DOI: http://dx.doi.org/10.31642/JoKMC/2018/080202

Certain Types of Regular and T_3 Spaces

Abed Al-Hamza M.Hamza

University of Kufa Faculty of Computer Science and Mathematics Department of Mathematics

abdulhamza.hamza@uokufa.edu.iq

Zainab Naji Hameed University of Kufa Faculty of Computer Science and Mathematics **Department of Mathematics**

zainabn.alkraawy@student.uokufa.edu.iq

Eqbal Naji Hameed University of Kufa Faculty of Education for Girls Department of Mathematics iqbaln.alkerawi@uokufa.edu.iq

Abstract: We introduced certain types of separation axioms which are Z-regular space, ZT_3 space, semi-Z-regular space and semi- ZT_3 space, by using boundary points and semi boundary points. The relationships among them and relationships with each of T_3 , T_1 and semi- T_1 axioms have been given.

Keywords T_1 space, semi- T_1 space, regular space, T_3 , semi-regular space, semi- T_3 , Z-regular space, ZT_3 space, semi-regular space, semi- ZT_3 space.

Introduction 1

There are many types of the separation axioms: T_0 , T_1 , T_2 , regular, T_3 , semi- T_1 , semi- T_2 , semi-regular, and semi- T_3 . T_0 was introduced by A. Kolmogorov, T_1 was introduced by Frechet in 1923, T_2 was introduced by Hausdorff in 1914, [15]. Semi- T_0 , semi- T_1 , and semi- T_2 were introduced by S.N. Maheshwari and R. Prasad in 1975, [4]. Regular and T_3 space were introduced by V. Neumann in 1925, [15], and semi-regular and semi- T_3 space were introduced by C. Dorsett in 1982, [7]. In [12], Levine defined a set A in a topological space X to be semi-open if there exists an Definition 2.1[[11] A space (X, τ) be open set U such that $U \subseteq A \subseteq \overline{U}$. defined a T_1 space if and only if for In [3], S. Gene Crossley and S. K. any distinct points x and y in X,

Hildebrand defined semi-closed set as the complement of semi-open set, the union of all semi-open sets of X contained in A and the intersection of all semi-closed sets containing A, respectively. In [13], P.Das defined semiboundary of A as $\overline{A}^s - A^{\circ s}$. We shall use \overline{A}^s , A^{bs} , \overline{A} , A^b , and \mathbb{Z} to the semiclosure of A, the semi-boundary of A, the closure of A, the boundary of A, and the integer numbers, respectively. We shall refer to the topological space as a space.

Preliminaries 2

there exists open sets U, V such that A be a subset of X, then A is semi $x \in U, y \notin U, x \notin V$ and $y \in V$.

Definition 2.2[5]called a semi- T_1 space if and only if open set and open set in cofinite for any distinct points x, y in X, there are semi-open sets U and V such that $x \in U, y \notin U, x \notin V$ and $y \in V$.

Definition 2.3 [11] A space (X, τ) is called a regular space if and only if for every closed set F and every point $x \notin F$, there exists disjoint sets $U, V \in \tau, F \subseteq U, \text{ and } x \in V.$

A regular T_1 space is called a T_3 space.

Definition 2.4 [7] A space (X, τ) be defined semi-regular space if and only if for every $x \in X$ and semi-closed set F, with $x \notin F$, there exists disjoint semi-open sets U and V such that $F \subseteq U, x \in V$.

A semi-regular semi- T_1 space is called a semi- T_3 space.

Theorem 2.5[2] If $f : X \to Y$ is a homeomorphism, then $f(A^b) = (f(A))^b$, for all $A \subset X$

Theorem 2.6[10] If $f : X \to Y$ be a semi-homeomorphism, then $f(A^{bs}) =$ $(f(A))^{bs}$, for all $A \subset X$.

Theorem 2.7 [14] The product of semi-open(semi-closed) sets is a semiopen(semi-closed) set.

proposition 2.8 [11] In any space, $A^b = \phi$ iff A is a clopen set.

Theorem 2.9 [10] In a space X, A is a semi-clopen (semi-open and semiclosed) set iff $A^{bs} = \phi$.

Remark 2.10 [9] Every open (closed) set is semi-open (semi-closed) set.

Remark 2.11[3] Let X be a space and

closed set iff $A = \overline{A}^s$.

A space (X,τ) is Remark 2.12[14] The concept of semispace, discrete space and indiscrete space are the same.

> Theorem 2.13[8] Let (X, τ) be a space (Y, τ_u) a subspace of (X, τ) and let $A \subseteq Y$, then:

- i. $\overline{A}^y = Y \cap \overline{A}$
- ii. $A^{b_y} \subseteq Y \cap A^b$

Where \overline{A}^{y} and $A^{b_{y}}$ are the closure of A in Y and boundary of A in Y, respectively.

Theorem 2.14[11] Let (X, τ) be a space and let $A, B \subseteq X$, then $(A \cap B)^b \subseteq$ $A^b \cup B^b$.

Remark 2.15 [10] In a space X, $A^{bs} \subset A^b$

Theorem 2.16[11],[6] The product space of T_1 (semi- T_1) spaces is T_1 (semi- T_1) space.

Theorem 2.17[3] A semi-topological property is a topological property.

3 Main Results

Definition 3.1 A space (X, τ) be defined a Z-regular space if and only if for every closed set F and every point $x \notin F$, there exists disjoint open sets U and V such that $F \subseteq U, x \in V$, and $U^b \cap V^b = \phi.$

A Z-regular T_1 space is called a ZT_3 space.

Note that if (X, τ) is Z-regular space then it is regular space and if X is ZT_3 space then it is a T_3 space and Z-regular space.

Example 3.2 Let $X = \{a, b, c\}, \tau = \{X, \phi, \{a\}, \{b, c\}, \}, (X, \tau)$ is a Z-regular space:

Consider the closed set $\{b, c\}$ and $a \notin \{b, c\}$, $\{a\}$ and $\{b, c\}$ are disjoint open sets, $\{b, c\} \subseteq \{b, c\}, a \in \{a\}$ and $\{a\}^b \cap \{b, c\}^b = \phi$.

The closed sets $\{a\}$ with each of band c, there exist disjoint open sets $\{a\}$ and $\{b,c\}$ such that $\{a\} \subseteq \{a\}, b \in$ $\{b,c\}$ and $c \in \{b,c\}$, respectively, and $\{a\}^b \cap \{b,c\}^b = \phi$. Hence, it is Z-regular space.

Note that (X, τ) is not ZT_3 space for it is not T_1 space.

Example 3.3 The discrete space of more than one point, (X, τ_d) , is Z-regular space.

Example 3.4 The discrete space of more than one point, (X, τ_d) , is ZT_3 space.

Example 3.5 An infinite Cofinite space (X, τ_c) is not Z-regular space since there are no disjoint open sets in the cofinite space except X and ϕ .

Example 3.6 An infinite Cofinite space (X, τ_c) is not ZT_3 since it is not Z-regular.

Example 3.7 The indiscrete space of more than one point, (X, τ_{ind}) is Z-regular space, but not ZT_3 space.

Example 3.8 The Usual space, (\mathbb{R}, τ_u) , is ZT_3 space.

Theorem 3.9 The property of being Z-regular be a topological property.

Proof: Suppose that $X \cong Y$, where X is Z-regular space. Then there exists a homeomorphism $f: X \to Y$.

To show that Y be a Z-regular space,

let $F \subset Y$ be a closed set and $a \in Y$ with $a \notin F$.

 $f^{-1}(F)$ is closed set in X. Then there exists $b \in X$ such that f(b) = a.

Since $a \notin F$ then $b \notin f^{-1}(F)$. Since X is a Z-regular space then there exist disjoint open sets U and V such that $f^{-1}(F) \subset U, b \in V$, and $U^b \cap V^b = \phi$. So $f(f^{-1}(F)) = F \subseteq f(U)$, and $f(b) = a \in$ f(V).

f(U) and f(V) are open in Y, and $f(U \cap V) = f(U) \cap f(V) = f(\phi) = \phi.$ Now, $(f(U))^b \cap (f(V))^b = f(U^b) \cap f(V^b),$ [Theorem 2.5)]

$$\begin{split} &= f(U^b \cap V^b) \\ &= f(\phi) = \phi. \end{split}$$
 Hence (Y,τ^*) is Z-regular space.

Theorem 3.10 The property of being ZT_3 is a topological property.

Proof: Since Z-regular space and T_1 space is a topological properties then ZT_3 is a topological property.

Theorem 3.11 An open subspace of a Z-regular space be a Z-regular space.

Proof: Suppose that (Y, τ_y) be an open subspace of (X, τ) , where X be a Zregular space. To show that (Y, T_y) is Z-regular space, let F be a closed set in Y, and $a \in Y$ with $a \notin F$.

 $\overline{F}^y = \overline{F} \cap Y$ [Theorem 2.13 (i)] Also, $F = \overline{F}^y$ for F be a closed in Y, and so $F = \overline{F} \cap Y$. Since $a \notin F$, then $a \notin \overline{F} \cap Y$, and so $a \notin \overline{F}$.

Note that \overline{F} is a closed set in X, and $a \notin \overline{F}$, There exist disjoint sets $U, V \in \tau, \overline{F} \subseteq U, a \in V$, and $U^b \cap V^b = \phi$, for X be a Z-regular space.

Since $a \in V$ and $a \in Y$ then $a \in V \cap Y$, and so $\overline{F} \subseteq U$ then $\overline{F} \cap Y = F \subseteq U \cap Y$. Note that $(U \cap Y) \in \tau_y$ and $(V \cap Y) \in \tau_y$. $(U \cap Y) \cap (V \cap Y) = (U \cap V) \cap Y = \phi \cap Y = \phi$ Now,

(ii)] $\subseteq Y \cap (U^b \cup Y^b)$, [Theorem 2.14] $= (Y \cap U^b) \cup (Y \cap Y^b)$ $= (Y \cap U^b) \cup \phi$, [Proposition]

2.8]

 $= Y \cap U^b$ Similarity, $(V \cap Y)^{b_y} \subseteq Y \cap V^b$ **So**, $(U \cap Y)^{b_y} \cap (V \cap Y)^{b_y} \subseteq (Y \cap U^b) \cap (Y \cap V)^{b_y}$ V^b) $= (U^b \cap V^b) \cap$

 $Y = \phi \cap Y = \phi.$ Hence, (Y, τ_u) is a Z-regular space.

Theorem 3.12 An open subspace of a ZT_3 space is a ZT_3 space.

Proof: Since an open subspace of a **Z**-regular and T_1 spaces is a **Z**-regular T_1 space then an open subspace of a ZT_3 space is a ZT_3 space.

Remark 3.13 The continuous image of Z-regular space needs not be a Zregular space :

 $f: (\mathbb{Z}, \tau_d) \to (\mathbb{R}, \tau_c), f(x) = x$ is continuous function and, (\mathbb{Z}, τ_d) is Z-regular space but $f(\mathbb{Z}) = \mathbb{Z}$ with the relative cofinite topology is not Z-regular space.

Remark 3.14 The continuous image of ZT_3 space needs not be a ZT_3 space.

Definition 3.15 A space (X, τ) be defined a semi-Z-regular space if and only if for every $x \in X$ and semiclosed set F, with $x \notin F$, there are disjoint semi-open sets U and V such that $F \subseteq U, x \in V$, and $U^{bs} \cap V^{bs} = \phi$. A semi-Z-regular semi- T_1 space is called a semi- ZT_3 space.

Example 3.16 Let $X = \{a, b, c\}, \tau =$ $\{X, \phi, \{a\}, \{b, c\}, \}$. (X, τ) is a semi-Zregular space:

 $(U \cap Y)^{b_y} \subseteq Y \cap (U \cap Y)^b$, [Theorem 2.13 Consider semi-closed set $\{b, c\}$ and $a \notin \{b, c\}$, then there are disjoint semi-open sets $\{a\}$ and $\{b, c\}$ such that $\{b,c\} \subseteq \{b,c\}, a \in \{a\}$ and $\{a\}^{bs} \cap$ $\{b,c\}^{bs} = \phi.$

> The semi-closed sets $\{a\}$ with each of b and c, there exist disjoint semiopen sets $\{a\}$ and $\{b, c\}$ such that $\{a\} \subseteq \{a\}, b \in \{b, c\} \text{ and } c \in \{b, c\},$ respectively, and $\{a\}^{bs} \cap \{b,c\}^{bs} = \phi$. Hence, (X, τ) is semi-Z-regular space. Note that (X, τ) is not semi-ZT₃ space for it is not semi- T_1 space.

Note 3.17 :

- i. Every semi-Z-regular space is semi-regular space
- Every semi- ZT_3 space is a semi- T_3 ii. space
- iii. Every semi- ZT_3 space is a semi-Zregular space, but the converse is not true in general for the above example is semi-Z-regular space but not semi- ZT_3 space
- Every semi- T_3 space is a semiiv. regular space

Example 3.18 The discrete space of more than one point, (X, τ_d) , is semi-Z-regular space:

Since the concepts of open set and semi-open set are the same in the discrete spaces, [Remark 2.12], then the concept of closed and semi closed are the same in discrete space. We have the result as in [Example 3.3].

Example 3.19 The discrete space of more than one point, (X, τ_d) , is semi- ZT_3 space for it is semi-Z-regular and semi- T_1 space.

Example 3.20 Let X be an infinite

set. The Cofinite space (X, τ_c) is not semi-Z-regular space for there are no disjoint semi-open sets in the cofinite space except X and ϕ .

Example 3.21 Let X be an infinite set. The Cofinite space (X, τ_c) is not semi- ZT_3 space.

Example 3.22 The indiscrete space of more than one point (X, τ_{ind}) is semi-Z-regular space but not semi- ZT_3 space.

Theorem 3.23 The property of being semi-Z-regular is a semi-topological property.

Proof: Suppose that X is semi-Hendhomomorphic to Y, where X is semi- ZT_3 s Z-regular space. Then $f: X \to Y$ be a erty. semi-homeomorphism.

To show that Y is semi-Z-regular space, let $F \subset Y$ be a semi-closed set and $a \in Y$ with $a \notin F$.

Then there are $b \in X$, f(b) = a. Since f is irresolute function then $f^{-1}(F)$ is semi-closed set.

Since $a \notin F$, then $b \notin f^{-1}(F)$. Since X is a semi-Z-regular space, then there are disjoint semi-open sets U and V such that $f^{-1}(F) \subseteq U, b \in V$, and $U^{bs} \cap V^{bs} = \phi$. So $f(f^{-1}(F)) = F \subseteq f(U)$, and $f(b) = a \in f(V)$.

Since f is pre-semi-open function, then f(U) and f(V) are semi-open in Y. Since f is injective then $f(U \cap V) =$ $f(U) \cap f(V) = f(\phi) = \phi$. Now, $(f(U))^{bs} \cap (f(V))^{bs} = f(U^{bs}) \cap$ $f(V^{bs})$, [Theorem 2.6], $= f(U^{bs} \cap V^{bs})$ $= f(\phi) = \phi$. Hence $(V \sigma^*)$ is a some 7 regular.

Hence, (Y, τ^*) is a semi-Z-regular space.

Theorem 3.24 The property of being a semi- ZT_3 space is a semi-topological property.

Proof: Suppose that X is semihomomorphic to Y, where X is semi- T_1 Then $f : X \to Y$ be a semispace. homeomorphism. For any $y_1, y_2 \in$ $Y, y_1 \neq y_2$, we have $f^{-1}(y_1), f^{-1}(y_2) \in X$ and $f^{-1}(y_1) \neq f^{-1}(y_2)$ for f is one to one. Since X is a semi- T_1 space, then there exists semi-open sets U and Vsuch that $f^{-1}(y_1) \in U, f^{-1}(y_2) \notin U$, $f^{-1}(y_2) \in V, f^{-1}(y_1) \notin V$, we have $y_1 \in f(U)$, $y_2 \notin f(U)$, $y_2 \in f(V)$, and $y_1 \notin f(V)$. f(U) and f(V) are semiopen sets in Y for f be pre-semi-open. Then Y is a semi- T_1 space and Y semi-Z-regular space is a semi-topological property, then Y is a semi- ZT_3 space. Hence, the property of being a semi- ZT_3 space is a semi-topological prop-

Theorem 3.25 The property of being a semi-Z-regular space is a topological property, [Remark 2.17].

Theorem 3.26 The property of being a semi- ZT_3 space is a topological property, [Remark 2.17].

Remark 3.27 The semi-continuous image of a semi-Z-regular space needs not be a semi-Z-regular space as shown in the following example :

 $f : (\mathbb{Z}, \tau_d) \to (\mathbb{R}, \tau_c), f(x) = x$ for all $x \in \mathbb{Z}$ is a semi-continuous function and, (\mathbb{Z}, τ_d) is semi-Z-regular space, but $f(\mathbb{Z}) = \mathbb{Z}$ with the relative cofinite topology is not semi-Z-regular space.

Remark 3.28 The semi-continuous image of a semi- ZT_3 space needs not be a semi- ZT_3 space.

 \square

4 Conclusion

After we have been introduced a Z-regular space, semi-Z-regular space, ZT_3 space and a semi- ZT_3 space, we have the following diagram.

- $\begin{array}{c} T_1 \ \text{space} \Leftarrow T_3 \ \text{space} \Rightarrow \text{regular space} \\ & \uparrow & \uparrow \\ & ZT_3 \ \text{space} \Rightarrow \text{Z-regular space} \end{array}$
 - $\begin{array}{c} \operatorname{semi-ZT_3} \operatorname{space} \Rightarrow \operatorname{semi-Z-regular} \\ & \operatorname{space} \\ & \Downarrow \\ & \operatorname{semi-T_1} \Leftarrow \operatorname{semi-T_3} \operatorname{space} \Rightarrow \\ & \operatorname{semi-regular} \operatorname{space} \end{array}$

References

- [1] B. Ahmad , M. Khan , T. Noiri. A note on semi-frontier, *Indian J. pure appl. Math.* 22(1), 61-62 (1991)
- [2] C. C. Adams and R. D. Franzosa. Introduction to Topology Pure and Applied, *Pearson Prentice Hall Upper Saddle River*. (2008)
- [3] S. G. Crossley and S. K. Hildebrand. Semi-topological properties, Fundamenta Mathematicae. 74(3), 233-254(1972)
- [4] M. Caldas. A Separation Axioms Between Semi-T0 and Semi-T1, Pro Mathematica 11, 21-22, (1997)
- [5] M. Caldas. A Separation Axioms Between Semi-T0 and Semi-T1, *Pro Mathematica* 11, 21-22,

- [6] C. Dorsett. Product spaces and semi-separation axioms, *Peri*odica Mathematica Hungarica 13(1), 39-45 (1982)
- [7] C. Dorsett, semi-regular spaces, Soochow Journal of Mathematics *Periodica Mathematica Hungarica* 2, (1991)
- [8] J. Dugundji. Topology Allyn and Bacon, *Inc. Boston.* (1966)
- [9] A. M. Hamza, and M. S. Jabbar, A Study of Certain Types of Limit Point Compactness, MSC Thesis, University of Kufa, Faculty of Computer Science and Mathematics. (2018)
- [10] A. M. Hamza, and Z. N. Hameed, On The Z-Separation Axioms, MSC Thesis, University of Kufa , Faculty of Computer Science and Mathematics. (2019)
- [11] J. N. Sharma. General topology, Krishan Prakashan Meerut UP (1977)(1997)
- [12] N. Levine. Semi-open sets and semi-continuity in topological space, The American Mathematical Monthly. 70(1), 36-41 (1963)
- [13] T. M. Nour. A note on semiapplication of semi-open sets, *Internat. J. Math. and Math. Sci.* 21(1), 205-207 (1998)
- [14] W. J. M. Thomas. Semi-open sets, *PhD Thesis*. (1965)
- [15] https://en.wikipedia.org/wiki/ Axiom_of_regularity

Received Dec.29, 2019. Accepted for publication May 3,2021