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Abstract— Parameter estimation is a fundamental problem in signal processing. Deep learning is a fundamental 

method to solve this problem. This paper used five Deep Learning (DL) methods and three datasets including different 

singles Single Tone (ST), Linear- Frequency-Modulated (LFM), and Quadratic-Frequency-Modulated (QFM). This 

signal is affected by a mixture of Additive White Gaussian (AWG) noise and Additive Symmetric alpha Stable (SαS) 

noise. The recurrent neural network includes Gated Recurrent Unit (GRU), Long Short-Term Memory (LSTM), Bi-

Direction Long Short-Term Memory (BiLSTM), and Convolution Neural Network includes 1D-CNN and 2D-CNN. DL 

can significantly reduce estimation complexity, memory cost, and power consumption as compared to the classical 

methods based on time-frequency analysis, which are important requirements for many systems, such as some 

Internet of Things (IoT) sensor applications. All DL methods are designed with fewer layers to reduce complexity, 

especially in hardware. Geometric SNR (GSNR) is used to determine the impulsiveness of mixture noise in a Gaussian 

and SαS noise. When compared to a deep learning classifier with few layers to get on high accuracy and complexity 

reduces for Instantaneous Frequency (IF) estimation, Linear Chirp Rate (LCR) estimation, and Quadratic Chirp Rate 

(QCR) estimation. IF, LCR, and QFM estimation for ST, LFM, and QFM signals. The results show that 2D-CNN is 

better than other deep methods for parameter estimation in LFM signals and QFM signals, and the GRU is better for 

parameter estimation in ST signals, where the accuracy of the ST dataset in GRU is 58.09. The accuracy of the LFM 

and CFM datasets in 2D-CNN is 98.26 and 98.2 respectively. 

Keywords— Instantaneous frequency estimation, ST, LFM, QFM signal, sensors, Gaussian noise, SαS noise, GRU, 

LSTM, BiLSTM,1D- CNN, 2D-CNN, deep learning, ROC, and GSNR. 

I. INTRODUCTION  

The non-stationary frequency modulated (FM) signals can 

be used to represent many realistic signals utilized in radar, 

sonar, medicinal applications, and wireless communications [1, 

2]. The nonparametric Instantaneous Frequency (IF) estimation 

of a single tone (mono-component), linear (multi-component), 

and non-linear (multi-component) frequency modulated (FM) 

nonstationary signals are present in this paper. Huang B., & et 

al. (2020) FreqEnet (Frequency estimation network) is a 

suggested framework for estimating frequency using deep 

learning. The signal frequency estimation is a regression 

problem that can be predicted using the LTSM module. The 

architecture is extremely compact, with only three LSTM and 

one fully linked layer. For training our model, two periodic 

signals are generated. as well as to evaluate the resilience and 

generalization of the original signal, uniform and Gauss white 

noise are introduced. Bin Huang et al. (2020) introduce a 

network for estimating frequency based on RNN deep learning. 

The signal frequency estimation is predicted with the LTSM 

module. the layers of the RNN model are three LSTM layers 

and one fully connected layer. Two periodic signals generated 

are the first single sine wave signal with adding random noise, 

second mixed periodic signal is the fusion of three sinusoidal 

signals with different phases and noise. the Gaussian noise with 

𝑆𝑁𝑅 ∈ (2, 4, 6, 8, 10). The Adam optimization is applied and 

different epochs and learning rates.  The dataset with 18000 

samples for training, 2000 samples for validation, and 2000 

samples for testing. The sampling frequency of the sample is 

60Hz, and the length of each sample is 60 points [3]. Vu et al. 

(2016) For relation categorization, examine CNN and simple 

RNN (no gating methods). They show that CNN outperforms 

RNN and present proof that CNN and RNN provide 

complementary information: while RNN computes a weighted 

combination of all words in the sentence, CNN isolates the 

most informative NGRAMS for the relation and only analyzes 

their resulting activations [4]. Yin W. (2017) Deep neural 
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networks (DNNs) have transformed natural language 

processing (NLP). The two basic types of DNN architectures, 

Convolutional Neural Networks (CNN) and Recurrent Neural 

Networks (RNN), are intensively investigated to handle diverse 

NLP problems. CNN is thought to be good at extracting 

position-invariant characteristics, but RNN is good at modeling 

units in sequence [5]. Wu H. & et al. (2020) use one-

dimensional Convolution Neural Networks (1D-CNNs) to 

extract detailed temporal structure information at each signal 

node and a bidirectional Long Short Term Memory (BiLSTM) 

network to extract the spatial relationship among the different 

signal nodes, and then propose a novel identification method 

by treating the spatial- and temporal-information in a different 

way [6]. Huda Saleem, and Zahir M. (2021) It is researched 

how to estimate the instantaneous frequency (IF) under 

Additive White Gaussian Noise (AWGN) and Additive 

Symmetric -alpha Stable Noise (SαSN). Based on the highest 

probability for the Short Time Fourier Transform, two TFD 

MATLAB algorithms (pspectrum and spectrogram) were 

investigated (STFT) [7].  ElMoaqet H., & et al. (2020) For 

automatic feature extraction and detection of apnea occurrences 

from single respiratory channel inputs, a deep recurrent neural 

network (RNN) architecture is created. The suggested deep 

RNN model investigates long short-term memory (LSTM) and 

bidirectional long short-term memory (BiLSTM). The 

suggested architecture is tested using three different respiratory 

signals: oronasal thermal airflow (FlowTh), nasal pressure 

(NPRE), and abdomen respiratory inductance plethysmography 

(ABD) [8]. Zahraa C., and Zahir M. (2017) the performance of 

instantaneous frequency estimators of mono-component FM 

signals (a single-tone sinusoid) under AWGN with various 

types of multiplicative noise was investigated. Two basic 

estimators are considered for single-tone signals: maximum 

likelihood (ML) estimator employing Discrete Fourier 

Transform (DFT) with interpolated peak estimate, and 

autocorrelation approach [9]. Iman Sajedian and Junsuk Rho 

(2019) a noisy sinusoidal wave frequency was determined 

using a deep learning network. The wave effect by Gaussian 

noise with SNRdB equal 25. A three-layer neural network was 

used to extract the frequency of sinusoidal waves mixed with 

white noise at a signal-to-noise ratio of 25 dB. The two neurons 

for the first hidden and second layer, and three neurons for the 

third hidden layer. ANN used a very small number of neurons 

to prevent the model from overfitting. Many methods can be 

used to prevent overfitting; examples include using dropout, 

reducing the complexity of the model, or increasing the amount 

of data. The deep-learning algorithm can find the frequency of 

a sinusoidal wave that is polluted by Gaussian noise. Neural 

Networks (NNs), belong to the family of deep-learning 

methods.  Datasets with 100,000 noisy waves from 1 kHz to 

10 kHz were generated for training and testing the model. Used 

72% of the waves as the training dataset, 18% as the validation 

dataset, and 10% as the test dataset. The Nesterov–Adam 

optimizer was used with a learning rate of 0.001 [10].  

The rest of this paper is structured as follows: Section II 

shows the problem statement. Section III shows its objectives. 

Section IV is about contributions. Section V shows challenges. 

Section VI shows Instantaneous Frequency (IF) and Frequency 

Modulation (FM). Section VII is Gated Recurrent Unit (GRU). 

Section VIII introduces Long Short-Term Memory (LSTM). 

Section IX explains Bidirectional LSTM (BiLSTM). Section X 

discusses Convolution Neural Network (CNN). Section XI 

discusses parameter estimation by deep learning 

methodologies. Section XII is the dataset generated. Section 

XIII introduces the discussion of the results. Section XIV is a 

conclusion.  

II. PROBLEM STATEMENT 

       This work will discuss the Instantaneous parameters 

estimation problem for FM signals under noise environments.  

Impulsive noise is the real problem. An essential kind of 

impulse noise is the symmetric α-stable noise. The FM signals 

affected mixture of α-stable noise is a kind of non-Gaussian 

noise and Gaussian noise. Impulse noise is typically associated 

with Gaussian noise, making the estimation problem more 

difficult.  

III. OBJECTIVES 

      The aim is the estimation of the instantaneous parameters 

including IF, LCR, and QCR for noisy FM signals, where the 

objectives are: First, the FM sinusoidal waves generate such as 

LFM and QFM signals. Second, these signals are affected by a 

mixture of noise AWGN and SαSN. Third, RNN includes 

GRU, LSTM, and BiLSTM models that are applied to noisy 

signals for instantaneous parameter estimation. Finally, CNN 

includes ID-CNN and 2D-CNN models applied for the noisy 

input signals to instantaneous parameter estimation.  

Applications of this work are RADAR and medical SONAR. 

The effects are better localization for RADAR and better 

diagnosis in medical SONAR. The improvement of this work 

is an accurate and fast estimation of the parameters.  

The proposed approach limitation is required powerful 

hardware, high processing for the processor, and storage 

memory. 

IV. CONTRIBUTIONS  

        This work is the first attempt to employ ANN including 

CNN to estimate instantaneous parameters for noisy FM 

waves has been developed. The efficient structure 

development for CNN and RNN models, where reducing the 

complexity of the system by reducing the number of network 

layers. The previous works focus on classifying the types of 

signals or it is to estimate the frequency using deep neural 

networks. As for our work, we employ convolutional neural 

networks and recurrent neural networks to estimate the 

parameters depending on the prediction result. 

V. CHALLENGES  

        The challenges of this work include first: Noisy FM 

signals were processed in the time domain without converting 

to the frequency domain to avoid the complexity of the 

conversion methods. Second, the noisy one-dimensional 

signals are converted into two-dimensional signals without 

using TFD. Third, obtain high accuracy in the presence of 
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impulsive noise without the use of denoise methods, under 

low GSNR. 

VI. INSTANTANEOUS FREQUENCY AND 

FREQUENCY MODULATION  

The instantaneous frequency, which describes the 

frequency content's variations with time, is an essential 

characteristic of FM signals. The IF of a signal is a derivative 

of its instantaneous phase (θ(t)) concerning time [11-12]: 

𝑓𝑖(𝑡) =
1

2𝜋

𝑑𝜃(𝑡)

𝑑𝑡
 (1) 

𝜃 =  2𝜋(𝑓𝑜𝑡 + δ
𝑡2

2
 +  𝜌

𝑡3

3
) (2) 

The signal model having Linear Frequency Modulation 

(LFM) law is: 

𝑠(𝑡) = 𝐴 𝑒
𝑗2𝜋(𝑓𝑜𝑡+

𝛿
2

𝑡2)
 (3) 

where δ is the linear modulation index, 𝑓𝑜 is the initial 

frequency (in Hertz), and 𝐴 is the amplitude. Using Eq. (1), the 

LFM signal IF will be: 

𝑓𝑖(𝑡) = 𝑓𝑜 + 𝛿t (4) 

Quadratic Frequency Modulation (QFM) signal has also 

been considered in this work with quadratic IF law as follows: 

where 𝜌 is the quadratic modulation index of the QFM 

signal, with the quadratic IF law: 

VII. GATED RECURRENT UNIT 

GRU is from RNN type an abbreviation for "Gated 

Recurrent Unit." GRUs were first used in 2014. They are 

comparable to LSTMs but less complex. GRU generates the 

current value of the hidden state ℎ𝑡 by performing linear 

interpolation between an intermediate candidate hidden state 

ℎ̃𝑡 and the prior value of the hidden state ℎ𝑡−1. A GRU has 

two gates that are updated gate 𝑧𝑡 that controls how much of 

the previous state is overwritten, and a reset gate 𝑟𝑡 that 

controls how much of the previous state is forgotten when 

computing the candidate's hidden state. Fig. (1) shows GRU 

architecture [13]. The feed-forward procedure of GRU is as 

follows:  

𝑧𝑡 = 𝜎(𝑊𝑧 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑧) (7) 

𝑟𝑡 = 𝜎(𝑊𝑟 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑟) (8) 

ℎ̃𝑡 = tanh (𝑊ℎ ⋅ [𝑟𝑡 × ℎ𝑡−1, 𝑥𝑡] + 𝑏ℎ) (9) 

ℎ𝑡 = (1 − 𝑧𝑡) × ℎ𝑡−1 + 𝑧𝑡 × ℎ̃𝑡 (10) 

Where 𝜎 & tanh are activation functions, ℎ𝑡−1 is the 

hidden state at the previous time t-1, ℎ̃𝑡 is the hidden state at 

the current time t, 𝑥𝑡 is the input vector, 𝑊𝑧 ,  𝑊𝑟 ,  𝑊ℎ are 

weights parameters, and 𝑏𝑧 ,  𝑏𝑟 , 𝑏ℎ are bias vectors, 𝑟𝑡  is reset 

gate function,  𝑧𝑡 is update gate function, and  ℎ𝑡 is the hidden 

state. 

 
Fig. 1. Gated Recurrent Unit RNN (LSTM) Architecture [14]. 

VIII. LONG SHORT-TERM MEMORY  

Hochreiter and Schmidhuber [15] introduced LSTM, a 

type of RNN, in 1997. LSTM architecture replaces the 

traditionally hidden layers with LSTM cells. The cells are 

made up of numerous gates that can control the flow of input. 

An LSTM cell is made up of an input gate, a cell state, a 

forget gate, and an output gate. It also includes a sigmoid 

layer, a tanh layer, and point-wise multiplication. The input 

gate is made up of the input. Cell State: Runs throughout the 

network and can add or remove information using gates. 

Forget gate layer: Determines the fraction of information that 

will be allowed. Output gate: This is made up of the LSTM's 

output. The sigmoid layer yields numbers ranging from 0 to 1, 

indicating how much of each component should be allowed 

through. The tanh layer creates a new vector that is added to 

the state. The cell state is updated based on the gate outputs 

[16]. Fig. (2) shows LSTM architecture. The feed-forward 

procedure of LSTM is as follows: 

𝑓𝑡 = 𝜎(𝑊𝑓 ⋅ [ℎ𝑡−1. 𝑥𝑡] + 𝑏𝑓) (11) 

𝑖𝑡 = 𝜎(𝑊𝑖 ⋅ [ℎ𝑡−1. 𝑥𝑡] + 𝑏𝑖) (12) 

𝑜𝑡 = 𝜎(𝑊𝑜 ⋅ [ℎ𝑡−1. 𝑥𝑡] + 𝑏𝑜) (13) 

𝐶̃𝑡 = tanh (𝑊𝑐 ⋅ [ℎ𝑡−1. 𝑥𝑡] + 𝑏𝑐) (14) 

𝐶𝑡 = 𝑓𝑡 × 𝐶𝑡−1 + 𝑖𝑡 × 𝐶̃𝑡 (15) 

ℎ𝑡 = 𝑜𝑡 × tanh (𝐶𝑡) (16) 

Where 𝜎 & tanh are activation functions, ℎ𝑡−1 is the 

hidden state at the previous time t-1 (short-term memory), ℎ𝑡 

is the hidden state at the current time t,  𝑐𝑡−1 is hidden cell 

state at previous time t-1 (long-term memory),  𝐶̃𝑡 is hidden 

cell state at current time 𝑡, 𝑥𝑡 is the input vector, 

𝑊𝑓 . 𝑊𝑖 . 𝑊𝑐 . 𝑊𝑜 are weights parameters,  𝑏𝑓 . 𝑏𝑖 . 𝑏𝑐 . 𝑏𝑜  are bias 

vectors, 𝑓𝑡  is forget gate function,  𝑖𝑡 is input gate function, 

and  𝑜𝑡 is output gate function. 

𝑠(𝑡) = 𝐴 𝑒
𝑗2𝜋(𝑓𝑜𝑡+

𝛿
2

𝑡2+
𝜌
3

𝑡3)
 

(5) 

𝑓𝑖(𝑡) = 𝑓𝑜 + δ𝑡 + 𝜌𝑡2 (6) 
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Fig. 2. Long Short-Term Memory RNN (LSTM) Architecture [17]. 

IX. BIDIRECTIONAL LSTM  

       To increase classification performance, improve the 

LSTM unit and provide a BiLSTM model. In unidirectional 

LSTMs, information travels from backward to forward, 

whereas bidirectional LSTMs use hidden states to forward 

information from backward to forward and forward to 

backward. This aids in the learning of LSTM networks. apply 

bidirectional training to a Long Short-Term Memory (LSTM) 

network for the first time [18]. It consists of two LSTMs, one 

LSTM is trained by taking the sequential input data from the 

forward, and the other LSTM trains by taking data from the 

backward direction. Doing this increases the amount of 

information available for classifying the data, improving the 

performance compared to a traditional LSTM. Fig. (3) shows 

bidirectional recurrent neural network (BiLSTM) architecture. 

 

Fig. 3. Bidirectional Recurrent Neural Network (BiLSTM) Architecture [19]. 

X. CONVOLUTION NEURAL NETWORK 

Convolutional neural networks, or CNNs, are a type of 

neural network that is used to process data using a known, grid-

like architecture. This includes time-series data, which is a 1D 

grid of pixels, and image data, which is a 2D grid of pixels. 

Because the network incorporates a mathematical procedure 

known as convolution [20-22]: 

First, the convolutional layer is the foundation of a 

convolutional neural network and is designed to overcome the 

constraints of fully linked layers.  

𝒙𝑓
(ℓ)

= ∑  

𝑢,𝑣

𝒙𝑢𝑣
(ℓ−1)

∗ 𝒘𝑓
(ℓ)

+ 𝒃𝑓
(ℓ)

 
(17) 

where 𝒙𝑓
(ℓ)

 represents the current layer’s output for a given 

filter 𝑓, 𝒙𝑢𝑣
(ℓ−1)

 the output of the previous layer and the spatial 

extent of the filter in the horizontal and vertical direction is 

given by 𝑢 and 𝑣.  

 Second, the pooling layer divides the input volume into a 

collection of non-overlapping rectangles and outputs the 

maximum activation for each subregion, hence the name max-

pooling.  

𝑥(ℓ) = 𝑚𝑎𝑥
𝑢,𝑣

 (𝑥(ℓ−1))
𝑢𝑣

 (18) 

where 𝑢 and 𝑣 denote the spatial extent of the non-

overlapping regions in width and height.  

The third Full Connect (FC) layer is comparable to the 

hidden layer. The fully connected layer of a convolutional 

neural network is responsible for high-level reasoning and is 

hence typically put after the convolutional layers. 

𝑥(ℓ) = (𝑤(ℓ))
𝑇

𝑥(ℓ−1) + 𝑏(ℓ) (19) 

where 𝑥(ℓ−1) denotes the activations of the previous layer 

and 𝑥(ℓ) , 𝑤(ℓ) , and 𝑏(ℓ) denote the activations, weights, and 

biases of the current layer, respectively.  

The fourth Linear Unit Rectified (ReLU) activation 

function is linear and has a simple threshold at zero, it may be 

written as: 

𝑅𝑒𝐿𝑈(𝑥) = max (0, 𝑥) (20) 

Fifth the loss of cross entropy adapted to many classes via 

the softmax function and the negative log-likelihood. The 

cross-entropy loss has the following mathematical formula: 

LF = −
1

𝑁
∑  

𝑁

𝑖

∑  

𝑀

𝑗

𝑦𝑖𝑗log (𝑝𝑖𝑗) 
(21) 

Where N is the number of rows, and M is the number of 

classes. Batch normalization places after a convolutional or 

fully connected layer. It is added to compute the mini-batch 

mean and variance during the forward pass.  

𝑥̂𝑖 =
𝑥𝑖 − μ

√𝜎2 + 𝜖
 (22) 

𝑦𝑖 = 𝛾𝑥̂𝑖 + 𝛽 (23) 

where offset 𝛾 =1, Epsilon 𝜀 =0, scale 𝛽 =0, variance 𝜎2, 

and mean μ.  

XI. THE PARAMETERS ESTIMATION BY DEEP 

LEARNING METHODOLOGIES 

In this section, we demonstrate the implementation of deep 

learning algorithms for the parameter estimation of noisy FM 

signals. The dataset is generated with noise as explained in [7], 

where three noisy datasets are generated including ST, LFM, 

and QFM signals. Then five deep learning methods are applied 

including GRU, LSTM, BiLSTM, 1D-CNN, and 2D-CNN. 

CNN and RNN are implemented with the parameters including 

learning rate equal 1e-4, it is used in the backward stage of 

learning improvement. Max epochs = 10, mini-batch size = 8, 

and Adam used initially learn rate= 0.001, Epsilon= 

0.00000001, squared gradient decay factor = 0.999, and 

gradient decay factor = 0.9000. Hyperparameters in 

convolution are the number of filters, size of the filter, and 
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padding. The batch normalization is included 𝜀, 𝛽, and 𝛾. The 

max pool is included in size and stride. The dropout layer is 

included probability.  The procedures of RNN and CNN 

illustration as follows:  

1. GRU Model 

 The input dataset (𝐷𝑎𝑡𝑎_𝑋) includes ST, LFM, & 

QFM and labels (𝐷𝑎𝑡𝑎_𝐿), where 𝐷𝑎𝑡𝑎_𝑋 include 

12120 noisy FM signals with length 1 × 201 and 

𝐷𝑎𝑡𝑎_𝐿 include ten labels from zero to nine. 

 Divided the dataset into 85% training (𝑋𝑇𝑟, 𝐿𝑇𝑟), 5% 

validation (𝑋𝑉𝑎, 𝐿𝑉𝑎), and 10% testing (𝑋𝑇𝑒, 𝐿𝑇𝑒). 

 The sequence input layer with length 1 × 201. 

 GRU layer is applied with the number of hidden units 

is 180 units. 

 Fully connected is used with an output equal to ten. 

 Softmax is applied on the output network with a range 

between zero and one. 

 Calculate the error of the output layer by cross-

entropy. 

𝐸𝑇𝑟𝑗 = − ∑  

𝑛

𝑖=1

𝐿𝑇𝑟𝑖 ⋅ log (𝐿𝑇𝑟̂𝑖) (24) 

Where 𝑛 is the number of classes,  𝐿𝑇𝑟̂𝑖 is predicate 

labels, 𝐿𝑇𝑟𝑖  is actual labels in one-hot encoding, 𝑗 ∈
[1. …  𝑁], 𝑁 is the number of samples training. 

 Run backward stage includes calculating Adam relies 

on the gradient for softmax and loss function, and 

calculating the weight (𝑤𝑡) updates as follows: 

𝑤𝑡 = 𝑤𝑡−1 − 𝜂
𝑚̂𝑡

√𝑣̂𝑡 + 𝜖
 (25) 

 Evaluate the training data by using validation data for 

each iteration: 

𝐸𝑉𝑎𝑗 = − ∑  

𝑛

𝑖=1

𝐿𝑉𝑎𝑖 ⋅ log (𝐿𝑉𝑎̂𝑖) (26) 

 Repeat implement the steps for all training data, that 

access the last iteration: 

 The classification layer is used cross entropy to 

compute the loss of the network. Training loss is 

calculated by taking the sum of errors for each sample 

in the training set: 

𝐿𝑜𝑠𝑠𝑇𝑟 =
1

𝑁
∑  

𝑁

𝑖=1

𝐸𝑇𝑟𝑖  (27) 

Also, find the loss of validation as follows: 

𝐿𝑜𝑠𝑠𝑉𝑎 =
1

𝑁𝑣
∑  

𝑁𝑣

𝑖=1

𝐸𝑉𝑎𝑖  (28) 

 Repeat and implement the steps until reach into last 

epoch (finish training). 

 The GRU model trained is returned.  

 The testing set (𝑋𝑇𝑒, 𝐿𝑇𝑒) used the GRU model 

trained with optimal weights to predict the 

labels, where each label represents one IF, LCR, 

and QCR according to the use of the dataset. 

 𝑃𝑓, 𝑃𝑆, 𝑃𝑞  represent the predicted IF, LCR, & 

QFM respectively according to the predicted 

label. Then, Estimate IF as follows: 
𝐼𝐹 = 𝑃𝑓 + 𝑃𝑠 𝑡 + 𝑃𝑞 𝑡2 

 Evaluation of the GRU model trained using 

metrics is accuracy, precision, recall, F-score, 

ROC, and confusion matrix. 

 
       Other models of recurrent neural networks 

(LSTM & BiLSTM) implement the same procedure 

described for the GRU model, but the difference is 

that instead of the GRU layer, we put the LSTM layer 

with some hidden units of 180 units. As well as for 

the BiLSTM layer with the number of hidden units is 

180 units. 

 

2.  1D-CNN Model 

 The input dataset (𝐷𝑎𝑡𝑎_𝑋) includes ST, LFM, & 

QFM and labels (𝐷𝑎𝑡𝑎_𝐿), where 𝐷𝑎𝑡𝑎_𝑋 include 

12120 noisy FM signals with length 201 × 1 × 1and 

𝐷𝑎𝑡𝑎_𝐿 include ten labels from zero to nine. 

 Divided the dataset into 85% training (𝑋𝑇𝑟, 𝐿𝑇𝑟), 5% 

validation (𝑋𝑉𝑎, 𝐿𝑉𝑎), and 10% testing (𝑋𝑇𝑒, 𝐿𝑇𝑒). 

 The sequence input layer with size 201 × 1 × 1. 

 The batch normalization is applied to the input. 

 The convolutional layer is applied, with the number of 

filters 30 and size 1 × 9. 

 The batch normalization is applied to the above step. 

 ReLU is used as an activation function. 

 Convolution, batch normalization, and ReLU are 

applied to find feature maps with the number of filters 

60, 90, and 128, respectively, and size 1 × 9. 

 Fully connected with 500 output and dropout with 

probability equal to 50%. 

 Fully connected is used with an output equal to ten. 

 Softmax is applied to the output network. 

 Calculate the error of the output layer by cross-

entropy. 

 Run backward stage includes calculating Adam relies 

on the gradient for the softmax loss function, and 

calculating the weight (𝑤𝑡) updates. 

 Evaluate the training data by using validation data for 

each iteration. 

 Repeat the implement steps for all training data, that 

access the last iteration. 

 The classification layer is used cross entropy to 

compute the loss of the network. 

 Repeat the implement steps, until reaches into last 

epoch (finish training). 

 The 1D-CNN model trained is returned.   

 The testing set (𝑋𝑇𝑒, 𝐿𝑇𝑒) used the 1D-CNN 

model trained with optimal weights to predict 

the labels, where each label represents one IF, 

LCR, and QCR according to the use of the 

dataset. 
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 𝑃𝑓, 𝑃𝑆, 𝑃𝑞  represent the predicted IF, LCR, & 

QFM respectively according to the predicted 

label. Then, Estimate IF as follows: 
𝐼𝐹 = 𝑃𝑓 + 𝑃𝑠 𝑡 + 𝑃𝑞 𝑡2 

 Evaluation of the 1D-CNN model trained using 

metrics is accuracy, precision, recall, F-score, 

ROC, and confusion matrix. 
 

 

3. 2D-CNN Model 

 The input dataset (𝐷𝑎𝑡𝑎_𝑋) includes ST, LFM, & 

QFM and labels (𝐷𝑎𝑡𝑎_𝐿), where 𝐷𝑎𝑡𝑎_𝑋 include 

12120 noisy FM signals with length 28 × 28 × 1and 

𝐷𝑎𝑡𝑎_𝐿 include ten labels from zero to nine. 

 Divided the dataset into 85% training (𝑋𝑇𝑟, 𝐿𝑇𝑟), 5% 

validation (𝑋𝑉𝑎, 𝐿𝑉𝑎), and 10% testing (𝑋𝑇𝑒, 𝐿𝑇𝑒). 

 The image input layer with a size of 28 × 28 × 1. 

 The batch normalization is applied to the input. 

 The convolutional layer is applied, with the number of 

filters being 30 and size 3 × 3. 

 Batch normalization is applied to the result of step 2. 

 ReLU is used as an activation function. 

 Max pooling is applied to reduce the features map. 

 Convolution, batch normalization, ReLU, and max 

pooling are applied to find feature maps with the 

number of filters 60, 90, and 128, respectively, and 

size 3 × 3. 

 Fully connected with 100 output and dropout with 

probability equal to 50%. 

 Fully connected is used with an output equal to ten. 

 Softmax is applied to the output network. 

 Calculate the error of the output layer by cross-

entropy. 

 Run backward stage includes calculating Adam relies 

on the gradient for the softmax loss function, and 

calculating the weight (𝑤𝑡) updates. 

 Evaluate the training data by using validation data for 

each iteration. 

 Repeat the implement steps for all training data, that 

access the last iteration (one epoch completed).  

 The classification layer is used cross entropy to 

compute the loss of the network.  

 Repeat the implement steps, until reaches into last 

epoch (finish training). 

 The 2D-CNN model trained is returned.  

 The testing set (𝑋𝑇𝑒, 𝐿𝑇𝑒) used the 2D-CNN 

model trained with optimal weights to predict 

the labels, where each label represents one IF, 

LCR, and QCR according to the use of the 

dataset. 

 𝑃𝑓, 𝑃𝑆, 𝑃𝑞  represent the predicted IF, LCR, & 

QFM respectively according to the predicted 

label. Then, Estimate IF as follows: 
𝐼𝐹 = 𝑃𝑓 + 𝑃𝑠 𝑡 + 𝑃𝑞 𝑡2 

 Evaluation of the 2D-CNN model trained using 

metrics is accuracy, precision, recall, F-score, 

ROC, and confusion matrix. 

XII. DATASETS GENERATED  

Noisy ST, LFM, and QFM signals are generated with a 

Geometric SNR range [−50  50]. In this work, signals generate 

with additive white Gaussian noise and symmetric stable noise.  

Please note that the selection of initial frequency 𝑓1 and final 

frequency 𝑓2 (or slope 𝛿 𝑜𝑟 𝑒1, instead) can be different for 

different radar/sonar systems, and for bio applications, they are 

generally low [23], as we considered in the current paper. In 

classical radar systems, Authors use the normalized frequency 

𝑓/𝑓𝑠 (𝑓𝑠 being the sampling frequency), hence, specific values 

of 𝑓 will not be effective, as confirmed in Ref [24]. Therefore, 

FM estimation approaches should be generic, not limited to 

specific 𝑓1 or slope/LCR 𝛿/𝑒1. In [25], values of slopes over 

[0,1] have been considered, although higher values are also 

possible. In deep learning, we need to generate huge data, so 

12120 noisy FM signals were generated, and distributed over 

ten classes, and each class contains 1212 noisy FM signals. The 

recurrent neural networks and one-dimensional convolutional 

neural networks deal with the data serial time or sequential 

data, so noisy FM signals were generated with one dimension 

and length 201, and then trained by training models that 

include GRU, LSTM, BiLSTM, and 1D-CNN. The 

convolutional neural networks deal with two-dimensional 

images, so one-dimensional noisy FM signals with a length of 

784 were generated, and then converted into a two-dimensional 

image of size 28 ×  28, then trained by training models that 

include 2D-CNN. The datasets for ST, LFM, and QFM signals 

are generated with the same parameters for noise. Each dataset 

training by five deep-learning methods. The dataset was 

randomly divided into a training ratio of 85%, a validation ratio 

of 5%, and a test ratio of 10%. The IF range includes the initial 

frequency is 𝑓1 =  10, and the final frequency is 𝑓2 =  19. 

The number of frequencies is 𝑓 = 10,  different frequency is 

𝑑𝑓 =  ⌊
𝑓2−𝑓1

𝑛𝑓
⌋. The range IF is 𝑓𝑟 =  [ 𝑓1 ∶

 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔 𝑏𝑦 𝑑𝑓 ∶  𝑓2 ]. The LCR range includes the initial 

LCR is 𝑒1 = 0.1, the final LCR is 𝑒2 = 0.9. The number of 

LCR is 𝑛𝑒 = 10, different LCR is 𝑑𝑒 =  
𝑒2−𝑒1

𝑛𝑒
. The range 

LCR is  𝑒𝑟 =  [𝑒1 ∶  𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔 𝑏𝑦 𝑑𝑒 ∶  𝑒2 ]. The QCR 

range includes the initial QCR is 𝑞1 = −0.9, and the final 

QCR is 𝑞2 = −0.1. The number of QCR is 𝑛𝑞 = 10, different 

QCR is 𝑑𝑞 =  
𝑞2−𝑞1

𝑛𝑞
. The range QCR is  𝑞𝑟 =  [𝑞1 ∶

 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔 𝑏𝑦 𝑑𝑞 ∶  𝑞2 ]. 

XIII. DISCUSSION OF THE RESULTS  

The results show high accuracy for instantaneous parameter 

estimation. For measuring the efficiency of the supervised 

training model or the performance efficiencies of the prediction 

algorithms, there are many metrics including accuracy, 

precision, recall, F-score, confusion matrix, and ROC [26], as 

shown in some Figures and Table I. The accuracy of the 

supervised model is simply the number of correct predictions 

on the total number of predictions.  Precision measures how 
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good the model is at correctly identifying the positive class. 

Recall shows how good the model is at correctly predicting all 

the positive signals in the dataset. The F1-score is the harmonic 

mean of precision and recall. An accuracy, precision, F-score, 

and recall scores will give a value between 0 and 100, a value 

of 100 would indicate a perfect model. The confusion matrix is 

a matrix that compares the number of predictions for each class 

that are correct and those that are incorrect. ROC curves plot 

the accuracy of the model and therefore are best suited to 

diagnose the performance of models where the data is 

balanced. In SαS is an impulsive model, where alpha is more 

harmful even if it is of small value, where it affects the 

parameters guess. Deep CNN outperformed artificial neural 

networks in estimating the instantaneous frequency of non-

stationary data. Fig. (4) shows the ROC of the ST dataset by 

using GRU, where ROC curves are an important tool for 

evaluating the performance of a machine-learning model.  The 

ROC figure shows the relationship between the True Positive 

Rate (TPR) for the model and the False Positive Rate (FPR). 

The best classifications will show the receiver operating line 

hugging the left and top sides of the plot axis. Fig. (5) shows 

the FE of the ST dataset by using GRU. Fig. (6) shows the 

ROC of the LFM dataset by using 2D-CNN. Fig. (7) shows the 

FE and LCR of the LFM dataset by using 2D-CNN.  Fig. (8) 

shows the ROC of the QFM dataset by using 2D-CNN.  Fig. 

(9) shows the FE and LCR of the QFM dataset by using 2D-

CNN. Fig. (10) shows the confusion matrix of the ST signals 

by using GRU, where confusion matrix rows of a confusion 

matrix correspond to the predicted class and the columns 

correspond to the target class. The diagonal cells correspond to 

observations that are correctly classified. The off-diagonal cells 

correspond to incorrectly classified observations. The column 

on the far right of the plot shows the percentages of all the 

samples predicted to belong to each class that is correctly and 

incorrectly classified. The row at the bottom of the plot shows 

the percentages of all the samples belonging to each class that 

is correctly and incorrectly classified. The cell in the bottom 

right of the plot shows the overall accuracy. Fig. (11) shows the 

confusion matrix of the LFM signals by using 2D-CNN. Fig. 

(12) shows the confusion matrix of the QFM signals by using 

2D-CNN. Fig. (13) shows the accuracy and loss rate for noisy 

ST signals by GRU. Fig. (14) shows the accuracy and loss rate 

for noisy LFM signals by 2D-CNN. Fig. (15) shows the 

accuracy and loss rate for noisy QFM signals by 2D-CNN. Fig. 

(16) shows the accuracy and loss rate for noisy LFM signals by 

LSTM. Fig. (17) shows the accuracy and loss rate for noisy 

QFM signals by BiLSTM. Tab. 1 shows the measurement 

results for ST, LFM, & QFM datasets and GRU, LSTM, 

BILSTM, 1D-CNN, & 2D-CNN deep learning methods.  

 

Fig. 4. ROC of the ST Dataset by Using GRU. 

 

Fig. 5. FE of the ST Dataset by Using GRU. 

 

Fig. 6. ROC of the LFM Dataset by Using 2D-CNN. 

 

Fig. 7. FE and LCR of the LFM Dataset by Using 2D-CNN.  
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Fig. 8. ROC of the QFM Dataset by Using 2D-CNN.   

TABLE I.  THE MEASURES RESULTS FOR ST, LFM, & QFM DATASET 

AND GRU, LSTM, BILSTM, 1D-CNN, & 2D-CNN DEEP LEARNING 

METHODS.  

Dataset Methods Accuracy Precision Recall 
F1- 

score 
Epoch 

Time 

(Sec) 

S
T

 d
a

ta
se

t 

GRU 58.0992 48.0214 58.0992 52.5818 200 316 

LSTM 46.6116 31.7648 46.6116 37.7820 200 429 

BiLSTM 45.9504 34.2707 45.9504 39.2603 200 1514 

1D-

CNN 
51.4876 42.0942 51.4876 46.3195 10 4118 

2D-

CNN 
54.1322 50.3689 54.1322 52.1828 10 4935 

L
F

M
 d

a
ta

se
t 

GRU 82.8926 77.9568 82.8926 80.3489 200 297 

LSTM 66.2810 50.7212 66.2810 57.4665 200 422 

BiLSTM 69.9174 64.0148 69.9174 66.8360 200 914 

1D-

CNN 
74.7934 72.8796 74.7934 73.8241 10 35826 

2D-

CNN 
98.2645 98.3087 98.2645 98.2866 10 5420 

Q
F

M
 d

a
ta

se
t 

GRU 78.7603 67.6727 78.7603 72.7968 200 293 

LSTM 67.8512 51.3631 67.8512 58.4670 200 425 

BiLSTM 69.9174 52.4809 69.9174 59.9572 200 1097 

1D-

CNN 

75.8678 

 
73.2224 75.8678 74.5216 10 3872 

2D-

CNN 
98.2645 98.3062 98.2645 98.2853 10 5629 

 

 

Fig. 9. FE and LCR of the QFM Dataset by Using 2D-CNN. 

 

Fig. 10. A Confusion Matrix of the ST Signals by Using GRU. 

 

Fig. 11. A Confusion Matrix of the LFM Signals by Using 2D-CNN. 
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Fig. 12. A Confusion Matrix of the QFM Signals by Using 2D-CNN. 

 

Fig. 13. Accuracy and Loss Rate for Noisy ST Signals by GRU. 

 

Fig. 14. Accuracy and Loss Rate for Noisy LFM Signals by 2D-CNN. 

 

Fig. 15. Accuracy and Loss Rate for Noisy QFM Signals by 2D-CNN. 

 

Fig. 16. Accuracy and Loss Rate for Noisy LFM Signals by LSTM. 

 

Fig. 17. Accuracy and Loss Rate for Noisy QFM Signals by BiLSTM. 

XIV. CONCLUSION  

This research provided performance deep-learning algorithms for 

estimating the IF, LCR, and QCR for noisy single-tone, linear, and 

non-linear frequency-modulated signal. Under additive white 

Gaussian noise and symmetric stable noise, the simulation is an 

important signal (impulsive model). The geometric SNR range 

belongs to [-50 50] dB, which examines the IF, LCR, and QCR under 

various Geometric Signal Noise Ratios (GSNRs). The RNN and CNN 

deep learning methods have many layers. The GRU layers include 5 

layers sequence input layer, one GRU layer, a full connect layer, a 

softmax layer, and a classification layer. The LSTM layers include 5 

layers sequence input layer, one LSTM layer, a full connect layer, a 

softmax layer, and a classification layer. The BiLSTM layers include 5 

layers sequence input layer, one BiLSTM layer, a full connect layer, a 

softmax layer, and a classification layer. The 1D-CNN layers include 
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19 layers image input layer, four convolution layers, five batch 

normalization layers, four ReLU, two full connect layers, a dropout 

layer, a softmax layer, and a classification layer. The 2D-CNN layers 

include 21 layers of the image input layer, four convolution layers, 

three batch normalization, four ReLU activation functions, four Max-

pooling layers, a dropout layer, two fully connected layers, a Softmax 

layer, and a classification layer. The simple structure built for the 

RNN or CNN model serves to reduce the communication system's 

complexity, power consumption, and cost. The simulation results 

demonstrate that alpha is more detrimental than beta, even if it has a 

tiny disability, and it has a substantial effect on guess parameters. The 

result shows the high accuracy of the estimation of the parameters by 

the 2D-CNN method for LFM and QFM signals and the GRU method 

for ST signals. The measurements are also used to select the best 

models including accuracy, precision, recall, F-measure, and ROC is a 

useful tool for assessing the performance of a machine learning or 

deep learning model. 
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