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Abstract—In this article we present a new class of modules which is named as a principally 𝑹𝒂𝒅𝒈-lifting modules. 

This class termed by Principally 𝑹𝒂𝒅𝒈-lifting in this work which defined as, a module 𝓜 is called Principally 𝑹𝒂𝒅𝒈-

lifting if for every cyclic submodule 𝜰 of 𝓜 with 𝑹𝒂𝒅𝒈(𝓜) ⊆ 𝜰, there is a decomposition 𝓜 = ℵ⨁𝜷 such that ℵ ≤

𝜰 and 𝜰 ∩ 𝜷 is g-small in 𝜷. Thus, a ring 𝕽 is called Principally 𝑹𝒂𝒅𝒈-lifting if it is a principally 𝑹𝒂𝒅𝒈-lifting as 𝕽-

module. We determined it is structure. Several characterizations, properties, and instances are described of these 

modules'.𝓜 

Keywords—component; Pricipally semi simple, Principally 𝑹𝒂𝒅𝒈-lifting, principally g-lifting, principally generalized hollow. 

1. INTRODUCTION  

         In this article, all rings ℜare associative with unity, and 

all modules are left unitary. We will go through some of the 

key definitions that we will require in our work. Let μ be a 

module and 𝛽 a submodule of μ, denoted by 𝛽 ≤ ℳ. Also, we 

refer to the direct summand 𝛽 of ℳ by 𝛽 ≤⊕ ℳ. Principally 

semisimple module is a module in which all its cyclic 

submodules are direct summand [1]. An essential submodule 

𝛽 in ℳ symbolized by 𝛽 ⊴ ℳ, is a submodule which 

satisfying 𝛽 ∩ Υ = 0 implies Υ = 0 for any submodule Υ in 

ℳ [2]. As dual, a submodule 𝛽 of ℳ is called small in ℳ, 

denoted by 𝛽 ≪ ℳ if, whenever ℳ = 𝛽 + Υ for Υ ≤ ℳ 

implies Υ = ℳ [1]. Zhou and Zhang [3] recalled that, a 

submodule Υ of ℳ is called generalized small, denoted by 

Υ ≪𝑔 ℳ, if for 𝛽 ⊴ ℳ with ℳ = Υ + 𝛽 implies 𝛽 = ℳ. We 

have found in [4] that if any proper cyclic submodule of ℳ is 

g-small, then ℳ is called principally g-hollow. Again Zhou 

and Zhang gave the definition of Jacobson generalized radical 

of an ℜ-module ℳ as; 𝑅𝑎𝑑𝑔(ℳ) = ∑{Υ|Υ ≪𝑔 ℳ} = ⋂{Υ ⊴

ℳ| Υis maximal in ℳ}. A g-coclosed submodule is defined 

as a submodule 𝛽 ≤ ℳ, if Υ ≤ 𝛽 such that 
𝛽

Υ
≪𝑔

ℳ

Υ
, then Υ =

𝛽 [5].Let Υ, ω be two submodules of ℳ.Υ is called a 

supplement of ω in μ if it is minimal in ℳ = Υ + ω [6]. If 

ℳ = Υ + 𝛽 and Υ ∩ 𝛽 ≪𝑔 𝛽, then 𝛽 is called a g-supplement 

of Υ in ℳ [7]. Let ℳ be a module, Υ, 𝛽 ≤ ℳ and ℳ = Υ + 𝛽 

such that Υ ∩ 𝛽 ≤ 𝑅𝑎𝑑𝑔(𝛽), then 𝛽 is called a generalized 

radical supplement, briefly g-radical supplement of Υ in ℳ  

 

 

[8]. A module ℳ is called principally generalized lifting if for 

every cyclic submodule Υ ≤ ℳ, there exists a decomposition 

ℳ = ℵ⨁𝛽 and Υ ∩ 𝛽 ≪𝑔 𝛽 where ℵ ≤ Υ [4]. In [9] Mirza 

and Ghawi gave a definition of Radg-lifting modules as, if for 

every submodule Υ of μ such that 𝑅𝑎𝑑𝑔(ℳ) ⊆ ℳ , there 

exists a decomposition ℳ = ℵ⨁𝛽 and Υ ∩ 𝛽 ≪𝑔 ℳ where 

ℵ ≤ Υ. In this paper, we are going to define the concept of a 

principally Radg-lifting modules and give equivalent 

statements of this definition. Next some of the numerous 

properties of this class of modules and their relationships to 

other types of modules also given.  

 

2. DEFINITION OF  PRINCIPALLY 𝐑𝐚𝐝𝐠-LIFTING 

AND SOME CONNECTIONS.    

 

Definition 2.1. A module ℳ is called principally Radg-lifting, 

briefly P-𝑅𝑎𝑑𝑔-lifting, if for every cyclic submodule 𝜛 of 

ℳcontains𝑅𝑎𝑑𝑔(ℳ), there is a decomposition ℳ = 𝜔⨁𝛽 

such that 𝜔 ≤ 𝜛 and 𝜛 ∩ 𝛽 ≪𝑔 𝛽. In other words, for any 

𝑎 ∈ ℳsuch that 𝑎ℜ ≤ ℳwith 𝑅𝑎𝑑𝑔(ℳ) ⊆ 𝑎ℜ, there are 
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submodules 𝜔, 𝛽 of ℳ such that ℳ = 𝜔⨁𝛽, 𝜔 ≤ 𝑎ℜ and 

𝑎ℜ ∩ 𝛽 ≪𝑔 𝛽. 

 

 

Remarks and Examples2.2. 

(1) A principally semisimple module is P-Radg-lifting, so that 

for any semisimple ring ℜ, all right ℜ-modules are P-Radg-

lifting modules, and each submodule of any principally 

semisimple module so is P-Radg-lifting. 

(2) If ℳ is a principally g-lifting module then ℳ is P-Radg-

lifting. Moreover, if 𝑅𝑎𝑑𝑔(ℳ) = 0, clearly, the reverse is 

true. 

(3) If ℳ is a cyclic module over a PID, then we know that 

every submodule of ℳ is also cyclic. Hence, any cyclic P-

Radg-lifting module over a PID is Radg-lifting. 

(4) The P-Radg-lifting modules not inherited by its 

submodules. As we see in (3), the ℤ-module ℚ is P-Radg-

lifting, while ℤ ≤ ℚ as ℤ-module is not P-Radg-lifting. 

(5) If ℳ is a module such that 𝑅𝑎𝑑𝑔(ℳ) is a non-cyclic 

maximal submodule of ℳ, then ℳ is a P-Radg-lifting 

module. 

Proof. Assume 𝑎 ∈ ℳ such that 𝑅𝑎𝑑𝑔(ℳ) ⊆ 𝑎ℜ. Since 

𝑅𝑎𝑑𝑔(ℳ) is a non-cyclic submodule, then 𝑅𝑎𝑑𝑔(ℳ) ≠ 𝑎ℜ, 

that implies 𝑅𝑎𝑑𝑔(ℳ) ⊂ 𝑎ℜ. Since 𝑅𝑎𝑑𝑔(ℳ) is maximal of 

ℳ, thus 𝑎ℜ = ℳ, a trivially, ℳ = ℳ⨁(0) such that ℳ ≤
𝑎ℜ and 𝑎ℜ ∩ (0) ≪𝑔 (0). Therefore ℳ is a P-Radg-lifting 

module.    

 

Proposition 2.3. For a module ℳ, the following statements 

are equivalent; 

(1) ℳ is a P-Radg-lifting module;  

(2) for any cyclic submodule 𝜛 of ℳ with 𝑅𝑎𝑑𝑔(ℳ) ⊆ 𝜛, 

there is a decomposition ℳ = 𝜔⨁𝛽 such that 𝜔 ≤ 𝜛 and 

𝜛 ∩ 𝛽 is g-small in ℳ; 

(3) for any cyclic submodule 𝜛 of ℳ has 𝑅𝑎𝑑𝑔(ℳ) can be 

written as 𝜛 = 𝜚⨁𝐺, where 𝜚is a direct summand of ℳ and 

𝐺 ≪𝑔 ℳ; 

(4) for any cyclic submodule 𝜛 of ℳ has 𝑅𝑎𝑑𝑔(ℳ), there 

exists a direct summand 𝜂 of ℳsuch that 𝜂 ≤ 𝜛 and  

𝜛 𝜂⁄ ≪𝑔 ℳ 𝜂⁄ ; 

(5) for any cyclic submodule 𝜛 of ℳ has 𝑅𝑎𝑑𝑔(ℳ), 𝜛 has a 

g-supplement 𝛽 in ℳ such that 𝜛 ∩ 𝛽 is a direct summand of 

𝜛; 

(6) for any cyclic submodule 𝜛 of ℳ has 𝑅𝑎𝑑𝑔(ℳ), there is 

an 𝑒 = 𝑒2 ∈ 𝐸𝑛𝑑(ℳ) with 𝑒ℳ ≤ 𝜛 and (1 − 𝑒)𝜛 is g-small 

in (1 − 𝑒)ℳ; 

(7) for any cyclic submodule 𝜛 of ℳ has 𝑅𝑎𝑑𝑔(ℳ), there 

exists a direct summand 𝜔 of ℳand a g-small submodule 𝛽 of 

ℳ such that 𝜔 ≤ 𝜛 and 𝜛 = 𝜔 + 𝛽; 

(8) for any cyclic submodule 𝜛 of ℳ has 𝑅𝑎𝑑𝑔(ℳ), there is 

a submodule 𝜚 of ℳ inside 𝜛 such that ℳ = 𝜚⨁𝛽 and 𝛽 a g-

supplement of 𝜛 in ℳ; 

(9) for each 𝑎 ∈  ℳ with 𝑅𝑎𝑑𝑔(ℳ) ⊆ 𝑎ℜ, there are principal 

ideals 𝐼 and 𝐽 of ℜ such that 𝑎ℜ = 𝑎𝐼 ⊕ 𝑎𝐽, where 𝑎𝐼 ≤⨁ ℳ 

and 𝑎𝐽 ≪𝑔 ℳ. 

Proof.(𝟏) ⟹ (𝟐) Clear.  

(𝟐) ⟹ (𝟑) Let 𝜛 be a cyclic 𝜛 ≤ ℳwith 𝑅𝑎𝑑𝑔(ℳ) ⊆ 𝜛. 

By (2), there is ℳ = 𝜔⨁𝛽 where 𝜔 ≤ 𝜛 and 𝜛 ∩ 𝛽 ≪𝑔 ℳ. 

By the modular law, 𝜛 = 𝜔⨁(𝜛 ∩ 𝛽)witht 𝜔 ≤⨁ ℳ and 

𝜛 ∩ 𝛽 ≪𝑔 ℳ.  

(𝟑) ⟹ (𝟒) Assume 𝜛 is any cyclic submodule of ℳ such 

that 𝑅𝑎𝑑𝑔(ℳ) ⊆ 𝜛. By (3),𝜛 = 𝜂⨁𝐺, where 𝜂 ≤⨁ ℳ and 

𝐺 ≪𝑔 ℳ. Define a natural map 𝜋: ℳ ⟶ ℳ 𝜂⁄ . Since 

𝐺 ≪𝑔 ℳ, we deduce that 𝜋(𝐺) ≪𝑔 ℳ 𝜂⁄ , i.e., (𝜂 + 𝐺) 𝜂⁄ =

𝜛 𝜂⁄ ≪𝑔 ℳ 𝜂⁄ . 

(𝟒) ⟹ (𝟓) Assume that 𝜛 is a cyclic submodule of ℳ with 

𝑅𝑎𝑑𝑔(ℳ) ⊆ 𝜛. By (4), there exists 𝜂 ≤⨁ ℳ such that 𝜂 ≤

𝜛and 𝜛 𝜂⁄ ≪𝑔 ℳ 𝜂⁄ , where ℳ = 𝜂⨁𝛽 for some 𝛽 ≤ ℳ. 

Therefore, ℳ = 𝜛 + 𝛽. By the modular law, 𝜛 = 𝜂⨁(𝜛 ∩
𝛽). So, 𝜛 𝜂⁄ ≅ 𝜛 ∩ 𝛽 and ℳ 𝜂⁄ ≅ 𝛽. Therefore, 𝜛 ∩
𝛽 ≪𝑔 𝛽. Hence 𝜛 has a g-supplement 𝛽 in ℳ and 𝜛 ∩ 𝛽 is a 

direct summand of 𝜛. 

(𝟓) ⟹ (𝟔) Let 𝜛 be a cyclic submodule of ℳ with 

𝑅𝑎𝑑𝑔(ℳ) ⊆ 𝜛. By hypothesis, if we assume 𝜛 has a g-

supplement 𝛽 in ℳ such that 𝜛 ∩ 𝛽 ≤⨁ 𝜛, then ℳ = 𝜛 + 𝛽 

and 𝜛 ∩ 𝛽 ≪𝑔 𝛽. Also, 𝜛 = (𝜛 ∩ 𝛽)⨁𝜚 for some 𝜚 ≤ 𝜛. 

Thus, ℳ = 𝜚⨁𝛽. Assume that 𝑒: ℳ → 𝜚; 𝑒(ℎ + 𝑘) = ℎ and 

(1 − 𝑒): ℳ ⟶ 𝛽;(1 − 𝑒)(ℎ + 𝑘) = 𝑘 are projection maps for 

all ℎ + 𝑘 ∈ ℳ. Obviously, 𝑒 = 𝑒2 in 𝐸𝑛𝑑(ℳ). Therefore 

𝑒ℳ ≤ 𝜛 and (1 − 𝑒)𝜛 = 𝜛 ∩ 𝛽 ≪𝑔 𝛽 = (1 − 𝑒)ℳ. 

(𝟔) ⟹ (𝟕) Suppose that 𝜛 is a cyclic submodule of ℳ such 

that 𝑅𝑎𝑑𝑔(ℳ) ⊆ 𝜛. By (6), there is an 𝑒 = 𝑒2 ∈ 𝐸𝑛𝑑(ℳ) 

such that 𝑒ℳ ≤ 𝜛 and (1 − 𝑒)𝜛 ≪𝑔 (1 − 𝑒)ℳ. We know 

that ℳ = 𝑒ℳ⨁(1 − 𝑒)ℳ. Thus 𝜛 = 𝜛 ∩ ℳ = 𝜛 ∩
(𝑒ℳ⨁(1 − 𝑒)ℳ) = 𝑒ℳ⨁(𝜛 ∩ (1 − 𝑒)ℳ) = 𝑒ℳ⨁(1 − 𝑒)𝜛. 

We put 𝜔 = 𝑒ℳ, 𝛾 = (1 − 𝑒)𝜛 and 𝛽 = (1 − 𝑒)ℳ. 

Therefore, 𝜔 ≤ 𝜛 and 𝜛 = 𝜔 + 𝛾 where 𝛾 ≪𝑔 𝛽 (so in ℳ), 

and 𝜔 ≤⨁ ℳ. 

(𝟕) ⟹ (𝟖) Assume that 𝜛 is a cyclic submodule of ℳ such 

that 𝑅𝑎𝑑𝑔(ℳ) ⊆ 𝜛. By (7), there exists 𝜔 ≤⨁ ℳ and 

𝛽 ≪𝑔 ℳ such that 𝜔 and 𝜛 = 𝜔 + 𝛽. Thus, ℳ = 𝜔⨁𝛽 for 

some 𝛽 ≤ ℳ. Therefore 𝛽 is a g-supplement of 𝜔 in ℳ, so 

([4], Lemma 2.3) implies 𝛽 is a g-supplement of 𝜛 = 𝜔 + 𝛽 

in ℳ. 

(𝟖) ⟹ (𝟏) Clear.  

(𝟔) ⟹ (𝟗) Let 𝑎 ∈ ℳ such that 𝑅𝑎𝑑𝑔(ℳ) ⊆ 𝑎ℜ. By (6), 

there is an 𝑒 = 𝑒2 ∈ 𝐸𝑛𝑑(ℳ) such that 𝑒ℳ ≤ 𝑎ℜ and 

(1 − 𝑒)𝑎ℜ ≪𝑔 (1 − 𝑒)ℳ. Notice that ℳ = 𝑒ℳ⨁(1 − 𝑒)ℳ. 

Let 𝑟 ∈  ℜ such that 𝑎𝑟 = (1 − 𝑒)𝑎′ for some 𝑎′ ∈ ℳ, then 

𝑎′ = 𝑒𝑎′ + 𝑎𝑟 ∈ 𝑎ℜ, since 𝑒ℳ ≤ 𝑎ℜ, and so 𝑎ℜ ∩
(1 − 𝑒)ℳ ≤ (1 − 𝑒)𝑎ℜ. It follows that 𝑎ℜ ∩ (1 − 𝑒)ℳ =
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(1 − 𝑒)𝑎ℜ. By the modular law, we have that 𝑎ℜ = 𝑎ℜ ∩
(𝑒ℳ⨁(1 − 𝑒)ℳ) = 𝑒ℳ⨁(𝑎ℜ ∩ (1 − 𝑒)ℳ) = 𝑒ℳ⨁(1 − 𝑒)𝑎ℜ. 

Put 𝐼 = {𝑠 ∈ ℜ: 𝑎𝑠 ∈ 𝑒ℳ} and 𝐽 = {𝑟 ∈ ℜ: 𝑎𝑟 ∈ (1 − 𝑒)𝑎ℜ}. 

Then 𝑎ℜ = 𝑎𝐼⨁𝑎𝐽, where 𝑎𝐼 = 𝑒ℳ ≤⨁ ℳ and 𝑎𝐽 = (1 −
𝑒)𝑎ℜ ≪𝑔 (1 − 𝑒)ℳ, hence in ℳ.  

(𝟗) ⟹ (𝟏) By (9), for any cyclic submodule 𝜛 of ℳ has 

𝑅𝑎𝑑𝑔(ℳ), there exists two ideals 𝐼 and 𝐽and 𝜛 = 𝐼⨁𝐽, where 

𝐼 ≤⨁ ℳ and 𝐽 ≪𝑔 ℳ. Thus, ℳ = 𝐼⨁𝛽 for some 𝛽 ≤ ℳ. 

Hence 𝜛 = 𝐼⨁(𝜛⋂𝛽), by the modular law, and so 𝜛 ∩ 𝛽 ≅
𝐽 ≪𝑔 ℳ. Since 𝜛 ∩ 𝛽 ≤ 𝜛 ≤⨁ ℳ, then 𝜛 ∩ 𝛽 ≪𝑔 𝛽, by 

([10], Lemma 2.12). Therefore, ℳ is a P-Radg-lifting module. 

 

 

Corollary 2.4. Let ℳ be a P-Radg-lifting module.Then for 

any indecomposable cyclic submodule 𝜛 of ℳ has 

𝑅𝑎𝑑𝑔(ℳ), either 𝜛 is a direct summand or g-small.  

Proof. As 𝜛 is a cyclic submodule of ℳ with 𝑅𝑎𝑑𝑔(ℳ) ⊆

𝜛, so by Proposition 2.3, 𝜛 = 𝜚⨁𝐺 where 𝜚 ≤⨁ ℳ and 

𝐺 ≪𝑔 ℳ. Since 𝜛 is indecomposable, thus either 𝜛 = 𝜚 or 

𝜛 = 𝐺.  

 

Proposition 2.5. Let ℳ be a P-Radg-lifting module with 

𝑅𝑎𝑑𝑔(ℳ) ≠ ℳ is cyclic. Then there exists a decomposition 

ℳ = 𝜚⨁𝜔 such that 𝜔 is a g-supplement of 𝑅𝑎𝑑𝑔(ℳ) in ℳ, 

𝑅𝑎𝑑𝑔(𝜔) ≪𝑔 𝜔 and 𝜚is a g-radical.  

Proof. Suppose 𝑅𝑎𝑑𝑔(ℳ) ≠ ℳ is a cyclic submodule. Since 

ℳ is a P-Radg-lifting module and𝑅𝑎𝑑𝑔(ℳ) ⊆ 𝑅𝑎𝑑𝑔(ℳ), so 

by Proposition 2.3(8), there is a submodule 𝜚 of ℳ in 

𝑅𝑎𝑑𝑔(ℳ) such that ℳ = 𝜚⨁𝜔 and 𝜔 a g-supplement of 

𝑅𝑎𝑑𝑔(ℳ) in ℳ, i.e., ℳ = 𝑅𝑎𝑑𝑔(ℳ) + 𝜔 and 𝑅𝑎𝑑𝑔(ℳ) ∩

𝜔 ≪𝑔 𝜔. Since 𝜔 ≤⨁ ℳ, so it is a g-supplėment and so 

𝑅𝑎𝑑𝑔(ℳ) ∩ 𝜔 = 𝑅𝑎𝑑𝑔(𝜔). from ([10], Lemma 2.12), we get 

𝑅𝑎𝑑𝑔(𝜔) ≪𝑔 𝜔. By ([11], Corollary 2.3), ℳ = 𝑅𝑎𝑑𝑔(ℳ) +

𝜔 = 𝑅𝑎𝑑𝑔(𝜚)⨁𝜔. By the modular law, we have 𝜚 = 𝜚 ∩

(𝑅𝑎𝑑𝑔(𝜚)⨁𝜔) = 𝑅𝑎𝑑𝑔(𝜚)⨁(𝜔 ∩ 𝜚) = 𝑅𝑎𝑑𝑔(𝜚). Therefore, 

𝜚 is a g-radical.  

     

        The reverse of above proposition need not be correct, in 

general, for instance, for the ℤ-module ℤ, we have 𝑅𝑎𝑑𝑔(ℤ) =

0 ≠ ℤ is cyclic and a decomposition ℤ = ℤ⨁(0) such that ℤ is 

a g-supplement of 𝑅𝑎𝑑𝑔(ℤ) = 0, 𝑅𝑎𝑑𝑔(ℤ) = 0 ≪𝑔 ℤ and (0) 

is a g-radical, while ℤ is not P-Radg-lifting ℤ-module.    

 

Proposition 2.6. Let ℳ be an indecomposable module such 

that𝑅𝑎𝑑𝑔(ℳ) ≠ ℳ is cyclic. If ℳ is a P-Radg-lifting 

module, then 𝑅𝑎𝑑𝑔(ℳ) ≪𝑔 ℳ. 

Proof. Assume ℳ is an indecomposable P-Radg-lifting 

module. Since 𝑅𝑎𝑑𝑔(ℳ) ⊆ 𝑅𝑎𝑑𝑔(ℳ) is cyclic, then by 

Proposition 2.5, there exists a unique decomposition ℳ =
ℳ⨁0 whereℳ is a g-supplement of 𝑅𝑎𝑑𝑔(ℳ) and 0 is a g-

radical. Hence, 𝑅𝑎𝑑𝑔(ℳ) = 𝑅𝑎𝑑𝑔(ℳ) ∩ ℳ ≪𝑔 ℳ, as 

required.  

 

Corollary 2.7. Let ℳ be an indecomposable module such that 

𝑅𝑎𝑑𝑔(ℳ) is cyclic. If ℳ is a principally Radg-lifting module, 

then either 

(1) ℳ is a cyclic module, or 

(2) 𝑅𝑎𝑑𝑔(ℳ) is a g-small submodule of ℳ. 

Proof. Suppose ℳ is an indecomposable and principally 

Radg-lifting module such that 𝑅𝑎𝑑𝑔(ℳ) = 𝑎ℜ for some 𝑎 ∈

ℳ. If ℳ is not cyclic, therefore ℳ ≠ 𝑎ℜ and so 

𝑅𝑎𝑑𝑔(ℳ) ≠ ℳ. That means 𝑅𝑎𝑑𝑔(ℳ) is a proper cyclic 

submodule of ℳ, so by Proposition 2.6, 𝑅𝑎𝑑𝑔(ℳ) is g-small 

in ℳ.    

 

Proposition 2.8. Let ℳ = 𝜂 + 𝜔 be a P-Radg-lifting module 

such that 𝜂 ≤ ℳ and 𝜔 ≤⨁ ℳ. If 𝜂 ∩ 𝜔 is a cyclic submodule 

of ℳ such that 𝑅𝑎𝑑𝑔(ℳ) ⊆ 𝜂 ∩ 𝜔, then 𝜔 containing a g-

supplement of 𝜂 in ℳ. 

Proof. Let 𝜂 ∩ 𝜔 be a cyclic submodule of ℳ and 

𝑅𝑎𝑑𝑔(ℳ) ⊆ 𝜂 ∩ 𝜔. Since ℳ is a P-Radg-lifting module, we 

deduce by Proposition 2.3(3), 𝜂 ∩ 𝜔 = 𝜔⨁𝛽 where 𝜔 ≤⨁ ℳ 

(hence in 𝜔) and 𝛽 ≪𝑔 ℳ. Write 𝜔 = 𝜔⨁𝜛, for some 𝜛 ≤

𝜔. Thus, 𝜂 ∩ 𝜔 = 𝜔⨁(𝜂⋂𝜛). Consider 𝜋: 𝜔 ⟶ 𝜛 is the 

natural projection. As 𝜔 ≤⨁ ℳ and 𝛽 ≪𝑔 ℳ, we have that 

𝛽 ≪𝑔 𝜔 and hence 𝜋(𝛽) ≪𝑔 𝜛. But 𝜂⋂𝜛 = 𝜋(𝜔⨁(𝜂⋂𝜛)) =

𝜋(𝜂⋂𝜔) = 𝜋(𝜔⨁𝛽) = 𝜋(𝛽), so 𝜂⋂𝜛 ≪𝑔 𝜛. Moreover, ℳ =

𝜂 + 𝜔 = 𝜂 + 𝜔 + 𝜛 = 𝜂 + 𝜛. Therefore 𝜔 contains 𝜛 as a g-

supplement of 𝜂 in ℳ.    

 

Corollary 2.9. Let ℳ = 𝜂 + 𝑎ℜ be a P-Radg-lifting module 

over a PIDℜ such that 𝜂 ⊴ ℳ and 𝑎 ∈ ℳ. If 𝑅𝑎𝑑𝑔(ℳ) ⊆ 𝜂 ∩

𝐷 for each 𝐷 ≤⨁ 𝑎ℜ, then 𝑎ℜ containing a g-supplement of 𝜂 

in ℳ. 

Proof. Let ℳ = 𝜂 + 𝑎ℜ and 𝜂 ⊴ ℳ and 𝑎 ∈ ℳ. Since ℳ is a 

P-Radg-lifting module, so by Proposition 2.3(3), we can write 

𝑎ℜ = 𝜔 ⊕ 𝜛, where 𝜔 ≤⨁ ℳ and 𝜛 ≪𝑔 ℳ. So ℳ = 𝜂 +

𝑎ℜ = 𝜂 + 𝜔 + 𝜛, and as 𝜂 ⊴ ℳ implies 𝜂 + 𝜔 ⊴ ℳ, and 

hence ℳ = 𝜂 + 𝜔 (because 𝜛 ≪𝑔 ℳ), where 𝜛 is cyclic and 

𝜛 ≤⨁ ℳ, thus 𝜂 ∩ 𝜔 is a cyclic submodule of ℳ has 

𝑅𝑎𝑑𝑔(ℳ) (by hypothesis), and so by applying Proposition 2.8, 

𝜛 (so that, 𝑎ℜ) containing a g-supplement of 𝜔 in ℳ.  

 

Proposition 2.10. An indecomposable ℜ-module ℳ is a P-

Radg-lifting module if and only if for 𝑎 ∈ ℳ with 

𝑅𝑎𝑑𝑔(ℳ) ⊆ 𝑎ℜ ≠ ℳ, 𝑎ℜ is g-small in ℳ. 

Proof. ⇒) Let 𝑅𝑎𝑑𝑔(ℳ) ⊆ 𝑎ℜ ≠ ℳ and 𝑎 ∈ ℳ. As ℳ is a 

P-Radg-lifting module, by Proposition 2.3(8), there are 

submodules 𝜚, 𝐺 of ℳ such that 𝐺 ≤ 𝑎ℜ, ℳ = 𝑎ℜ + 𝜚 =
𝐺⨁𝜚 and 𝑎ℜ ∩ 𝜚 ≪𝑔 𝜚. Now, if 𝜚 = 0 then 𝑎ℜ = ℳ which 

is a contradiction. By assumption, 𝜚 = ℳ and 𝐺 = 0. 

Therefore 𝑎ℜ ≪𝑔 ℳ.  
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⟸) Let 𝑎 ∈ ℳ such that 𝑅𝑎𝑑𝑔(ℳ) ⊆ 𝑎ℜ. If 𝑎ℜ = ℳ, 

trivially, there is a decomposition ℳ = ℳ⨁(0) such that 

ℳ ≤ 𝑎ℜ and 𝑎ℜ ∩ (0) = (0) ≪𝑔 (0). Suppose 𝑎ℜ ≠ ℳ, by 

hypothesis, 𝑎ℜ ≪𝑔 ℳ. Trivially, ℳ = (0)⨁ℳ such that 

(0) ≤ 𝑎ℜ and 𝑎ℜ ∩ ℳ = 𝑎ℜ ≪𝑔 ℳ. From two cases, (1) 

holds.   

 

Corollary 2.11. For a uniform ℜ-module ℳ is a P-Radg-

lifting module if and only if for 𝑎 ∈ ℳ with 𝑅𝑎𝑑𝑔(ℳ) ⊆

𝑎ℜ ≠ ℳ, 𝑎ℜ is g-small in ℳ. 

Proof. From ([12], Lemma 3.2.9] every uniform module is 

indecomposable. Then by Proposition 2.10 the result comes.  

 

Proposition 2.12. Let ℳ be a P-Radg-lifting module has a 

cyclic generalized radical. Then ℳ = 𝑋1⨁𝑋2 such that 

𝑅𝑎𝑑𝑔(𝑋1) is g-small in 𝑋1 and 𝑅𝑎𝑑𝑔(𝑋2) = 𝑋2. 

Proof. It follows by Proposition 2.3 and ([13], Proposition 

3.1.10]).     

 

Proposition 2.13. Every principally generalized hollow 

module is P-Radg-lifting. 

Proof. Let ℳ be a principally generalized hollow module, and 

𝜛 a cyclic submodule of ℳ with 𝑅𝑎𝑑𝑔(ℳ) ⊆ 𝜛. If 𝜛 = ℳ, 

then there is a decomposition ℳ = ℳ⨁(0) such that ℳ ≤
𝜛and 𝜛 ∩ (0) ≪𝑔 (0). Let 𝜛 ⊂ ℳ, by hypothesis, 𝜛 ≪𝑔 ℳ, 

then there is a decomposition ℳ = (0)⨁ℳ such that (0) ≤
𝜛 and 𝜛 ∩ ℳ = 𝜛 ≪𝑔 ℳ. Hence ℳ is a P-Radg-lifting 

module.  

 

     As an application of proposition 2.13, For any p and any 

natural n, the ℤ-module ℤ 𝑝𝑛ℤ⁄ ≅ ℤ𝑃𝑛 is P-Radg-lifting as a 

ℤ-module, because ℤ𝑃𝑛 is a generalized hollow module. 
While ℤ as ℤ-moduleis not P-Radg-lifting. 

       

     The reverse of above Proposition is not correct, in general, 

instance; in Remarks and Examples 2.2(3) the ℤ-module ℤ24 

is P-Radg-lifting, while ℤ24 is not principally generalized 

hollow as ℤ-module, in fact, 3ℤ24 is a proper cyclic 

submodule which not g-small in ℤ24. 

     Also, as application example of Proposition 2.13; since 

every finitely submodule in ℚ as ℤ-module is small, then all 

cyclic submodules are g-small in ℚ as ℤ-module, that is ℚ as 

ℤ-module is principally generalized hollow, so that it is P-

Radg-lifting. 

 

3. SUBMODULES AND DIRECTSUMMANDS 

 

       As we see in Remakes and Examples 2.2(6), that P-Radg-

lifting module doesn’t inherited by their submodules. Below, 

give some conditions for it to be inherited by their 

submodules. 

 

Proposition 3.1. Let ℳ be a P-Radg-lifting ℜ-module. Then, 

a submodule 𝜛 of ℳ with 𝑅𝑎𝑑𝑔(ℳ) ⊆ 𝜛 is P-Radg-lifting 

if, one of the following cases is hold; 

(1) 𝜛 is a direct summand of ℳ. 

(2) 𝜛 is a cyclic g-coclosed submodule of ℳ. 

Proof. (1) Let 𝑎 ∈ 𝜛 with 𝑅𝑎𝑑𝑔(𝜛) ⊆ 𝑎ℜ, where 𝜛 ≤⨁ ℳ. 

By ([14], Lemma 3.16), we have 𝑅𝑎𝑑𝑔(ℳ) = 𝑅𝑎𝑑𝑔(𝜛). Thus, 

𝑅𝑎𝑑𝑔(ℳ) ⊆ 𝑎ℜ ≤ ℳ. As ℳ is a P-Radg-lifting module, 

there is a decomposition ℳ = 𝜌⨁�́� such that 𝜌 ≤ 𝑎ℜ and 

𝑎ℜ ∩ �́� ≪𝑔 �́�. As 𝜌 ≤ 𝜛, so by modular law, 𝜛 = 𝜛 ∩

(𝜌⨁�́�) = 𝜌⨁(𝜛 ∩ �́�). Also 𝑎ℜ ∩ (𝜛 ∩ �́�) = 𝑎ℜ ∩ �́� ≪𝑔 ℳ. 

As 𝑎ℜ ∩ (𝜛 ∩ �́�) ≤ 𝜛 ∩ �́� ≤⊕ ℳ, ([10], Lemma 2.12). 

implies 𝑎ℜ ∩ (𝜛 ∩ �́�) ≪𝑔 𝜛 ∩ �́�. Hence 𝜛 is P-Radg-lifting.  

(2) Let 𝜛 be a cyclic g-coclosed submodule of ℳ with 

𝑅𝑎𝑑𝑔(ℳ) ⊆ 𝜛. Since ℳ is a P-Radg-lifting module, so by 

Proposition 2.3(4), there exists 𝜂 ≤⨁ ℳ such that 𝜂 ≤ 𝜛 and 

𝜛 𝜂⁄ ≪𝑔 ℳ 𝜂⁄ . Since 𝜛 is a g-coclosed submodule of ℳ, 

𝜂 = 𝜛, that means 𝜛 ≤⨁ ℳ. By (1), 𝜛 is P-Radg-lifting.  

Corollary 3.2. Ifℳ is a P-Radg-lifting ℜ-module such that 

𝑅𝑎𝑑𝑔(ℳ) is a direct summand of ℳ, then 𝑅𝑎𝑑𝑔(ℳ) is P-

Radg-lifting. 

Proof. Since 𝑅𝑎𝑑𝑔(ℳ) ≤⨁ ℳ and 𝑅𝑎𝑑𝑔(ℳ) ⊆ 𝑅𝑎𝑑𝑔(ℳ), 

Proposition 3.1(1) implies 𝑅𝑎𝑑𝑔(ℳ) is P-Radg-lifting.  

   

      Recall [15] If all submodules of a module ℳ are fully 

invariant,then ℳ is called a duo module. A submodule 𝐴 of a 

module ℳ is called distributive if 𝐴 ∩ (𝐵 + 𝐶) = (𝐴 ∩ 𝐵) +
(𝐴 ∩ 𝐶) or 𝐴 + (𝐵 ∩ 𝐶) = (𝐴 + 𝐵) ∩ (𝐴 + 𝐶) for all submodules 

𝐵, 𝐶 of ℳ. A module ℳ is said to be distributive if all 

submodules of ℳ are distributive [17]. 

      In general, we expect that the sum of two P-Radg-lifting 

module is not P-Radg-lifting, but we could not find an example 

to confirm this. However, we now gives a condition that make 

the class of a principally Radg-lifting modules is closed under 

finite direct sums. 

 

Theorem 3.3. Let ℳ be a duo (or, distributive) ℜ-module and 

ℳ =⊕𝑖=1
𝑛 ℳ𝑖, where {ℳ𝑖| 𝑖 = 1,2, … , 𝑛} a finite family of P-

Radg-lifting modules. Then ℳ is a P-Radg-lifting ℜ-module. 

Proof. We will prove this in the case when 𝑛 =  2. Let 𝑈 be 

any cyclic submodule of a duo ℜ-module ℳ = ℳ1⨁ℳ2 and 

𝑅𝑎𝑑𝑔(ℳ) ⊆ 𝜂. Since 𝜂 is a fully invariant submodule of ℳ, 

([15], Lemma 2.1) implies 𝜂 = (ℳ1 ∩ 𝜂)⨁(ℳ2 ∩ 𝜂). We 

have that 𝑅𝑎𝑑𝑔(ℳ𝑖) ⊆ ℳ𝑖 ∩ 𝜂 and ℳ𝑖 ∩ 𝜂 is a cyclic 

submodule of ℳ𝑖 for 𝑖 = 1,2. Since ℳ𝑖 is P-Radg-lifting, for 

𝑖 = 1,2, then there are decompositions ℳ𝑖 = 𝜌𝑖⨁𝜔𝑖 such that 

𝜌𝑖 ≤ ℳ𝑖 ∩ 𝜂 and (ℳ𝑖 ∩ 𝜂) ∩ 𝜔𝑖 = 𝜂 ∩ 𝜔𝑖 ≪𝑔 𝜔𝑖. Then ℳ =

(𝜌1⨁𝜌2)⨁(𝜔1⨁𝜔1), 𝜌1⨁𝜌2 ≤ (ℳ1 ∩ 𝜂)⨁(ℳ2 ∩ 𝜂) = 𝜂 and so 

𝜂 ∩ (𝜔1⨁𝜔1) = (𝜂 ∩ 𝜔1)⨁(𝜂 ∩ 𝜔2) ≪𝑔 𝜔1⨁𝜔1, by ([3], 

Proposition 2.5(3)). Hence, by mathematical induction, ℳ is a 

P-Radg-lifting ℜ-module. Similarly, when ℳ is a distributive 

ℜ-module.  
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Proposition 3.4. Let ℳ be a P-Radg-lifting ℜ-module and 

𝛾 ≠ 0 a submodule of ℳ. If 𝛾 ∩ 𝑅𝑎𝑑𝑔(ℳ) = 0, then 𝛾 is 

principally semisimple.  

Proof. Let 𝑎 ∈ 𝛾. Since ℳ is a P-Radg-lifting ℜ-module, there 

is a decomposition ℳ = 𝜔⨁𝛽 such that 𝜔 ≤ 𝑎ℜ and 𝑎ℜ ∩
𝛽 ≪𝑔 𝛽, so in ℳ. It follows that 𝑎ℜ ∩ 𝛽 ⊆ 𝑅𝑎𝑑𝑔(ℳ). By the 

modular law, we have 𝛾 = 𝛾 ∩ ℳ = 𝛾 ∩ (𝑎ℜ + 𝛽) = 𝑎ℜ +
(𝛾 ∩ 𝛽). As 𝑎ℜ ∩ (𝛾 ∩ 𝛽) ⊆ 𝛽 ∩ 𝑅𝑎𝑑𝑔(ℳ) = 0, we get 𝛾 =

𝑎ℜ⨁(𝛾 ∩ 𝛽). Therefore, 𝑎ℜ ≤⨁ 𝛾 and hence 𝛾 is principally 

semisimple.  

 

Proposition 3.5. Let ℳ be an ℜ-module, consider the 

following statements: 

(1) ℳ is a principally semisimple ℜ-module.  

(2) ℳ is a principally g-lifting ℜ-module.   

(3) ℳ is a principally Radg-lifting ℜ-module.   

Then (1) ⟹ (2) ⟹ (3). If 𝑅𝑎𝑑𝑔(ℳ) = 0, then (3) ⟹ (1).   

Proof. (𝟏) ⟹ (𝟐) ⟹ (𝟑) Clear.  

(𝟑) ⟹ (𝟏) If 𝑅𝑎𝑑𝑔(ℳ) = 0, then ℳ ∩ 𝑅𝑎𝑑𝑔(ℳ) = 0 and 

then ℳ is a principally semisimple ℜ-module, by Proposition 

3.4.   

 

Corollary 3.6. Let ℳ be a P-Radg-lifting ℜ-module such that 

𝑅𝑎𝑑𝑔(ℳ) = 0, then every nonzero submodule of ℳ is 

principally semisimple. 

Proof. Directly by Proposition 3.5. 

4. FACTOR MODULE OF PRINCIPALLY 𝐑𝐚𝐝𝐠-

LIFTING 

Theorem 4.1. Let ℳ be aP-Radg-lifting module and assume 

𝜛 ≤ ℳ. If for every direct summand 𝜂 of ℳ, (𝜂 + 𝜛) 𝜛⁄  is a 

direct summand of ℳ 𝜛⁄ . Then ℳ 𝜛⁄  is a P-Radg-lifting 

module. 

Proof. Let 𝜛 ≤ 𝑎ℜ ≤ ℳ such that 𝑎 ∈ ℳ and 

𝑅𝑎𝑑𝑔(ℳ 𝜛⁄ ) ⊆ 𝑎ℜ 𝜛⁄ . Consider the natural map 𝜋: ℳ →

ℳ 𝜛⁄ . From 𝑅𝑎𝑑𝑔(ℳ) ⊆ ℳ, we deduce that 𝜋(𝑅𝑎𝑑𝑔(ℳ)) ⊆

𝑅𝑎𝑑𝑔(ℳ 𝜛⁄ ), i.e., (𝑅𝑎𝑑𝑔(ℳ) + 𝜛) 𝜛⁄  ⊆ 𝑅𝑎𝑑𝑔(ℳ 𝜛⁄ ), 

so(𝑅𝑎𝑑𝑔(ℳ) + 𝜛) 𝜛⁄  ⊆ 𝑥ℜ 𝜛⁄ , and hence 𝑅𝑎𝑑𝑔(ℳ) ⊆

𝑎ℜ. Since ℳ is a P-Radg-lifting module, then by Proposition 

2.3(3), there exists 𝜚 ≤⨁ ℳ where 𝜚 ≤ 𝑎ℜ and 

𝑎ℜ 𝜚⁄ ≪𝑔 ℳ 𝜚⁄ . By the hypothesis, (𝜚 + 𝜛) 𝜛⁄ ≤⨁ ℳ 𝜛⁄ . 

Clearly, (𝜚 + 𝜛) 𝜛⁄ ≤ 𝑎ℜ 𝜛⁄ . Consider a projection map 

𝜌:
ℳ

𝜚
→

ℳ 𝜚⁄

(𝜚+𝜛) 𝜚⁄
. Since 𝑎ℜ 𝜚⁄ ≪𝑔 ℳ 𝜚⁄  then 

𝑎ℜ

𝜚+𝜛
≪𝑔

ℳ

𝜚+𝜛
, that 

implies 
𝑎ℜ 𝜛⁄

(𝜚+𝜛) 𝜛⁄
≪𝑔

ℳ 𝜛⁄

(𝜚+𝜛) 𝜛⁄
. Therefore ℳ 𝜛⁄  is a P-Radg-

lifting module.  

 

Theorem 4.2. Let ℳ be a P-Radg-lifting module and 𝜛 ≤ ℳ 

that satisfies one of the following:     

(1) If 𝜛 is a distributive submodule of ℳ. 

(2) If 𝜛 is a fully invariant submodule of ℳ. 

(3) If 𝑌 is a submodule of ℳ has 𝑅𝑎𝑑𝑔(ℳ) such that ℳ =

𝜛⨁𝑌. 

Then ℳ 𝜛⁄  is a P-Radg-lifting module.  

Proof. (1) let ℳ = 𝜂⨁�̀� for some �̀� ≤ ℳ. By Theorem 11, 

we prove that (𝜂 + 𝜛) 𝜛⁄ ≤⨁ ℳ 𝜛⁄ . It is obvious to ensure 

that ℳ 𝜛⁄ = ((𝜂 + 𝜛) 𝜛⁄ ) + ((�̀� + 𝜛) 𝜛⁄ ). Now, as 𝜛 is a 

distributive submodule of ℳ, (𝜂 + 𝜛) ∩ (�̀� + 𝜛) =
(𝜂 ∩ �̀�) + 𝜛 = 𝜛. So ((𝜂 + 𝜛) 𝜛⁄ ) ∩ ((�̀� + 𝜛) 𝜛⁄ ) = 0, 

therefore ℳ 𝜛⁄  is a P-Radg-lifting module. 

(2) Let 𝜚 ≤⨁ ℳ, then ℳ = 𝜚⨁�̀� for some �̀� ≤ ℳ. As 𝜛 is 

a fully invariant submodule of ℳ, therefore,   ℳ 𝜛⁄ =
((𝜚 + 𝜛) 𝜛)⁄ ⨁ ((𝜚′ + 𝜛) 𝜛)⁄ , by ([16], Lemma 3.3), i.e., 

(𝜂 + 𝜛) 𝜛⁄ ≤⨁ ℳ 𝜛⁄ . Hence ℳ 𝜛⁄  is a P-Radg-lifting 

module, by Theorem 4.1.   

(3) By Proposition 3.1(1), 𝑌 is a P-Radg-lifting module. Thus, 

ℳ 𝜛⁄ ≅ 𝑌, and then ℳ 𝜛⁄  is a P-Radg-lifting module.  

 

Corollary 4.3. Let ℳ be a P-Radg-lifting module, then: 

(1) If ℳ is a distributive (or, duo) module, then every factor 

module of ℳ is also P-Radg-lifting. 

(2) If 𝑓: ℳ → ℳ̀ is a homomorphism has distributive (or, 

fully invariant) kernel, then 𝑓(ℳ) is P-Radg-lifting. 

Moreover, if 𝑓 is an epimorphism, then ℳ̀ is P-Radg-lifting.  

Proof. (1) Clear from Theorem 4.2(1) and (2), respectively. 

(2) let 𝑓: ℳ → ℳ̀ is a homomorphism. By 1st isomorphism 

theorem, we have that ℳ 𝐾𝑒𝑟𝑓⁄ ≅ 𝑓(ℳ). From Theorem 

4.2(1) or (2), ℳ 𝐾𝑒𝑟𝑓⁄  is a P-Radg-lifting module. Hence 

𝑓(ℳ) is P-Radg-lifting.  

 

        Recall [15] If all direct summands of a module ℳ are 

fully invariant, then ℳ is called a weak duo module. 

 

Proposition 4.4. Let ℳ be a weak duo module and 𝑋 a direct 

summand of ℳ. If ℳ is a P-Radg-lifting module then 𝑋 and 

ℳ 𝑋⁄  are both P-Radg-lifting modules. 

Proof. Suppose that ℳ is a weak duo module and 𝑋 ≤⨁ ℳ, 

then ℳ = 𝑋⨁𝜂 where 𝑋, 𝜂 are fully invariant submodules of 

ℳ. By Theorem 4.2(2), ℳ 𝑋⁄  and 𝑋 ≅ ℳ 𝜂⁄  are P-Radg-

lifting modules.  

 

Proposition 4.5. Let ℳ be an ℜ-module and 𝑋 a direct 

summand of ℳ. Then ℳ is a P-Radg-lifting module if and 

only if 𝑋 and ℳ 𝑋⁄  are both P-Radg-lifting modules if one of 

the following conditions hold: 

(1) ℳ is a distributive module. 

(2) ℳ is a duo module. 

Proof. (1) let ℳ be a distributive module and 𝑋 a direct 

summand of ℳ, so ℳ = 𝑋⨁𝛽 for a submodule 𝛽 of ℳ. By 

Corollary 4.3(1), ℳ 𝑋⁄  is P-Radg-lifting. However, 𝑋 ≅

ℳ 𝛽⁄ , again by Corollary 4.3(1), 𝑋 is P-Radg-lifting.  

Conversely, as ℳ ≅ 𝑋⨁(ℳ 𝑋⁄ ), the result is included by 

Theorem 3.3.                                                                        
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(2) Since any duo module is weak duo, then the result is 

follows by Proposition 4.4 and Theorem 3.3.  

 

Corollary 4.6. Let ℳ =⊕𝑖=1
𝑛 ℳ𝑖 be a duo module. Then, for 

any 𝑖 = 1,2, … , 𝑛, ℳ𝑖 is a P-Radg-lifting module if and only if 

ℳ is a P-Radg-lifting module.  

Proof. It follows directly from Theorem 3.3 and Proposition 

4.5(2).  

 

Proposition 4.7. If ℳ is a P-Radg-lifting module then, 

ℳ 𝑅𝑎𝑑𝑔(ℳ)⁄  is principally semisimple. 

Proof. Let 𝑎 ∈ ℳ and 𝑅𝑎𝑑𝑔(ℳ) ⊆ 𝑎ℜ. By hypothesis there 

is ℳ = 𝜂⨁�̀� for some 𝜂 ≤ 𝑎ℜ and 𝑎ℜ ∩ �́� ≪𝑔 �́�, so in ℳ. 

Therefore, ℳ = 𝑎ℜ + �̀� and 𝑎ℜ ∩ �́� ⊆ 𝑅𝑎𝑑𝑔(ℳ). It follows 

that, 
ℳ

𝑅𝑎𝑑𝑔(ℳ)
=

𝑎ℜ

𝑅𝑎𝑑𝑔(ℳ)
+

�̀�+𝑅𝑎𝑑𝑔(ℳ)

𝑅𝑎𝑑𝑔(ℳ)
, and so (

𝑎ℜ

𝑅𝑎𝑑𝑔(ℳ)
) ∩

(
�̀�+𝑅𝑎𝑑𝑔(ℳ)

𝑅𝑎𝑑𝑔(ℳ)
) =

𝑎ℜ∩(�̀�+𝑅𝑎𝑑𝑔(ℳ))

𝑅𝑎𝑑𝑔(ℳ)
=

𝑅𝑎𝑑𝑔(ℳ)+(𝑎ℜ∩�̀�)

𝑅𝑎𝑑𝑔(ℳ)
= 0, i.e., 

𝑎ℜ 𝑅𝑎𝑑𝑔(ℳ)⁄ ≤⨁ ℳ 𝑅𝑎𝑑𝑔(ℳ)⁄ . Therefore ℳ 𝑅𝑎𝑑𝑔(ℳ)⁄  

is a principally semisimple module.  

 

Corollary 4.10. Let ℳ be a P-Radg-lifting module then, 

ℳ 𝑅𝑎𝑑𝑔(ℳ)⁄  is a P-Radg-lifting module. 

Proof. From Propositions 3.5 and 4.7.    
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