanidine-catalyzed enantioselective Michael reaction. Adv Synth Catal 2008; 350: 2345–2351. DOI: https://doi.org/10.1002/adsc.200800423

Jiang Z, Pan Y, Zhao Y, Ma T, Lee R, Yang Y, Huang K-W, Wong MW, Tan CH. Synthesis of a chiral quaternary carbon center bearing a fluorine atom: enantioand diastereoselective guanidine-catalyzed addition of fluorocarbon nucleophiles. Angew Chem Int Ed 2009; 48: 3627–3631. DOI: https://doi.org/10.1002/anie.200900964

Bai J-F, Peng L, Wang L-L, Wang L-X, Xu X-Y. Chiral primary amine thiourea promoted highly enantioselective Michael reactions of isobutylaldehyde with maleimides. Tetrahedron 2010; 66: 8928–8932. DOI: https://doi.org/10.1016/j.tet.2010.09.044

Miura T, Nishida S, Masuda A, Tada N, Itoh A. Asymmetric Michael additions of aldehydes to maleimides using a recyclable fluorous thiourea organocatalyst. Tetrahedron Lett 2011; 52: 4158–4160 DOI: https://doi.org/10.1016/j.tetlet.2011.05.145

Mazzanti A, Calbet T, Font-Bardia M, Moyano A, Rios R. Organocatalytic enantioselective pyrazol-3-one addition to maleimides: Reactivity and stereochemical course. Org Biomol Chem 2012;10:1645–1652. DOI: https://doi.org/10.1039/c2ob06553c

Kokotos CG. An asymmetric Michael addition of α,α-disubstituted aldehydes to maleimides leading to a one-pot enantioselective synthesis of lactones catalyzed by amino acids. Org Lett 2013;15:2406–2409. DOI: https://doi.org/10.1021/ol4008662

AbdulJabar, L. A., Al-Shawi, A. A., & Mutlaq, D. Z. Anti-liver and anti-breast cancer activities of 2-thioxo-imidazolidinone derivatives. Medicinal Chemistry Research 2021; 30(10): 1943-1953. DOI: https://doi.org/10.1007/s00044-021-02769-8

Berner OM, Tedeschi L, Enders D. Asymmetric Michael additions to nitroalkenes. Eur J Org Chem 2002;12:1877 1895. DOI: https://doi.org/10.1002/1099-0690(200206)2002:12<1877::AID-EJOC1877>3.0.CO;2-U

Christoffers J, Baro A. Construction of quaternary stereocenters: new perspectives through enantioselective Michael reactions. Angew Chem Int Ed 2003;42:1688–1690. DOI: https://doi.org/10.1002/anie.200201614

Tsogoeva SB. Recent advances in asymmetric organocatalytic 1,4-conjugate additions. Eur J Org Chem 2007;72:1701–1716. DOI: https://doi.org/10.1002/ejoc.200600653

Sulzer-Mosse S, Alexakis A. Chiral amines as organocatalysts for asymmetric conjugate addition to nitroolefins and vinyl sulfones via enamine activation. Chem Commun 2007; 43: 3123–3135 DOI: https://doi.org/10.1039/b701216k

Matuszak, N., Muccioli, Laber, G., G., Lambert, D., Synthesis and in Vitro Evaluation of NSubstituted Maleimide Derivatives as Selective Monoglyceride Lipase Inhibitors, J. Med. Chem. 2009; 52: 7410-7420. https://doi.org/10.1021/jm900461w

Chen, H., Liu, Y., Wang, I., Shen, Q., Li, J., Nan F., Discovery and structural optimization of pyrazole derivatives as novel inhibitors of Cdc25B, Bioorg. Med. Chem. 2010; 20: 2876-2879. https://doi.org/10.1016/j.bmcl.2010.03.040 DOI: https://doi.org/10.1016/j.bmcl.2010.03.040

Sivaprakasam, P., Xie, A., Doerksen, R., Probing the physicochemical and structural

requirements for glycogen synthase kinase-3α inhibition: 2D-QSAR for 3-anilino-4- phenyl maleimides, Bioorg. Med. Chem. 2006; 14: 8210-8218. https://doi.org/10.1016/j.bmc.2006.09.021 DOI: https://doi.org/10.1016/j.bmc.2006.09.021

Cashman, J.R., MacDonald, M., Ghirmai, S., Okolotowicz, K.J., Serienko, E., Brown, B., Garcio, X., Zhai, D., Dahl, R., Reed, J.C., Inhibition of Bfl-1 with N-aryl maleimides, Bioorg. Med. Chem. 2010; 20: 6560-6564. http://doi.org/10.1016/j.bmcl.2010.09.046 DOI: https://doi.org/10.1016/j.bmcl.2010.09.046

Suzuki, T., Tanaka, R., Hamada, S., Nakagawa, H., Miyata, N., Design, synthesis, inhibitory activity, and binding mode study of novel DNA methyltransferase inhibitors, Bioorg. Med. Chem. 2010; 20: 1124-1127. https://doi.org/10.1016/j.bmcl.2009.12.016 DOI: https://doi.org/10.1016/j.bmcl.2009.12.016

Bansode, T.N., Shelke, J.V., Dongre, V.G., Synthesis and antimicrobial activity of some new N-acyl substituted phenothiazines, Eur. J. Med. Chem. 2009; 44: 5094-5098. https://doi.org/10.1016/j.ejmech.2009.07.006 DOI: https://doi.org/10.1016/j.ejmech.2009.07.006

Lopez, S.N., Sortino, M., Escalante, A., Campos, F., Correa, R., Cechinel-Filho, V., Nunes, R.J., Zacchino, S.A., Antifungal properties of novel N- and alpha,betasubstituted succinimides against dermatophytes, Arzneim Forsch. Drug. Res. 2003; 53: 280-288. https://DOI:10.1055/s-0031-1297109 DOI: https://doi.org/10.1055/s-0031-1297109

Panov, A.A., Lavrenov, S.N., Imonov, A.Y., Mirchink, E.N., Iakova, E.B., Trenin, A.S., Synthesis and antimicrobial activity of 3, 4-bis(arylthio)maleimides, J. Antibiot 2018; 72: 122-124. https://doi.org/10.1038/s41429-018-0122-3 DOI: https://doi.org/10.1038/s41429-018-0122-3

Durust, Y., Karakus, H., Kaiser, M., Tasdemir, D., Synthesis and anti-protozoal activity of novel dihydropyrrolo[3,4 d][1,2,3]triazoles, Eur. J. Med. Chem. 2012; 48: 296-304. https://doi.org/10.1016/j.ejmech.2011.12.028 DOI: https://doi.org/10.1016/j.ejmech.2011.12.028

Mahle, F., Guimaraes, T., Meira, A., Correa, R., Cruz, R., Nunes, R., Cechinel_Filho, V., Campo-Buzzi, F., Synthesis and biological evaluation of Nantipyrine-4-substituted amino-3-chloromaleimide derivatives, Eur. J. Med. Chem. 2012; 45: 4761-4768. DOI: https://doi.org/10.1016/j.ejmech.2010.07.040

Acero, N., Brana, M.F., Anorbe, L., Dominguez, G., Munoz-MIngarro, D., Mitjans, F., Piulat, J., Synthesis and biological evaluation of novel indolocarbazoles with anti-angiogenic activity, Eur. J. Med. Chem. 2012; 48: 108-113. http://doi.org/10.1016/j.ejmech.2011.11.040 DOI: https://doi.org/10.1016/j.ejmech.2011.11.040

Badru, R., Anand, P., Singh, B., Synthesis, and evaluation of hexahydropyrrolo[3,4- d]isoxazole-4,6-diones as anti-stress agents, Eur. J. Med. Chem. 2012; 48: 81-91. https://doi.org/10.1016/j.ejmech.2011.11.037 DOI: https://doi.org/10.1016/j.ejmech.2011.11.037

Mutlaq, D. Z., & shafiq Abd, M. Synthesis and biological activity of some maleimide derivatives. Journal of Basrah Researches ((Sciences)), (2019); 45,88-97.

Matuszak, N.; Muccioli, G. G.; Labar, G. and Lambert, D. M., J. Med. Chem., 2009, 52, 74122-7420.

Yang, C. P.; Wang, S. S., J. Appl. Polym. Sci., 1987, 28, 2509. DOI: https://doi.org/10.1002/app.1983.070280806

Salhi, L.; Bouzroura-Aichouche, S.; Benmalek, Y.; Bentarzi, Y.; PoulainMartini, S.; Cacciuttolo, B.; Dunach, E.; Nedjar-Kolli, B., Organic Communications, 2013, 6 (2), 87-94.

Matuszak, N., Muccioli, G. G., Labar, G., and Lambert, D. M., J. Med. Chem. 2009; 52: 74122-7420. DOI: https://doi.org/10.1021/jm900461w

Al-Azzawi, A. M.; Yaseen, H. K., Journal of Chemical and Pharmaceutical Research 2016, 8 (8), 241-247.

A. J. Ashish Kumar and J. K. M. Heterocyclic Letters 2012, 2 (4), 401-404.

Kumar A, Jakhar A, Makrandi JK. A highly efficient solvent free synthesis of hydrazides using grinding technique. Heterocyclic Lett 2012; 2:401–404.

Xia L, Zhai X, Xiong X, Chen P. Synthesis and properties of 1, 3, 4- oxadiazolecontaining bismaleimides with asymmetric structure and the copolymerized systems thereof with 4, 4′-bismaleimidodiphenylmethane. RSC Adv 2014; 4:4646–4655. DOI: https://doi.org/10.1039/C3RA45313H

Singh M, Sharma P, Singh PK, Singh TG, Saini B. Medicinal potential of heterocyclic compounds from diverse natural sources for the management of cancer. Mini Rev Med Chem 2020; 20:942–957. DOI: https://doi.org/10.2174/1389557520666200212104742

Khalaf M, Abdulamir A, Al-Shawi AA. Synthesis, characterization and cytotoxicity appraisal of original 1, 2, 3-Triazole derivatives, against breast cancer cell lines (MDA-MB-231). Mediterr J Chem 2019; 9:305–310. DOI: https://doi.org/10.13171/mjc941911161021mkm

Odle TG. Precision medicine in breast cancer. Radiol Technol 2017; 88:401M– 421M.

Fisusi FA, Akala EO. Drug combinations in breast cancer therapy. Pharm Nano Technol 2019;7:3–23. DOI: https://doi.org/10.2174/2211738507666190122111224

Gutierrez-Canon JR, Nahide PD, Ramadoss V, Satkar Y, Ortiz-Alvarado R, Alba-Betancourt C, et al. Synthesis and biological evaluation of new 3, 4- diarylmaleimides as enhancers (modulators) of doxorubicin cytotoxic activity on cultured tumor cells from a real case of breast cancer. J Mex Chem Soc 2017; 61:41–49. DOI: https://doi.org/10.29356/jmcs.v61i1.126

Lahnsteiner M, Kastner A, Mayr J, Roller A, Keppler BK, Kowol CR. Improving the stability of maleimide-thiol conjugation for drug targeting. Chemistry 2020;26:15867–15870. DOI: https://doi.org/10.1002/chem.202003951

Shaikh IN, Rahim A, Faazil S, Adil SF, Assal ME, Hatshan MR. BF3-OEt2 catalyzed C3-alkylation of indole: synthesis of indolylsuccinimidesand their cytotoxicity studies. Molecules 2021; 26: 2202. DOI: https://doi.org/10.3390/molecules26082202

Imran M, Bisht AS, Asif M. A review on biological and chemical potential of phthalimide and maleimide derivatives. Acta Sci Pharma Sci 2019; 3:51–67. DOI: https://doi.org/10.31080/ASPS.2019.03.0305

Zhao Z, Yue J, Ji X, Nian M, Kang K, Qiao H, Zheng X. Research progress in biological activities of succinimide derivatives. Bioorg. Chem. 2021; 108, 104557. DOI: https://doi.org/10.1016/j.bioorg.2020.104557

Downloads

Published

2022-12-29

How to Cite

Jassim Faisal, S., & Zughayir Mutlaq, D. (2022). Synthesis, characterization and anti-breast cancer activity of some maleimide derivatives. Al-Kufa University Journal for Biology, 14(3), 83–102. https://doi.org/10.36320/ajb/v14.i3.11165

Similar Articles

1 2 3 4 5 > >> 

You may also start an advanced similarity search for this article.