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Abstract: We introduced certain types of separation axioms which are Z-regular space,
ZT3 space, semi-Z-regular space and semi-ZT3 space, by using boundary points and semi
boundary points. The relationships among them and relationships with each of T3, T1
and semi-T1 axioms have been given.
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1 Introduction

There are many types of the sep-
aration axioms: T0, T1, T2, regular,
T3, semi-T1, semi-T2, semi-regular, and
semi-T3. T0 was introduced by A.
Kolmogorov, T1 was introduced by
Frechet in 1923, T2 was introduced
by Hausdorff in 1914,[15]. Semi-
T0, semi-T1, and semi-T2 were intro-
duced by S.N. Maheshwari and R.
Prasad in 1975,[4]. Regular and T3
space were introduced by V. Neu-
mann in 1925,[15], and semi-regular
and semi-T3 space were introduced by
C. Dorsett in 1982, [7]. In [12], Levine
defined a set A in a topological space
X to be semi-open if there exists an
open set U such that U ⊆ A ⊆ U .
In [3], S. Gene Crossley and S. K.

Hildebrand defined semi-closed set as
the complement of semi-open set, the
union of all semi-open sets of X con-
tained in A and the intersection of all
semi-closed sets containing A, respec-
tively. In [13], P.Das defined semi-
boundary of A as A

s − A◦s. We shall
use A

s, Abs, A, Ab, and Z to the semi-
closure of A, the semi-boundary of
A, the closure of A, the boundary of
A, and the integer numbers, respec-
tively.We shall refer to the topological
space as a space.

2 Preliminaries
Definition 2.1[[11] A space (X, τ) be
defined a T1 space if and only if for
any distinct points x and y in X,
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there exists open sets U, V such that
x ∈ U, y /∈ U, x /∈ V and y ∈ V .

Definition 2.2[5] A space (X, τ) is
called a semi-T1 space if and only if
for any distinct points x, y in X, there
are semi-open sets U and V such that
x ∈ U, y /∈ U, x /∈ V and y ∈ V .

Definition 2.3 [11]A space (X, τ) is
called a regular space if and only
if for every closed set F and every
point x /∈ F , there exists disjoint sets
U, V ∈ τ , F ⊆ U, and x ∈ V .
A regular T1 space is called a T3 space.

Definition 2.4 [7]A space (X, τ) be de-
fined semi-regular space if and only
if for every x ∈ X and semi-closed
set F , with x /∈ F , there exists dis-
joint semi-open sets U and V such
that F ⊆ U, x ∈ V .
A semi-regular semi-T1 space is called
a semi-T3 space.

Theorem 2.5[2] If f : X → Y is a
homeomorphism, then f(Ab) = (f(A))b,
for all A ⊂ X

Theorem 2.6[10] If f : X → Y be a
semi-homeomorphism, then f(Abs) =
(f(A))bs, for all A ⊂ X.

Theorem 2.7 [14] The product of
semi-open(semi-closed) sets is a semi-
open(semi-closed) set.

proposition 2.8 [11] In any space,
Ab = φ iff A is a clopen set.

Theorem 2.9 [10] In a space X, A is
a semi-clopen (semi-open and semi-
closed) set iff Abs = φ.

Remark 2.10 [9] Every open (closed)
set is semi-open (semi-closed) set.

Remark 2.11[3] Let X be a space and

A be a subset of X, then A is semi-
closed set iff A = A

s.

Remark 2.12[14] The concept of semi-
open set and open set in cofinite
space, discrete space and indiscrete
space are the same.

Theorem 2.13[8] Let (X, τ) be a space
(Y, τy) a subspace of (X, τ) and let
A ⊆ Y , then:

i. Ay = Y ∩ A

ii. Aby ⊆ Y ∩ Ab

Where A
y and Aby are the clo-

sure of A in Y and boundary of
A in Y , respectively.

Theorem 2.14[11] Let (X, τ) be a space
and let A,B ⊆ X, then (A ∩ B)b ⊆
Ab ∪Bb.

Remark 2.15 [10] In a space X,
Abs ⊂ Ab

Theorem 2.16[11],[6] The product
space of T1 (semi-T1) spaces is T1
(semi-T1) space.

Theorem 2.17[3] A semi-topological
property is a topological property.

3 Main Results
Definition 3.1 A space (X, τ) be de-
fined a Z-regular space if and only if
for every closed set F and every point
x /∈ F , there exists disjoint open sets
U and V such that F ⊆ U, x ∈ V , and
U b ∩ V b = φ.
A Z-regular T1 space is called a ZT3
space.
Note that if (X, τ) is Z-regular space
then it is regular space and if X is
ZT3 space then it is a T3 space and
Z-regular space.
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Example 3.2 Let X = {a, b, c}, τ =
{X,φ, {a}, {b, c}, },(X, τ) is a Z-regular
space:
Consider the closed set {b, c} and
a /∈ {b, c}, {a} and {b, c} are disjoint
open sets, {b, c} ⊆ {b, c}, a ∈ {a} and
{a}b ∩ {b, c}b = φ.
The closed sets {a} with each of b
and c, there exist disjoint open sets
{a} and {b, c} such that {a} ⊆ {a}, b ∈
{b, c} and c ∈ {b, c}, respectively, and
{a}b∩{b, c}b = φ. Hence, it is Z-regular
space.
Note that (X, τ) is not ZT3 space for
it is not T1 space.

Example 3.3 The discrete space of
more than one point, (X, τd), is Z-
regular space.

Example 3.4 The discrete space of
more than one point, (X, τd), is ZT3
space.

Example 3.5 An infinite Cofinite
space (X, τc) is not Z-regular space
since there are no disjoint open sets
in the cofinite space except X and φ.

Example 3.6 An infinite Cofinite space
(X, τc) is not ZT3 since it is not Z-
regular.

Example 3.7 The indiscrete space of
more than one point, (X, τind) is Z-
regular space, but not ZT3 space.

Example 3.8 The Usual space, (R, τu),
is ZT3 space.

Theorem 3.9 The property of being
Z-regular be a topological property.

Proof: Suppose that X ∼= Y , where
X is Z-regular space. Then there ex-
ists a homeomorphism f : X → Y .
To show that Y be a Z-regular space,

let F ⊂ Y be a closed set and a ∈ Y
with a /∈ F .
f−1(F ) is closed set in X. Then there
exists b ∈ X such that f(b) = a.
Since a /∈ F then b /∈ f−1(F ). Since X
is a Z-regular space then there exist
disjoint open sets U and V such that
f−1(F ) ⊂ U, b ∈ V , and U b ∩ V b = φ. So
f(f−1(F )) = F ⊆ f(U),and f(b) = a ∈
f(V ).
f(U) and f(V ) are open in Y , and
f(U ∩ V ) = f(U) ∩ f(V ) = f(φ) = φ.
Now, (f(U))b ∩ (f(V ))b = f(U b) ∩ f(V b),
[Theorem 2.5) ]

= f(U b ∩ V b)
= f(φ) = φ.

Hence (Y, τ ∗) is Z-regular space.

�

Theorem 3.10 The property of being
ZT3 is a topological property.

Proof: Since Z-regular space and T1
space is a topological properties then
ZT3 is a topological property.

�

Theorem 3.11 An open subspace of
a Z-regular space be a Z-regular space.

Proof: Suppose that (Y, τy) be an open
subspace of (X, τ), where X be a Z-
regular space. To show that (Y, Ty) is
Z-regular space, let F be a closed set
in Y , and a ∈ Y with a /∈ F .
F

y = F ∩ Y [Theorem 2.13 (i) ] Also,
F = F

y for F be a closed in Y , and so
F = F ∩Y . Since a /∈ F , then a /∈ F ∩Y ,
and so a /∈ F .
Note that F is a closed set in X,
and a /∈ F , There exist disjoint sets
U, V ∈ τ , F ⊆ U , a ∈ V , and U b∩V b = φ,
for X be a Z-regular space.
Since a ∈ V and a ∈ Y then a ∈ V ∩ Y ,
and so F ⊆ U then F ∩ Y = F ⊆ U ∩ Y .
Note that (U ∩Y ) ∈ τy and (V ∩Y ) ∈ τy.
(U∩Y )∩(V ∩Y ) = (U∩V )∩Y = φ∩Y = φ
Now,
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(U ∩Y )by ⊆ Y ∩ (U ∩Y )b, [Theorem 2.13
(ii) ]

⊆ Y ∩ (U b ∪ Y b), [Theorem
2.14 ]

= (Y ∩ U b) ∪ (Y ∩ Y b)
= (Y ∩ U b) ∪ φ, [Proposition

2.8 ]
= Y ∩ U b

Similarity, (V ∩ Y )by ⊆ Y ∩ V b

So,(U ∩ Y )by ∩(V ∩ Y )by ⊆ (Y ∩U b)∩(Y ∩
V b)

= (U b∩V b)∩
Y = φ ∩ Y = φ.
Hence, (Y, τy) is a Z-regular space.

�

Theorem 3.12 An open subspace of
a ZT3 space is a ZT3 space.

Proof: Since an open subspace of a
Z-regular and T1 spaces is a Z-regular
T1 space then an open subspace of a
ZT3 space is a ZT3 space.

Remark 3.13 The continuous image
of Z-regular space needs not be a Z-
regular space :
f : (Z, τd) → (R, τc), f(x) = x is contin-
uous function and, (Z, τd) is Z-regular
space but f(Z) = Z with the rela-
tive cofinite topology is not Z-regular
space.

Remark 3.14 The continuous image
of ZT3 space needs not be a ZT3 space.

Definition 3.15 A space (X, τ) be de-
fined a semi-Z-regular space if and
only if for every x ∈ X and semi-
closed set F , with x /∈ F , there are
disjoint semi-open sets U and V such
that F ⊆ U, x ∈ V , and U bs ∩ V bs = φ.
A semi-Z-regular semi-T1 space is
called a semi-ZT3 space.

Example 3.16 Let X = {a, b, c}, τ =
{X,φ, {a}, {b, c}, }. (X, τ) is a semi-Z-
regular space:

Consider semi-closed set {b, c} and
a /∈ {b, c}, then there are disjoint
semi-open sets {a} and {b, c} such
that {b, c} ⊆ {b, c}, a ∈ {a} and {a}bs ∩
{b, c}bs = φ.
The semi-closed sets {a} with each
of b and c, there exist disjoint semi-
open sets {a} and {b, c} such that
{a} ⊆ {a}, b ∈ {b, c} and c ∈ {b, c},
respectively, and {a}bs ∩ {b, c}bs = φ.
Hence, (X, τ) is semi-Z-regular space.
Note that (X, τ) is not semi-ZT3 space
for it is not semi-T1 space.

Note 3.17 :

i. Every semi-Z-regular space is
semi-regular space

ii. Every semi-ZT3 space is a semi-T3
space

iii. Every semi-ZT3 space is a semi-Z-
regular space, but the converse is
not true in general for the above
example is semi-Z-regular space
but not semi-ZT3 space

iv. Every semi-T3 space is a semi-
regular space

Example 3.18 The discrete space of
more than one point, (X, τd), is semi-
Z-regular space:

Since the concepts of open set and
semi-open set are the same in the dis-
crete spaces, [Remark 2.12 ], then the
concept of closed and semi closed are
the same in discrete space. We have
the result as in [Example 3.3 ].

Example 3.19 The discrete space of
more than one point, (X, τd), is semi-
ZT3 space for it is semi-Z-regular and
semi-T1 space.

Example 3.20 Let X be an infinite
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set. The Cofinite space (X, τc) is not
semi-Z-regular space for there are no
disjoint semi-open sets in the cofinite
space except X and φ.

Example 3.21 Let X be an infinite
set. The Cofinite space (X, τc) is not
semi-ZT3 space.

Example 3.22 The indiscrete space of
more than one point (X, τind) is semi-Z-
regular space but not semi-ZT3 space.

Theorem 3.23 The property of being
semi-Z-regular is a semi-topological
property.

Proof: Suppose that X is semi-
homomorphic to Y , where X is semi-
Z-regular space. Then f : X → Y be a
semi-homeomorphism .
To show that Y is semi-Z-regular
space, let F ⊂ Y be a semi-closed set
and a ∈ Y with a /∈ F .
Then there are b ∈ X, f(b) = a. Since
f is irresolute function then f−1(F ) is
semi-closed set.
Since a /∈ F , then b /∈ f−1(F ). Since
X is a semi-Z-regular space, then
there are disjoint semi-open sets U
and V such that f−1(F ) ⊆ U, b ∈ V , and
U bs ∩ V bs = φ. So f(f−1(F )) = F ⊆ f(U),
and f(b) = a ∈ f(V ).
Since f is pre-semi-open function,
then f(U) and f(V ) are semi-open in
Y . Since f is injective then f(U ∩V ) =
f(U) ∩ f(V ) = f(φ) = φ.
Now, (f(U))bs ∩ (f(V ))bs = f(U bs) ∩
f(V bs), [Theorem 2.6 ],

= f(U bs ∩ V bs)
= f(φ) = φ.

Hence, (Y, τ ∗) is a semi-Z-regular
space.

�

Theorem 3.24 The property of being
a semi-ZT3 space is a semi-topological
property.

Proof: Suppose that X is semi-
homomorphic to Y , where X is semi-T1
space. Then f : X → Y be a semi-
homeomorphism. For any y1, y2 ∈
Y, y1 6= y2, we have f−1(y1), f−1(y2) ∈ X
and f−1(y1) 6= f−1(y2) for f is one to
one. Since X is a semi-T1 space, then
there exists semi-open sets U and V
such that f−1(y1) ∈ U ,f−1(y2) /∈ U ,
f−1(y2) ∈ V , f−1(y1) /∈ V , we have
y1 ∈ f(U) , y2 /∈ f(U), y2 ∈ f(V ), and
y1 /∈ f(V ). f(U) and f(V ) are semi-
open sets in Y for f be pre-semi-open.
Then Y is a semi-T1 space and Y semi-
Z-regular space is a semi-topological
property, then Y is a semi-ZT3 space.
Hence, the property of being a semi-
ZT3 space is a semi-topological prop-
erty.

�

Theorem 3.25 The property of being
a semi-Z-regular space is a topological
property, [Remark 2.17 ].

Theorem 3.26 The property of be-
ing a semi-ZT3 space is a topological
property, [Remark 2.17 ].

Remark 3.27 The semi-continuous im-
age of a semi-Z-regular space needs
not be a semi-Z-regular space as
shown in the following example :
f : (Z, τd) → (R, τc), f(x) = x for all
x ∈ Z is a semi-continuous function
and, (Z, τd) is semi-Z-regular space,
but f(Z) = Z with the relative cofinite
topology is not semi-Z-regular space.

Remark 3.28 The semi-continuous im-
age of a semi-ZT3 space needs not be
a semi-ZT3 space.
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4 Conclusion
After we have been introduced a Z-
regular space, semi-Z-regular space,
ZT3 space and a semi-ZT3 space, we
have the following diagram.

T1 space ⇐ T3 space ⇒ regular space
⇑ ⇑

ZT3 space ⇒ Z-regular space

semi-ZT3 space ⇒ semi-Z-regular
space

⇓ ⇓
semi-T1 ⇐ semi-T3 space ⇒

semi-regular space
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