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Abstract : Quantile regression is one of the methods that has taken a wide space in application in the previous two 

decades because of the attractive features of these methods to researchers, as it is not affected by outliers values, 

meaning that it is considered one of the robust methods, and it gives more details of the effect of explanatory variables 

on the dependent variable.In this paper, a Bayesian hierarchical model for variable selection and estimation in the 

context of binary quantile regression is proposed. Current approaches to variable selection in the context of binary 

classification are sensitive to outliers, heterogeneous values, and other anomalies. The proposed method in this study 

overcomes these problems in an attractive and direct way. 

 

Keywords— Quantile regression ; variable selection; binary quantile regression. 

I. INTRODUCTION  

The quantile regression (QR) is one of the regression models 
that measures the effect of the independent variable on the 
dependent variable with infinite regression lines at certain 
divisions confined between (0.1) and this type of regression 
model is the robust methods because it is not affected by outliers, 
due to the passage of One of the regression lines near these 
values(23 , 24)  

The quantile regression model can be expressed as in the 
following equation (5):  

𝒚𝒊 = 𝒙𝒊
′𝜷𝒑 + 𝜺𝒊     

𝒚𝒊: the real observation value of the variable of order i  

𝒙𝒊: vector of degree (n×p   (    ; 𝜷𝒑: Parameters vector with 

quantity        𝟎 < 𝒑 < 𝟏    ,     ( 𝒑) . 

The process of estimating the parameters of a quantile 
regression model 𝜷𝒑 It is by minimizing the following loss 

function or check function. 

𝒎𝒊𝒏
𝜷𝒑

∑ 𝝆𝒑(𝒚𝒊 − 𝒙𝒊
′𝜷𝒑)

𝒏

𝒊=𝟏

 

𝝆𝒑(𝒚𝒊 − 𝒙𝒊
′𝜷𝒑)

= {
𝒑(𝒚𝒊 − 𝒙𝒊

′𝜷𝒑)     𝒊𝒇   𝒚𝒊 ≥  𝒙𝒊
′𝜷𝒑 

−(𝟏 − 𝒑)(𝒚𝒊 − 𝒙𝒊
′𝜷𝒑)     𝒊𝒇   𝒚𝒊 < 𝒙𝒊

′𝜷𝒑                 
 

In our study, we will study the Bayes method in estimating 
the quantitle regression model in the case that the response 
variable is binary, and we will rely on reciprocal functions that 
are included in the regression equation for the parameters of the 
studied model. Regression models are among the widespread 
statistical methods in statistical analyzes, and it can be expressed 
by the mathematical formula of the binary quantitative 
regression model, as follows: 

𝒚𝒊
∗ = 𝒙𝒊

′𝜷𝒑 + 𝜺𝒊 

𝒚𝒊 = {
𝟏    𝒊𝒇                            𝒚𝒊

∗ ≥ 𝟎     

𝟎     𝒊𝒇                        𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆 
 

II- AIM OF SEARCH 

  The aim of the research is to propose a new estimation 

formula by employing a proposed prior distribution to reach 

the best estimates for choosing the most important variables in 

an estimation method with high-accuracy results and building 

an easy and attractive algorithm in shortening the estimation 

time  

III- theo. Appli. 

III.1 Quantile Regression 
Quantile regression is one of the important methods of 

regression analysis, and it is considered an extension of linear 
regression in the event that the conditions for linear regression 
are not met. 
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Assuming that the normal linear regression model is given 
according to the following mathematical formula (9): 

𝑦 = 𝑋𝛽 + 𝜀   ;  y : vector of responses of degree (𝑛 × 1)  ;  
x: matrix of degree (𝑛 × 𝑝)  ;  𝜺 : vector of random errors of 
degree (𝑛 × 1) 

The classical estimator in linear regression is the Ordinary 
Least Squares (OLS) estimator if the conditions of this method , 
such that: 

{𝛽̂𝑜𝑙𝑠 = (𝑋′𝑋)−1𝑋′𝑌} 

It is known or observed that the (OLS) estimator is unstable 
in the case of a multicollinearity problem, and also when it is 
(𝑝 > 𝑛) it results in the production of a non-singular estimator 
because the order of the regression matrix is less than the full 
order (less than full mark) and that the method of least squares 
(Least square ; LS) is sensitive in the event that there are 
anomalous or extreme data, or when the random error is not 
distributed normally. Standard linearity (4) as it does not assume 
a normal distribution of random error, unlike linear models, and 
is also not affected by extreme observations, because there are 
regression lines that pass close to these values, and therefore it 
can be said that it provides a more comprehensive statistical 
model than the classical models. (OLS, so it provides more 
robust solutions in many real applications, and for these reasons, 
the quantitative regression model is considered one of the robust 
models. Assuming that {(𝑥𝑖 , 𝑦𝑖); 𝑖 = 1,2, … . . , 𝑛}where 𝑦𝑖 
indicates The The dependent variable (response variable) and 
that (𝑥𝑖 ∈ 𝑅𝑝)represents the vector of explanatory variables 
(independent variables) . Therefore, the quantile regression 
model is expressed as in the following equation(5): 

𝑦𝑖 = 𝑥𝑖
′𝛽𝑝 + 𝜀𝑖    ;     ( 𝑖 = 1,2, … . . , 𝑛) … … . … … (3 − 1) 

 USING THE INVERSE (LASSO) METHOD IN 

LINEAR REGRESSION 

Some suggestions and improvements have been made by a 

group of researchers over the years [13,10,,3,2] on the Lasso 

estimation method proposed by the researcher [14] Tibshirani; 

1996 in estimating linear regression models. In recent years, 

both researchers [12] resented some developments or 

improvements in the method of Estimation ((Lasso), where the 

new formula is called the reciprocal Lasso[Least absolute 

shrinkage and selection operator  ], which is abbreviated as 

(rLasso), and the estimation of the parameters of the linear 

regression model using the inverse of Lasso is by minimizing 

the following mathematical equation: 

𝑚𝑖𝑛
𝛽

∑(𝑦𝑖 − 𝑥𝑖
′𝛽)2

𝑛

𝑖=1

+ 𝜆 ∑
1

|𝛽𝑗|

𝑘

𝑗=1

  𝐼(𝛽𝑗 ≠ 0) … … . (3 − 2) 

To estimate the parameters of the quantile regression model by 

using the inverse Lasso, it is by minimizing the following 

equation as follows [12]: 

𝑄(𝐵) = 𝑚𝑖𝑛
𝛽

∑ 𝜌𝑝(𝑦𝑖 − 𝑥𝑖
′𝛽𝑝) + 𝜆

𝑛

𝑖=1

∑
1

|𝛽𝑗|

𝑘

𝑗=1

… . . (3 − 3) 

(𝜆 > 0): parameter of Regularization ;  𝑦𝑖: vector of responses 

of degree (𝑛 × 1)  ;  x: matrix of degree (𝑛 × 𝑝) . 

 

 

III.3 Binary reciprocal lasso quantile 
regression  

In this paper, we extend the Bayesian quantum regression 
referred to by the researcher [8] to the Bayesian quantile 
regression using the reciprocal lasso of the dichotomous 
response data. We think this approach is of interest, because by 
doing so we take advantage of both the desirable properties of 
binary quantitative regression as well as the excellent properties 
of the inverse Lasso penalty function (rlasso). [1, 7]. The 
mathematical formula of the binary quantile regression model is: 

𝒚𝒊
∗ = 𝒙𝒊

′𝜷𝒑 + 𝜺𝒊 

𝒚𝒊 = {
𝟏    𝒊𝒇                            𝒚𝒊

∗ ≥ 𝟎     

𝟎     𝒊𝒇                        𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆 
 

And the estimation of the parameters of the quantile 
regression model by using the reciprocal Lasso (rlasso) is 
according to the numbered equation (3-3). An important feature 
of quantile regression is that it is able to accommodate the 
distribution of unnormal random errors. 

The researcher [11] Mallick and others proposed in the year 
2021 a proposal to represent the previous (prior) distribution of 
the parameter β, as this proposal assumed that the inverse 
Laplace distribution of the parameter β can be represented as 
follows: 

𝝀

𝟐𝜷𝟐
𝒆

−
𝝀

|𝜷| = ∫
𝜼

𝟐𝜷𝟐
𝑰{|𝜷| > 𝜼}

∞

𝟎

𝝀𝟐

Г𝟐
𝜼−𝟐−𝟏𝒆

−
𝝀
𝜼 𝒅𝜼 … … … . (𝟑

− 𝟒) 

In this research, the following transformation was performed 
on the representation mentioned in equation (3-4): 

  

𝑍 =
𝜆

𝜂
 ⇒   𝜂 =

𝜆

𝑍
 

⇒   𝑑 𝜂 =  𝜆 (
−1

𝑍2
) 𝑑𝑧 

𝜂 = 0  ⟸ 𝑍 = ∞ ;   𝜂 = ∞   ⟸   𝑍 = 0 

Thus, the terms of integration can be inverted and the 
negative sign removed from the derivative above, and we get the 
following: 

  

𝜆

2𝛽2
𝑒

−
𝜆

|𝛽| = ∫

𝜆
𝑍

2𝛽2
𝐼 {|𝛽|

𝜆

𝑍
} .

∞

0

𝜆2

Г(2)
(

𝜆

𝑍
)

−2−1

. 𝑒−𝑍 𝜆 (
−1

𝑍2
) 𝑑𝑧 

= ∫
𝜆

2𝛽2
𝐼 {|𝛽| >

𝜆

𝑍
} .

∞

0

𝑒−𝑍𝑑𝑧 
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Such that :     𝑍~𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙 

β~Inverse uniform (−
1

λ
 ,

1

λ
  ) … … . . (3 − 5)  

This means that  : 𝛽~𝐼𝑛𝑣𝑒𝑟𝑠𝑒 𝑢𝑛𝑖𝑓𝑜𝑟𝑚 (−
1

𝜆
  ,

1

𝜆
  )  

It has the following probability density function: 

𝑓(𝛽|𝜆) =
1

𝛽2
 𝑈𝑛𝑖𝑓𝑜𝑟𝑚 (−

1

𝜆
 ,

1

𝜆
  ) 

=
1

𝛽2
 .

1

1
𝜆⁄ + 1

𝜆⁄
=

1

𝛽2
  

1

2
𝜆⁄

=
𝜆

2𝛽2
 

It is the inverse uniform distribution or called the double 
Pareto distribution. Thus from the relationship (3-5) it can be 
seen that the distribution of the inverse of the regular distribution 

is a uniform distribution function [−
𝟏

𝝀
 ,

𝟏

𝝀
] multiplied by 

𝟏

𝜷𝟐, and 

thus the following hierarchical model of prior distributions can 
be linked (inverse Lasso ) with the hierarchical model of prior 
distributions with the presence of the prior distribution of the 
Laplace distribution (Lasso regression method) (9) (Mallick and 
Yi, 2014). 

III.4 The proposed Bayesian hierarchical 
model of the prior distributions: 

The hierarchical model of a prior distributions can be 

assumed as follows: 

𝑦∗ = 𝑋𝑖
′𝛽 + 𝑒𝑖  , 

𝑦𝑖 = {
  1       𝑖𝑓       𝑦𝑖

∗  ≥ 0                              
 

0      𝑖𝑓       𝑦𝑖
∗ < 0    𝑖 = 1, … . , 𝑛

 , 

𝑦𝑛×1
∗ |𝑋, 𝛽, 𝜎2~𝑁𝑛(𝑋𝛽 , 𝜎2𝐼𝑛), 

𝛽𝑝×1| 𝜆~ ∏ 𝐼𝑛𝑣𝑒𝑟𝑠𝑒 𝑢𝑛𝑖𝑓𝑜𝑟𝑚 (−
1

𝜆
 ,

1

𝜆
 )

𝑝

𝑗=1

, 

𝜆|𝜃~ ∏ 𝐼𝑛𝑣𝑒𝑟𝑠𝑒 𝐺𝑎𝑚𝑚𝑎 (2 , 𝜃)

𝑝

𝑗=1

, 

𝜎2~𝐼𝑛𝑣𝑒𝑟𝑠𝑒 𝐺𝑎𝑚𝑚𝑎 (𝑐 , 𝑑 ), 

𝑍~𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙 

III.5 The full conditional posterior distribution 

Relying on the hierarchical model of the prior distributions 
mentioned in paragraph 3-4, it is now possible to derive the 
posterior distributions for each variable, as shown below: 

First, you must write the joint full for all the variables: 

𝒇(𝒚∗|𝜷, 𝑿, 𝝈𝟐). 𝝅(𝝈𝟐). 𝝅(𝝀). ∏ 𝝅

𝒑

𝒋=𝟏

(𝜷𝒋|𝝀𝒋). 𝝅(𝒛𝒋)𝑰 {|𝜷𝒋|

>
𝝀𝒋

𝒁𝒋

} 

=
𝟏

(𝟐𝝅𝝈𝟐)
𝒏
𝟐

𝒆
−

𝟏

𝟐𝝈𝟐 (𝒚∗ − 𝑿𝜷)′(𝒚∗ − 𝑿𝜷) ∗
𝒅𝒄

Г(𝒄)
(𝝈𝟐)−𝒄−𝟏𝒆

−
𝒅

𝝈𝟐

∗ ∏
𝝀𝒋

𝟐𝜷𝟐

𝒑

𝒋=𝟏

∗
𝜽𝟐

Г(𝟐)
(𝝀)−𝟐−𝟏𝒆−

𝜽
𝝀 ∗ ∏ 𝒆−𝒁𝒋

𝒑

𝒋=𝟏

 

∗ ∏ 𝑰{

𝒑

𝒋=𝟏

|𝜷𝒋| >
𝝀𝒋

𝒁𝒋

} … … … … … … . (𝟑 − 𝟔) 

1-The complete conditional distribution of the variable 𝒚𝒊
∗is 

a normal distribution: 

𝒚𝒊
∗|𝒚𝒊, 𝜷, 𝝈𝟐 = {

 𝑵(𝒙𝒊
′𝜷 , 𝝈𝟐𝑰𝒏)𝑰{𝒚𝒊

∗ > 𝟎}, 𝒊𝒇 𝒚𝒊 = 𝟏 

 𝑵(𝒙𝒊
′𝜷 , 𝝈𝟐𝑰𝒏)𝑰{𝒚𝒊

∗ ≤ 𝟎}, 𝒊𝒇 𝒚𝒊 = 𝟎
 

2- The complete conditional distribution of  (β) is: 

As long as the Gibbs Sampler algorithm does not need more 
than proportional or unnormalized distribution, which expresses 
the product of the possibility function with the predistribution 
function. Therefore, we will need only the parts that fit or 
contain the variable β of the common distribution in equation (3-
6), and we will delete any part that does not contain β and using 
the relationship we have indicated by connecting between the 
lasso method and the inverse lasso method, we will get: 

𝝅(𝜷|𝒚∗, 𝑿, 𝝀 , 𝝈𝟐) ∝ 𝝅(𝒚∗|𝑿, 𝜷 , 𝝈𝟐). 𝝅(𝜷|𝝀) 

∝ 𝒆𝒙𝒑 {−
𝟏

𝟐𝝈𝟐
(𝒚∗ − 𝑿𝜷)′(𝒚∗ − 𝑿𝜷)} ∏ 𝑰{

𝒑

𝒋=𝟏

|𝜷𝒋|

>
𝝀𝒋

𝒁𝒋

} 

∝ 𝒆𝒙𝒑 {−
𝟏

𝟐𝝈𝟐
[𝜷′(𝑿′𝑿)𝜷 − 𝟐𝒚∗𝑿𝜷

+ 𝒚∗𝒚∗′] ∏ 𝑰{

𝒑

𝒋=𝟏

|𝜷𝒋| >
𝝀𝒋

𝒁𝒋

} 

∝ 𝒆𝒙𝒑 {−
𝟏

𝟐𝝈𝟐
[𝜷′𝑨𝜷 − 𝟐𝒚∗𝑿𝜷 + 𝒚∗𝒚∗′] … … … . . (𝟑

− 𝟕) 

Such that = (𝑿′𝑿) ,  The following square expression can be 

used. 

(𝜷 − 𝑨−𝟏𝑿′𝒚∗)′𝑨(𝜷 − 𝑨−𝟏𝑿′𝒚∗)
= 𝜷′𝑨𝜷 − 𝟐𝒚∗𝑿𝜷 + 𝒚∗′(𝑿𝑨−𝟏𝑿′)𝒚∗ 

Thus, the relationship (3-7) can be written as follows: 

∝ 𝒆𝒙𝒑  {−
𝟏

𝟐𝝈𝟐
[(𝜷 − 𝑨−𝟏𝑿′𝒚∗)′𝑨(𝜷 − 𝑨−𝟏𝑿′𝒚∗)

+ 𝒚∗′(𝑰𝒏 − 𝑿𝑨−𝟏𝑿′)𝒚∗]} … … . . (𝟑 − 𝟖) 

The second part of the relationship (3-8) does not contain a β, 

so the joint distribution that contains β will be abbreviated as 

follows: 

∝ 𝒆𝒙𝒑  {−
𝟏

𝟐𝝈𝟐
[(𝜷 − 𝑨−𝟏𝑿′𝒚∗)′𝑨(𝜷 − 𝑨−𝟏𝑿′𝒚∗)} 

Returning to the multivariate normal distribution 𝑿~𝑵(𝑴, Ʃ), 

that is: 

𝒇(𝒙; 𝑴, Ʃ) =
𝒆−

𝟏
𝟐

(𝑿−𝑴)′Ʃ−𝟏(𝑿−𝑴)

(𝟐𝝅)
𝒏
𝟐|Ʃ|

𝟏
𝟐
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It can be concluded that β has a multivariate normal 

distribution with mean 𝑨−𝟏𝑿′𝒚∗and variance 𝝈𝟐𝑨−𝟏 . 

3- The complete conditional distribution of  𝝈𝟐is: 

Samples for the variable 𝝈𝟐 will be generated using the Gibbs 

Sampler algorithm by taking all the parts that include 𝝈𝟐in the 

joint  distribution (3-6), that is: 

𝝅(𝝈𝟐|𝒚∗, 𝒙, 𝜷) ∝ 𝝅(𝒚∗|𝒙, 𝜷 , 𝝈𝟐). 𝝅(𝝈𝟐) 

∝
𝟏

𝝈𝟐
𝒏−𝟏

𝟐

[−
𝟏

𝟐𝝈𝟐
(𝒚∗ − 𝑿𝜷)′(𝒚∗ − 𝑿𝜷)

∗
𝒅𝒄

Г(𝒄)
(𝝈𝟐)−𝒄−𝟏 ∗ 𝒆

−
𝒅

𝝈𝟐 

∝ 𝝈𝟐−(
𝒏−𝟏

𝟐
)−𝒄−𝟏

𝒆𝒙𝒑 [−
𝟏

𝟐𝝈𝟐
(𝒚∗ − 𝑿𝜷)′(𝒚∗ − 𝑿𝜷)

−
𝒅

𝝈𝟐
                                                                  … (𝟑 − 𝟗) 

Using an inverse gamma distribution, we find that: 

𝒇(𝒙; 𝜶 , 𝜷) =
𝜷𝜶

Г(𝜶)
𝒙−𝜶−𝟏 𝒆𝒙𝒑 {−

𝜷

𝒙
} … … … … (𝟑 − 𝟏𝟎) 

Where α represents the shape parameter and β represents a 
scale  parameter, and using the function (3-10) with the 

relationship (3-9) it can be concluded that 𝝈𝟐 has a gamma 

inverse distribution with a shape parameter (
𝒏−𝟏

𝟐
+ 𝒄) and a 

scale  parameter (𝒚∗ − 𝑿𝜷)′(𝒚∗ − 𝑿𝜷) + 𝒅 

4- The complete conditional distribution of  𝝀 is: 

Samples for the variable λ will be generated from the joint 
distribution in the relationship (3-6) after taking the limits that 
include only the variable λ and using the Gibbs sampler 
algorithm as follows: 

𝝅(𝝀|𝜽 , 𝜷) ∝ 𝝅(𝜷|𝝀) ∗ 𝝅(𝝀)  

∝ ∏
𝝀𝒋

𝟐𝜷𝟐

𝒑

𝒋=𝟏

  
𝜽𝟐

Г(𝟐)
(𝝀)−𝟐−𝟏𝒆−

𝜽
𝝀 . 𝑰{|𝜷𝒋| >

𝝀𝒋

𝒁𝒋

} 

∝ 𝝀−(𝒑+𝟐)−𝟏𝒆−
𝜽
𝝀  . 𝑰{𝝀𝒋 < 𝒁𝒋|𝜷𝒋|} … … … . (𝟑 − 𝟏𝟏) 

Where it can be said that the relationship (3-11) produced the 
distribution of the variable λ to be . 

𝒊𝒏𝒗𝒆𝒓𝒔𝒆 𝒈𝒂𝒎𝒎𝒂 (𝒑 + 𝟐, 𝜽) 

5- The complete conditional distribution of  𝒁 is: 

𝝅(𝒛| 𝝀 ) ∝ 𝝅(𝒛) ∗ 𝝅(𝜷|𝒛) 

∝ ∏ 𝒆−𝒛𝒋  .

𝒑

𝒋=𝟏

𝑰 {𝒁𝒋 >
𝝀𝒋

|𝜷𝒋|
}

∝ ∏ 𝒆𝒙𝒑𝒐𝒏𝒆𝒏𝒕𝒊𝒂𝒍(𝟏) .

𝒑

𝒋=𝟏

𝑰 {𝒁𝒋 >
𝝀𝒋

|𝜷𝒋|
} 

IV- Application  
In this aspect, real data taken from a hospital from the 

department for diagnosing corona disease (Covid-19) was relied 
upon in order to analyze the relationship between the patient’s 
condition upon discharge from the hospital (the dependent 
variable) and a set of diagnoses (independent variables) 
specified by the specialist doctors For the patient's case, where 

the data set obtained from the hospital by the researcher was 250 
observations, where the number of independent variables was 
equal to 25 variables, training data equals 20 and test data equals 
230. The (quantile) equal to (p = 0.50) and (p = 0.95) were 
chosen in the analysis of this relationship. The reason for 
choosing these ratios is that the data is always centered around 
the center line, i.e. when (p = 0.50), and as for the other value, 
which is an extreme value for (quantile), i.e. when (p = 0.95), 
and the reason for choosing this value is because if the regression 
line is good at This value is sure to be good in the quantile values 
below or close to it 

 IV-1 data characterization 

The variables were categorized as follows: 

Y: the patient's discharge status, which represents the 
dependent variable, X1: gender, X2: educational attainment, X3: 
occupation, X4: age in years, X5: marital status, X6: place of 
residence, X7: patient's residence, X8: patient's duration of stay 
in days , X9: smoking status, X10: blood sugar, X11: blood 
pressure, X12: person’s weight, X13: blood urea rate, X14: 
creatine percentage in the blood, X15: (LDH) lung-related 
enzyme, X16: (CRP) (An analysis specific to the presence of 
infections, X17: an analysis representing iron stores in the blood, 
X18: (ESR) an analysis specific to the presence of infections, 
X19: (HGB) representing the blood percentage, X20: (WBC) the 
percentage of white blood cells, X21: (NEU) representing An 
analysis that detects immunity in humans, X22: (LYM) an 
analysis that represents the presence of a virus in the body, X23: 
(PLT) an analysis that represents the number of blood platelets 
that benefit clotting, X24: (D-DIMER) an analysis that detects 
clotting in the blood, X25: (SPO2) Analysis indicates the 
percentage of oxygen concentration in the blood. 

IV-2 Algorithm implementation results 
When implementing the algorithm that was written by the 

researcher, the results were as follows: 

 

 

Table (4-1) shows the results of the algorithm at (p = 0.5) 

BrLBqr BBqr  

-1.828 0.009 Intercept 

-6.864 0.232 x1 

-0.144 0.237 x2 

2.673 -0.006 x3 

-0.719 0.018 x4 

2.911 0.302 x5 

-1.981 0.022 x6 

-4.649 0.093 x7 

-0.244 -0.015 x8 

-3.516 0.211 x9 

-5.468 -0.107 x10 

-0.606 -0.008 x11 

-1.388 -0.007 x12 

0.107 0.005 x13 

-1.829 -0.031 x14 

-0.05 -0.002 x15 

-1.154 -0.122 x16 

0.017 0 x17 

0.268 -0.004 x18 

1.354 0.056 x19 
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0.492 -0.009 x20 

1.967 -0.049 x21 

2.348 -0.048 x22 

0.046 0 x23 

3.482 -0.054 x24 

-0.674 0.039 x25 

 

Table (4-2) shows the results of the algorithm at (p = 

0.95) 

BrLBqr BBqr  

15.317 0.457 Intercept 

-2.536 -0.031 x1 

0.671 0.072 x2 

3.149 -0.064 x3 

0.195 0.01 x4 

7.044 0.237 x5 

3.347 -0.066 x6 

1.398 0.063 x7 

0.239 0.005 x8 

4.053 0.039 x9 

0.829 -0.367 x10 

0.611 -0.102 x11 

-0.53 -0.001 x12 

-0.015 -0.006 x13 

-1.299 0.353 x14 

-0.024 -0.001 x15 

0.196 -0.284 x16 

0 0 x17 

-0.085 -0.003 x18 

-2.339 -0.027 x19 

-0.144 -0.007 x20 

0.058 0.03 x21 

-0.164 0.028 x22 

0.019 0.002 x23 

0.498 -1.077 x24 

0.392 0.05 x25 

 
 

IV-3 Interpretation of results 
1- The results of Table No. (4-1) showed superior performance 

of the proposed method( BrLBqr)[ Bayesian reciprocal Lasso 

Binary quantile regression] at the level (p = 0.5), where the 

proposed method BrLBqr obtained 217 results of the correct 

classification out of a total of 230 observations, while the other 

Bayesian method[ Bayesian Binary quantile regression]( BBqr) 

got 202 correct rating out of 230 total views. 

2- The results of Table No. (4-2) also showed an 

outperformance in the performance of the proposed method( 

BrLBqr) at the level (p = 0.95), where it got 205 of the correct 

classification out of a total of 230 observations, while the other 

methods (BBqr) got 194 of the correct classification out of a 

total of Views 230. 

 

CONCLUSIONS 

In this paper, we present a Bayesian approach to binary 
quantitative regression coupled with the technique of selection 
variables, that is, Binary reciprocal lasso quantile regression. 
The main advantages of this approach were the estimation of the 
parameters of the model and the selection of predictive variables 
affecting the dependent variable without sensitivity to abnormal 
values, unlike other methods such as the method of ordinary 
least squares (OLS) and other methods, and therefore this 
approach is considered one of the fortified methods. Also, this 
method can identify variables that are important predictors of 
different quantities of the response variable distribution. The 
proposed method (BrLBqr) was applied to real data and 
compared with (BBqr) method. Using the Gibbs sampler 
algorithm, the results showed that the proposed method 
(BrLBqr) outperformed the other method (BBqr). 
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