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Abstract: 

In the modern world, with the extensive use of electricity in homes and 

businesses, studying and forecasting electrical consumption is crucial for 

its management and distribution. This research aims to forecast the 

electricity consumption in Sulaimani province using spectral analysis on 

time series data. For this purpose, hourly data within the time range of 

July to September 2022 has been utilized, and a new model has been 

proposed, consisting of a sinusoidal explanatory variable and a nonlinear 

quadratic variable. In this model, the most significant periodic cycles 

present in the time series under study were identified by employing the 

periodogram and Fourier expansion method, capable of identifying 

hidden cycles in the data. Subsequently, each of these periodic 

components was added to the model based on the principle of parsimony. 

The proposed composite model includes a quadratic component and two 

harmonic components with 24 and 12-hour periods. This model 

demonstrates notable efficiency and accuracy as it outperforms the 

classical Autoregressive Moving Average (ARMA) model based on the 

MSE=0.0009 rate and MAE=23.819 when compared. 

Keywords:  forecasting electrical consumption, Fourier method, 

Periodogram, Spectral Analysis, ARIMA model. 

 الملخص:

في العالم الحديث، مع الاستخدام المكثف للكهرباء في المنازل والشركات، تعد دراسة استهلاك 

الكهرباء والتنبؤ به أمرًا بالغ الأهمية لإدارته وتوزيعه. يهدف هذا البحث إلى التنبؤ باستهلاك 

ة. ولهذا الكهرباء في محافظة السليمانية باستخدام التحليل الطيفي على بيانات السلاسل الزمني
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، وتم 2022الغرض، تم استخدام البيانات بالساعة ضمن النطاق الزمني من يوليو إلى سبتمبر 

ومتغير تربيعي غير خطي. في هذا  توضيحي جيبياقتراح نموذج جديد يتكون من متغير 

الموجودة في السلاسل الزمنية قيد الدراسة من خلال  ات الدوريةمولفالالنموذج تم تحديد أهم 

في البيانات.  الدورات المخفيةخدام مخطط الدورة وطريقة توسيع فورييه القادرة على تحديد است

. يتضمن مساكالاإلى النموذج بناءً على مبدأ  الدوريةوبعد ذلك، تم إضافة كل من هذه المكونات 

 12و   24 النموذج المركب المقترح عنصرا تربيعيا واثنين من المكونات التوافقية مع فترات

ساعة. يظُهر هذا النموذج كفاءة ودقة ملحوظتين لأنه يتفوق على نموذج المتوسط المتحرك 

 MAE=23.819و MSE=0.0009 استناداً إلى معدل (ARMA) للانحدار الذاتي الكلاسيكي

كرام، تحليل وتنبوء استهلاك الكهرباء، طريقة فوريه، البيريودال كلمات مفتاحية: .عند المقارنة

 ARMAنموذج طيفي، 

1.Introduction: 

 Given the relatively high growth of energy consumption worldwide, 

ensuring its supply is considered a necessity in industrial production and a 

final commodity in residential and commercial sectors. It's worth 

mentioning that due to the high cost involved in its production, 

distribution, and transmission, accurate planning based on the 

consumption of this energy is necessary. This is because any disruption in 

the balance between demand in different sectors and its supply will result 

in irreparable damage to the country's economy. However, accurate 

prediction of future electricity consumption can prevent such damages. 

Like most behavioral climatic factors, average power consumption is 

characterized by a wave, mainly regular, alternating up and down 

movements. Employing sinusoidal functions provides for the approximate 

estimation and forecasting of alternating behaviors at various frequencies 

suitably and acceptably.  One of the modeling approaches used in spectral 

analysis, the Fourier model, is a convenient and effective tool. The 

theoretical and mathematical foundations related to Fourier models were 

examined and explained by Spiegel and Murray (1974). Fourier series 

were introduced through a discussion of trigonometric functions and 

pulse functions, which are essential tools in Fourier analysis. It is worth 

noting that the decomposition of complex signals using a combination of 

simple trigonometric functions is achievable through Fourier series. 

Based on this, the transfer of signals from the time domain to the 

frequency domain, according to the concept of the Fourier transform, will 

be facilitated. Brown and Churchill (1993) delved into the fundamental 

and physical concepts related to Fourier series, trigonometric functions, 
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the characteristics of these series, and their applications in boundary value 

problems. They elaborated on how Fourier series could assist in analyzing 

and studying various functions and signals in physics in detail. Wei 

(2019) and Box et al (2018) contributed to a deeper understanding and 

analysis of signals and time series by analyzing and developing signal 

analysis tools and techniques such as wavelet transform and Fourier 

analysis. Many of these methods have evolved to provide effective 

solutions in various scientific disciplines. 

  Modeling the behavior of cyclic data has received increasing attention in 

the scientific community in recent years due to the importance and 

consequences of cyclic data to life situations and their role in influencing 

government decisions. Abass I. Taiwo et al (2019) considers periodic data 

modeling as one of the most crucial phases of statistical modeling. In 

order to fit the model to the studied data, Iwok (2016) employed Fourier 

models. They demonstrated that there is a good agreement between the 

estimated and observed. Yi-Chung Hu (2018) proposed the fractional 

grey prediction model with Fourier that offers high prediction accuracy. 

Also, Lange (2021) believes that the key to understanding optimization 

issues is to define goals in the frequency domain, where, according to the 

computational capabilities of the Fourier transform, scalable and 

computationally effective solutions are found. Sadek (2020) states the 

obtained results as that Fourier modeling is suitable for the practice of 

developing forecasts of cyclical activity such as truck parking, despite a 

number of limitations .In this study, an attempt has been made to 

introduce hybrid Fourier models based on fast Fourier transform 

algorithms and the periodogram method. These models are proposed as 

an acceptable approach for analyzing hidden components in the average 

hourly electricity consumption during a 90-day period in Sulaimani 

province. 

2.Methodology 

   Repetitive patterns in time are the main characteristic of periodic 

events. As expected from periodic behavior, after a complete cycle, the 

initial configuration will reoccur. The speed of these behaviors is 

sometimes gradual and gentle, and at other times, it is very fast and 

unstable. However, they always have a stable and continuous trend. 

Therefore, some oscillatory behaviors are observed in unknown and 
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longtime intervals, and some of them are observable in specific time 

intervals, such as daily and even weekly periods (Iwok 2016). In this 

province, due to the cheap and easy use of electricity, it is used as the 

main source of cooling and heating in hot and cold seasons. In general, it 

can be said that electricity consumption is closely related to 

meteorological changes, which have a periodic behavior. In such a way, 

electricity consumption is almost equal in different time periods and 

shows similar consecutive conditions. Modeling these recurring behaviors 

is of importance. At this scale, wave behavior and a type of periodic 

pattern with continuous fluctuations towards higher and lower values can 

be observed. Based on the studied data, it is observed that this wave 

behavior in electricity consumption is a natural response to the periodic 

distribution of air temperature as well as the daily lifestyle of consumers. 

2-1 Fourier Series representation 

Fourier series is a fundamental concept in mathematics that proves to be 

highly efficient in describing functions with periodic and repetitive 

characteristics. This series has the capability to decompose complex 

functions into a combination of simple sinusoidal waves. In other words, 

any periodic function can be represented as the sum of sinusoidal waves 

with different frequencies and amplitudes (Percival and Walden 2020). 

 Let {𝑦𝑡}𝑡=1
𝑛 = {𝑦1, 𝑦2, … , 𝑦𝑛} is the time series can be written as follows 

𝑦𝑡 =  𝑎0 + ∑ (𝑎𝑖 cos(𝑤𝑡) + 𝑏𝑖 sin(𝑤𝑡)
𝑛

𝑖=1
)          (1) 

                                              𝑤 = 2𝜋𝑓𝑖       𝑓𝑖 =
𝑖 𝑛                                           (2)⁄        

Where  

𝑎0 =
1

𝑛
∑ 𝑦𝑡

𝑛
𝑡=1 , (𝑤) is the angular of frequency. (𝑦𝑡) is the element under 

investigation in time (t). (𝑓𝑖) is frequency of repetition of observations, 

(𝑖=1, 2, 3, …, p) and (𝑎𝑖 , 𝑏𝑖) are constant parameters, known as Fourier 

coefficients, are calculated by Eq.3 as follows: 

{
𝑎𝑖 =

2

𝑛
∑ 𝑦𝑡cos (𝑤𝑡)𝑛

𝑡=1

𝑏𝑖 =
2

𝑛
∑ 𝑦𝑡sin (𝑤𝑡)𝑛

𝑡=1

                  (3) 
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If the length of the statistical period (n) is even, that number is obtained 

from ( 𝑝 =
𝑛

2 
) and if (n) is odd then (𝑝 =

𝑛−1

2
 ), and its coefficients are 

obtained from Eq.3, except (𝑎𝑝 𝑎𝑛𝑑  𝑏𝑝)  in even period. which are 

obtained from Eq.4 as follows: 

𝑎𝑝 = 1
𝑛⁄  ∑ (−1)𝑦𝑡

𝑛
𝑡=1               (4) 

𝑏𝑝 = 0 

 The sine and cosine components (𝑎𝑖 cos(𝑤𝑡) + 𝑏𝑖 sin(𝑤𝑡)) around a 

fixed mean (𝑎0) in equation (1) determine the behavior of the time series 

and play a crucial role in describing periodic phenomena. In other words, 

these sinusoidal components are harmonics that have a significant impact 

on shaping the behavior of periodic series (Marple 2019). For this reason, 

equation (1) can be expressed as a collection of these harmonics as 

follows. 

𝑦𝑡 = 𝑎0 + ∑ ℎ𝑝(𝑡)
𝑝
𝑖=1                            (5) 

In which.          

ℎ𝑖(𝑡) = 𝑎𝑖 cos(𝑤𝑡) + 𝑏𝑖 sin(𝑤𝑡)       (6) 

It is called (ith) hormonic. The number of observations in a complete 

cycle of each harmonic is referred to as its periodicity, which is equal to( 
1

𝑓𝑖
=

𝑛

𝑖
), and it can be easily shown in Eq.7 as follows: 

ℎ𝑖(𝑡) = 𝐴𝑖 sin(2𝜋𝑓𝑖  𝑡 + ∅𝑖)                  (7) 

Phase is (∅𝑖) , refers to the relative temporal position of the signal at a 

specific point within its repetitive cycle and is typically expressed as an 

angular measurement from a reference point, and represent in Eq.8 as 

follows: 

∅𝑖 = 𝐴𝑟𝑐𝑡𝑎𝑛 (
𝑎𝑖

𝑏𝑖
⁄ )                                (8) 

(𝐴𝑖) is Amplitude representing the maximum height of the wave (peak 

height) and indicates the power and intensity of the signal at various 

points in time. which is described in Eq.9. 
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𝐴𝑖 = √𝑎𝑖
2 + 𝑏𝑖

2                                       (9) 

To clarify the issue, the mentioned specifications are shown in Fig.1 

 

Figure 1. The harmonic component 

                                                      Source: internet 

2.1.1. Fourier modeling 

If a time series is composed of the sum of a random component and a 

periodic component, under general conditions that are usually met, adding 

a finite number of (P) harmonics can provide a suitable approximation for 

describing that time series (Rahman M. et al 2020). For example, if the (J 

th) harmonic alone is a good approximation for the time series ({𝑦𝑡}𝑡=1
𝑛 ), 

in that case, Eq.1 can be written as follows:  

𝑦𝑡 =  𝑎0 + 𝑎𝐽 cos(𝑤𝑡) + 𝑏𝐽 sin(𝑤𝑡) + 𝑒𝑡             (10) 

where (𝑒𝑡) is the sum of (p-1) other harmonics which are not considered 

in the model. The Eq.10 is called Fourier model, and in statistics, Fourier 

modeling is about determining a finite number of harmonics that play a 

significant role in the variations of a time series. Eq.11 represent the 

Fourier model for the ({𝑦𝑡}𝑡=1
𝑛 ) as follows: 

𝑦𝑡 =  𝑎0 + ∑ (𝑎𝑖 cos(2𝜋𝑖𝑡/𝑛) + 𝑏𝑖 sin(2𝜋𝑖𝑡/𝑛)𝑝
𝑖=1 )          𝑖 = 1,2,3, … , 𝑝          

(11) 

  It should be noted that although this Fourier model is a purely 

mathematical sequence, determining the limited number of harmonics 

that are statistically significant and can provide a good approximation, 

and also is very important in determining the general behavior of any 

time series data. 
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The Fourier model can also be considered as a linear regression model in 

which the number of regression coefficients is equal to the length of the 

series (Wei 2019). And it can be easily shown that the estimation of the 

least squared error of 𝑎0 , 𝑎𝑃 and 𝑏𝑃 can be obtained from Eq. (3,4). It 

should be mentioned that although the Fourier model is a regression 

model, since each harmonic has independent information about the series 

changes, the problem of collinearity is not raised. 

It should be noted that the Eq.11 is suitable for a group of time series that 

exhibit periodic behavior around the horizontal axis. If a time series, in 

addition to this periodic behavior, displays non-linear or trend behavior, 

appropriate parameters should be added to the model based on the type of 

observed behavior. For example, if a time series exhibits non-linear 

behavior, parameters (𝛼0)  and (𝛼1) should be added to the model 

through component(𝛼0 + 𝛼1𝑡). And if the series includes a quadratic 

exhibit, parameters ( 𝛼0), (𝛼1)and (𝛼2) should be added to the model 

through component (𝛼0 + 𝛼1𝑡 + 𝛼2𝑡2). It is also suggested that if the 

time series contains a trend, the residuals of the model should be fitted by 

an ARIMA model or the time series should be stationary by 

differentiation and then a Fourier model should be fitted on it (Percival 

and Walden 2020). 

 2.1.2. Periodogram 

Periodogram is a valuable and effective tool in Fourier modeling. The 

periodogram comprises (1, 2, …, p) values, such as 𝐼(𝑓1), 𝐼(𝑓2), … , 𝐼(𝑓𝑝) 

(Yakimov 2020). so that if the length of the statistical period is odd, then 

the Eq.12 will be used. 

𝐼(𝑓𝑖) = 𝑛
2⁄ (𝑎𝑖

2 + 𝑏𝑖
2)         i = 1,2,3, …,p         (12) 

And if the length of the statistical period is even, the Eq.12 for (1, 2, …, 

p-1) has been used and Eq.13 for (𝑖 = 𝑝). 

𝐼(𝑓𝑝) = 𝑛𝑎𝑝
2                     (13) 

Where   

𝑎𝑖 and 𝑏𝑖 are Fourier coefficients  
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A graph that shows the value of (𝐼(𝑓𝑖)) versus (𝑖) is called a periodogram. 

In the periodogram, the order of importance of harmonics is determined. 

The meaning of the importance of a harmonic is the contribution that a 

harmonic play in the total variability of the series (Percival and Walden 

2020). So that it can be easily shown that the total value of the 

periodogram is equal to the variance of the series, which is shown in 

Eq.14, and in a table of analysis of variance related to a Fourier pattern 

(𝐼(𝑓𝑖)), is actually equal to the sum of the second power corresponding to 

the (i th) harmonic. 

∑ (𝑦𝑡 − �̅�)2𝑛
𝑡=1 = ∑ 𝐼(𝑓𝑖)       

𝑝
𝑖=1      (14) 

2.2. Autoregressive Moving Average (ARMA) models 

Autoregressive Moving Average (ARMA) models are powerful tools in 

statistics and econometrics for modeling time series data. These models 

assist in analyzing and forecasting time series trends (Box et al 2018). 

ARMA models have two main components: 'AR' (Autoregressive), used 

for its relationship with past time series values, and the 'MA' (Moving 

Average) component, based on the average of past values. The Eq.15, 

represent the ARIMA model as follows: 

𝑦𝑡 = 𝐶 + 𝜑1𝑦𝑡−1 + ⋯ + 𝜑𝑝𝑦𝑡−𝑝 + 𝑎𝑡 − 𝜃1𝑎𝑡−1 − ⋯ − 𝜃𝑞𝑎𝑡−𝑞 + 𝜀𝑡    

(15) 

where (𝑦𝑡) represents the time series variable at time (t). (C) is a constant 

term. (𝜑1, 𝜑2, … , 𝜑𝑝)are the autoregressive (AR) coefficients of order (1, 

2, …, p). (𝑎𝑡)represents the noise at time (t). (𝜃1, 𝜃2, … , 𝜃𝑞) are the 

moving average (MA) coefficients of order (1, 2, …, q). (𝜀𝑡) is error. (p) 

indicates the order of AR (the number of AR coefficients), and 

(q)indicates the order of MA (the number of MA coefficients) in the 

ARMA model. 

One of the significant advantages of ARMA models is their ability to 

describe complex data variations using simple mathematical functions. 

This capability assists researchers and data analysts in describing various 

phenomena and making more accurate predictions the average of past 

values (Wei 2019). 

3. Results and discussion 
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The studied data has been prepared from the electricity control and 

distribution department of the Sulaimani province, these data are 

measured and available on an hourly, daily, weekly and monthly basis 

according to the special devices in this regard. According to Table.1 as 

follows: 

Table 1. Description of data 

Minimum Maximum Mean Std. Deviation 

441.55 911.73 691.4144 94.98524 

Source: Authors ‘calculation based on consumption data 

 which is a description of the investigated data, it should be noted that the 

lowest amount of electricity consumption was measured on 8/19/2022 at 

5:00 p.m. and the highest consumption amount was measured on 

7/24/2022 at 9:00 p.m. The average value of consumption in this time 

period is 691.41 and the standard deviation value is 94.98. 

3.1. Data behavior 

Before conducting normality and stationarity tests, data can be fitted with 

linear and nonlinear models. This approach has several advantages, the 

study data are fitted with various models, including linear models, 

exponential growth models, quadratic models, and S-curve models. These 

models are fitted to the data, and the best model that demonstrates the 

highest fitting capability is chosen as the study model. Based on Table 2, 

it can be observed that the results obtained suggest that the quadratic 

model appears to perform better than the other models, and these findings 

are also clearly visible in Figure 2. 

Table.2. Represent the Fitted models values 

Accuracy 

measurement 

Linear Exp. Growth S-Curve Quadratic 

MADE 7.6 7.7 7.42 7.39 

MAD 49.93 51 48.91 48.21 

MSE 3848.89 3968 3749.76 3695 

Source: Authors ‘calculation based on consumption data 
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Figure 4-2. Trend Analysis Plot for consumption Quadratic Trend Model 

Source: Minitab Software, Authors ‘result based on consumption data in  

Considering the results provided in the table above, it can be inferred that 

the studied data follows a quadratic pattern, and the fitted model can be 

represented as follows, where the parameter values are 788.257, -0.0385, 

and -0.000034, corresponding to 𝛼0, 𝛼1 and 𝛼1 respectively.  

𝑦𝑡 = 788.257 − 0.0385𝑡 − 0.000034𝑡2      (16) 

A test for the normality of the time series under study was conducted 

using the Anderson-Darling test. This value of AD = 0.734 is greater than 

the specified significance level (0.05), indicating that the data under 

investigation are significantly close to a normal distribution.  

The stationarity of the data was also examined using the Augment 

Dickey-Fuller (ADF) test, and the results obtained, as shown in table.3, 

indicate the data's stationarity. 

Table 3. Stationary test 

ADF test Score P-value C.V Stationary? 

Quadratic -11.2 %0.000 -2.3 TRUE 

Source: Authors ‘calculation based on consumption data 

3.2. Pattern recognition and probabilistic modeling 
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Using Eq.12 and NUMXL toll in Excel software, the values related to the 

electricity consumption pattern have been calculated for 1104 data points. 

Part of the calculation results related to the electricity consumption 

pattern can be observed in Table 4 and Figure.3 as follows: 

Table4. frequency and periodogram of electricity consumption 

 1 2 3 4 5 

Fi 0.042 0.083 0.125 0.167 0.170 

1/fi 24 12 8 6 6 

n*fi 93 183 276 368 376 

Ifi 915438.02 499.945.45 412562.17 14462.34 506.31 

Source: Authors ‘calculation based on consumption data 

 

Figure 3. Represent the value of periodogram verses frequency 

Source: Minitab Software, Authors ‘result based on consumption data in  

Utilizing the information from Table 1 and Figure 3, it has been deduced 

that the first 5 significant harmonics are, in order of importance, the 24th, 

12th, 8th, and 6 (doubled) harmonics. Considering that the examined data 

also demonstrate quadratic behavior, parameters (𝛼0, 𝛼1 𝑎𝑛𝑑 𝛼2) should 

be incorporated into the model. In other words, the desired model can be 

expressed in Equation.17 as follows. 

𝑦�̂�  =Quadratic model + ∑ 𝑠𝑖𝑛𝑢𝑠𝑜𝑖𝑙𝑑𝑎𝑙 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡       (17) 
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Based on the obtained model, in order to ensure the accuracy and 

efficiency of the model and in accordance with the parsimony principle in 

parameter selection, the selected harmonics are added to the model in 

order of importance. This process continues until reaching a harmonic 

that does not have a significant impact on the model. 

�̂�𝑡 = 𝛼0 + 𝛼1𝑡 + 𝛼2𝑡2 + 𝐴93 sin (2𝜋
93

2208
𝑡 + ∅93) +

𝐴184 sin (2𝜋
184

2208
𝑡 + ∅184 )       (18) 

Where 𝛼0, 𝛼1 𝑎𝑛𝑑 𝛼2 are the quadratic models’ coefficients. 

𝐴93 , 𝐴184, ∅93 𝑎𝑛𝑑 ∅184 are the amplitude and phases of 93th and 184th 

harmonic components were calculated by equations (8,9). 

3.3. ARMA model representation 

The ARMA statistical model, as specified in Equation 6, was evaluated, 

and its necessary parameters were obtained using STATGRAPHIC 

software. Based on the table (12), the results for this model are presented 

in Eq.19 as follows: 

Tab.12 ARIMA (2,0) Model Summary 

Parameter Estimate S. E t P-value 

AR (1) 1.0351 0.02111 49.0217 0.000 

AR (2) -0.1296 0.02112 -6.1398 0.000 

Mean 691.143 8.4446 81.8443 0.000 

Source: Authors ‘calculation based on consumption data 

�̂�𝑡 = 691.143 + 1.03512𝑦𝑡−1 − 0.1296𝑦𝑡−2           (19) 

 

3.4. Comparison between models 

In order to check the forecast power of the used methods, two common 

criteria in this field were used.  

The first criterion is the average absolute value of errors (x). In this 

criterion, the average absolute value of the errors is used for each of the 

forecasts. that's mean 

𝑀𝐴𝐸 = ∑
|𝑒𝑖|

𝑁
⁄                       (20) 
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where N is the number of forecasts and (ei) is the difference between the 

forecasted and its actual value. 

The second criterion is the mean squared error (MSE) which is expressed 

as follows. 

𝑀𝑆𝐸 =
∑ 𝑒𝑖

2

𝑁
⁄                             (21) 

In order to compare the forecasted and actual values of each time series, 

the criteria mentioned above were used and in table.13 the value of the 

discussed criteria is compared for the models used. 

Table.13. the results of comparison between models 

  

Quadratic + sinusoidal 

components 
ARMA (2,0) 

MAE  23.81978 29.3987 

MSE 0.000942 37.7547 

Source: Authors ‘calculation  

Considering that various criteria have been used to measure the power of 

forecasting and the model that has the lowest value makes a better 

forecast. Therefore, according to the results obtained in table (13), it is 

concluded that the model with 2-sinusoid component is a more suitable 

model for forecasting. And the approved model according to (17) can be 

shown by using the first and second harmonics and removing other 

additional harmonics as follows. 

�̂�𝑡 = 788.25 − 0.0385𝑡 − 0.000034𝑡2 + 28.783 𝑆𝑖𝑛(2𝜋0.042𝑡 −
0.016) + 19.323 𝑆𝑖𝑛(2𝜋0.083𝑡 − 0.268)                              (22) 

 

5. conclusion 

       Due to the importance and impact of electricity consumption on 

living and economic conditions, modeling electricity consumption 

modeling has gained significant attention in scientific communities. In 

this study, the electricity consumption patterns in Suleimani province 

were examined through the analysis of hourly time series data. The 

dataset included values ranging from a minimum of 441.55 to a 

maximum of 911.73. By fitting the mentioned data to various models, the 
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behavior of the data was identified as a quadratic model. This model was 

compared with linear and exponential models, and it demonstrated the 

lowest Mean Squared Error (MSE) with parameter values of 788.257, -

0.0385, and -0.000034. Then, the Anderson-Darling and Dickey-Fuller 

tests were used for assessing the normality and stationarity of the study 

data, and based on the results obtained, the data were employed for 

modeling. To identify hidden components in the data, a periodogram and 

Fourier-based spectral analysis were utilized. After applying the principle 

of parsimony, five hidden components were identified. From their total, 

two harmonic components with frequencies of 0.04 and 0.083 in 24 and 

12-hour periods were added to the model. The proposed model consists of 

a polynomial component and two sinusoidal components. 

Finally, by comparing the proposed hybrid model with the classical 

ARMA (2,0) model obtained from the study data with parameters 1.0351 

and -0.1286, and considering the comparison of average absolute value of 

errors and mean squared error criteria, the proposed model was selected 

as the superior model with MAE=23.8197 and MSE=0.00094. 

The results indicate that the proposed model demonstrates a very high 

accuracy in forecasting electricity consumption, and considering the 

obtained error values, it suggests a minimal difference between the 

forecasted results and the actual data. It is worth noting that the studied 

data are in the form of discrete and periodic time series. For continuous 

time series, by dividing the time axis into equal intervals, continuous time 

series can be converted and introduced into discrete time series. This 

method can be utilized for modeling. 
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