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Abstract— The aim of this article is to continue study more spectral properties for class-𝑨𝑵 operators. The Search has 

been focused on define new properties for closed linear operators. These new properties posed on class –AN, A. The properties 

are defined and proved for A.  So, the research achieve the goal. Also, the connection between the properties are established.  
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I. INTRODUCTION AND DEFINITION 

In 1909, H. Weyl tasted the spectrum of all compact 
perturbations of self-adjoint operators in Hilbert space and found 
that their intersections consisted of points in a spectrum of finite 
multiplicity that were not isolated eigenvalues. The bounded 
linear operators that satisfy this property are said to satisfy 
Weyl's theorem [1].  Subsequently, Berkani and Weyl 
introduced some variants of Weyl’s theorem, this study is 
commonly known as the Weyl type’s theories including the   a-
Weyl’s theorem. In 2004, researchers presented the Browder’s 
theorem and a-Browder theorem as generalizations of a-Weyl’s 
theorem [2]. Some spectrum properties has been studied for 
classes of operators that are bounded (see [3], [4], [5] and [6]). 

  Recently, many investigators start to study the operators which 

are unbounded in the infinity Hilbert space. They examined   the 

Hyponormal operator, Posinormal operator and class-A 

operators [7], [8] and [9] respectively. In Hilbert spaces, the 

theory of hyponormal operators has advanced significantly 

[10]. Analysts suggested applying the concept of 

hyponormality of unbounded operators in various cases. It turns 

out that limited and unbounded hyponormal operators have 

several characteristics.  Newly, the researchers worked in many 

spaces of unbounded linear operators, including 𝐿2 (see [11]), 

𝐿𝑝 (see [12]), Pick space (see [13]) and other investigations can 

be located in [14]. 

 

Throughout this work, ℋ represents infinitely complex Hilbert 

space, and 𝐶(ℋ) is the set of all linear closed operates on ℋ. 

For this purpose, we need the following preliminaries. 

 For a 𝐴 ∈ 𝐶(ℋ), define 𝑁(𝐴) as the null space of 

 𝐴, 𝐷(A) dnoted as the domain and 𝑅(𝐴) as range of 𝐴. 𝛼(𝐴) is 

the dimension of the kernel of 𝐴 and 𝐵(𝐴) is the codimention 

of the range of 𝐴.  The upper semi Fredholm operator is defined 

if 𝑅(𝐴) is closed and 𝛼(𝐴) is finite while we say that 𝐴 is lower 

semi Fredholm operator  if 𝐵(𝐴) is finite. Define the set 

Λ+(ℋ) = {A ∈ C(ℋ): 𝛼(𝐴) <
∞ 𝑎𝑛𝑑 𝑅(𝐴) 𝑖𝑠 𝑐𝑙𝑜𝑠𝑒} and Λ−(ℋ) = {A ∈ C(ℋ): 𝐵(𝐴) <
∞}. A Fredholm operator is denoted by Λ(ℋ) = Λ+(ℋ) ∩
Λ−(ℋ).The 𝑖𝑛𝑑𝑒𝑥 of 𝐴 is defined as 𝑖𝑛𝑑 (𝐴) = 𝛼(𝐴) − 𝐵(𝐴). 
     Recall that a closed linear operator A is defined as Weyl 

operator if 𝐴 ∈ Λ(ℋ) and in d𝐴 = 0, while 𝜎𝑤  (𝐴) = {𝜂 ∈ ℂ ∶
 𝐴 −  𝜂𝐼 is not weyl} is used to define the Weyl spectrum of 𝐴.  

In addition we have the following notations: 

          Λ+
− (ℋ) = {A ∈ C(ℋ): A ∈ Λ+(ℋ),  𝑖𝑛𝑑(𝐴) ⩽ 0 } 

         Λ−
+ (ℋ) = {A ∈ C(ℋ): A ∈ Λ−(ℋ), 𝑖𝑛𝑑 (𝐴) ⩾ 0} 

    The B-Fredholm operators can be defined as follows:     

Δ(A) = {k ∈ ℕ: ∀ l ∈ ℕ, l ⩾ k ⇒ R(Ak) ∩ N(A) ⊆ R(Al) ∩

N(A)}. 

    The degree of stable iteration of 𝐴 is denoted by dis (A) and 

defined by dis (A) = inf Δ(A) and  dis (A) = ∞, when Δ(A) =
∅.  For  𝐴 ∈ 𝐶(ℋ), we say 𝐴 is a B-Fredholm, if there exists 

𝑘 ∈ Δ(𝐴) such that 𝐴 is upper semi B-Fredholm 𝐵Λ+ and lower 

semi B-Fredholm 𝐵Λ−  satisfying  dim {𝒩(𝐴) ∩ ℛ(𝐴𝑘)} < ∞ 

and codim {ℛ(𝐴) + 𝒩(𝐴𝑘)} < ∞.  

The index of 𝐴 is: 

ind (𝐴) = dim {𝒩(𝐴) ∩ ℛ(𝐴𝑘)} − codim {ℛ(𝐴) + 𝒩(𝐴𝑘)} 

    Recall that the ascent Μ: = ℳ(𝐴) of a linear operator 𝐴 is 

the smallest positive integer 𝑛 such that (𝐴𝑛) = 𝐾𝑒𝑟(𝐴𝑛+1), if 

ℳ(𝐴) = ∅ we put ℳ(𝐴) = ∞. Yet, the descent 𝑁: = ℵ(𝐴) of 

an operator 𝐴 is the smallest positive 𝑚 ∈ ℕ such that 𝑅𝑚(𝐴) =
𝑅𝑚+1(𝐴), and if ℵ(𝐴) = ∅ we put ℵ(𝐴) = ∞.  

   We call  𝐴 ∈ 𝐶(ℋ) as 𝐵 − 𝑤𝑒𝑦𝑙 if it’s 𝐵- 

𝐹𝑟𝑒𝑑ℎ𝑜𝑙𝑚 operator with 𝑖𝑛𝑑𝑒𝑥 0 and 𝜎𝐵𝑊(𝐴) is used to 

symbolize the 𝐵-𝑤𝑒𝑦𝑙 spectrum of 𝐴 and defined by 𝜎BW (𝐴) =
{𝜂 ∈ ℂ ∶ 𝐴 − 𝜂𝐼 is not 𝐵-wey }. 
  Once can define the class of all upper semi-Browder operators 

as ℬ+(ℋ): = {𝐴 ∈ Λ+(ℋ): ℵ(𝐴) < ∞}, while the class of all 

lower semi-Browder operators is define by ℬ−(ℋ): = {A ∈
Λ−(ℋ): 𝑞(𝐴) < ∞}. 
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  The class of all Browder operators is defined by ℬ(ℋ) =
ℬ+(ℋ) ∩ ℬ−(ℋ). Obviously, if 𝐴 is Weyl if 𝐴 is Browder, 

since if ℳ(𝐴) and ℵ(𝐴) are finite implies, for a Fredholm 

operator with index zero. 

 We can define the upper semi-Browder spectrum, the lower 

semi-Browder and the Browder spectrum of 𝐴 ∈ 𝐶(ℋ) by: 

𝜎ub(𝐴): = {𝜂 ∈ ℂ: 𝜂𝐼 − 𝐴 ∉ ℬ+(ℋ)}, 𝜎lb(𝐴): = {𝜂 ∈ ℂ: 𝜂𝐼 −
𝐴 ∉ ℬ−(ℋ)}, 𝜎b(𝐴): = {𝜂 ∈ ℂ: 𝜂𝐼 − 𝐴 ∉ ℬ(ℋ)} respectively.  

   Most significant particularity for an operator that belongs to 

𝐶(ℋ) is the single value extension property which denoted by 

SVEP: Assume 𝐴: D(𝐴) → ℋ be a closed linear operator 

operates on ℋ, and let 𝜂0 ∈ ℂ. Then 𝐴 has SVEP at 𝜂0 if 𝑔 = 0 

is the only solution to (η𝐼 − 𝐴)𝑔(𝜂) = 0 where 𝑔 is 

holomorphic in a neighborhood of 𝜂0. Moreover, we say 𝐴 has 

the SVEP if it has it at every 𝜂0 ∈ ℂ. 

In the sequel, we simplify 𝜎(𝐴), 𝜎𝑎(𝐴), and 𝜌(𝐴) to represent 

the spectrum, approximate spectrum and the resolvent set of 

𝐴 ∈ 𝐶(ℋ), respectively. Also, let iso 𝜎(𝐴) and iso 𝜎𝑎(𝐴) be 

the isolated points of 𝜎(𝐴) and 𝜎𝑎(𝐴), respectively. Also, we 

need to define the following concepts: 𝜋(𝐴) =
{𝜂 ∈  iso 𝜎(A): 0 < ℳ(𝐴 − 𝜂𝐼) = ℵ(𝐴 − 𝜂𝐼) < ∞},𝜋𝑜(𝐴) =
{𝜂 ∈ 𝜋(𝐴): 𝛼(𝐴 − 𝜂𝐼) < ∞},   𝜋𝑎(𝐴) = {𝜂 ∈ 𝜎𝑎(𝐴): 𝑀 =
ℳ(𝐴 − 𝜂𝐼) < ∞, ℛ(𝐴 − 𝜂𝐼)𝑚+1 is closed },    𝜋𝑜

𝑎(𝐴) = {𝜂 ∈
𝜋𝑎(𝐴): 𝛼(𝐴 − 𝜂𝐼) < ∞},  𝐸(𝐴) = {𝜂 ∈  iso 𝜎(𝐴): 0 < 𝛼(𝐴 −
𝜂𝐼)},   𝐸𝑜(𝐴) = {𝜂 ∈ 𝐸(𝐴): 𝛼(𝐴 − 𝜂𝐼) < ∞} and 𝐸𝑜

𝑎(𝐴) =
{𝜂 ∈  iso 𝜎𝑎(𝐴): 0 < 𝛼(𝐴 − 𝜂𝐼) < ∞}. 

   An operator 𝐴 ∈ 𝐶(ℋ) with 𝒟(𝐴) = 𝒟(𝐴∗) is define as 

class- 𝐴 operator if |𝐴|2 ≤ |𝐴2|, where |𝐴| = (𝐴∗𝐴)
1

2 [5]. 

Moreover, for 𝐴 belong to class-A operator, then ℳ(𝐴 − 𝜂𝐼) is 

less than or equal 1 for every 𝜂 ∈ ℂ [5]. 

   A Polaroid operator define if every isolated point of the 

spectrum is a pole of 𝜌(𝐴). A class 𝒩 of operators defines as  

𝒩 = {𝐴 ∈ 𝐶(ℋ) : 𝜎(𝐴|𝑉 − 𝜂𝐼) = {0} 𝑖. 𝑒. , (𝐴|𝑉 − 𝜂𝐼): = 0, ∀ 

invariant subspace 𝑉 of ℋ} and denote by class- 𝐴𝒩[5]. In 

every spectrum of an operator  𝐴 ∈ class- 𝐴𝒩 every 𝜂 is isolated 

point if and only if 𝜂 is a simple pole of 𝜌(𝐴). This property 

means that every 𝐴 in class-𝐴𝒩 is Polaroid [5]. Finally, let 𝐴 ∈
𝐶(ℋ), then 𝐴 satisfies: 

(gw) Property; if E(A) = 𝜎𝑎( A) ∖ 𝜎𝐵Λ+
−(A), 

(b)  Property; if 𝜋0(𝐴) = 𝜎𝑎( A) ∖ 𝜎Λ+
−(A), 

(gb) Property; if 𝜋(T) = 𝜎𝑎( T) ∖ 𝜎𝐵Λ+
−(A). 

 In this paper, we continue the study of Weyl’s theorems for 
the unbounded class- 𝐴𝒩 operators, we first use property (gb) to 
examine property (b), and show that prepare (gb) and property 
(gw) are equal. Then start exploring the new spectral properties 
defined for the constrained operator. Starting with the (ao) and 
(asz) properties, for every A that belongs to class A, indicate that 
𝐴 has them. Finally, we resumed our objectives, writing the last 
two properties (0) and (sz), proving them with 𝐴, and 
establishing a connection between these properties. 

II.  APPROXIMATE POINT VARIANTS OF 

WEYL’S THEOREMS. 

Now, we look at some approximation versions of the 𝐴∈ class-

𝐴𝒩and its adjoint operators, introduced as a variant of Weyl's 

classical theorem.  

Remark 2.1. Let 𝐴 ∈ 𝐶(ℋ) with 𝛼(𝐀) < ∞. If 𝐴 ∈ 𝐵Λ+(ℋ) 

then  𝐴 ∈ Λ+(ℋ). 

  

Theorem 2.2. If 𝐴 is a class-𝐴𝑁 operator with 𝛼(𝐴) < ∞, then 

𝐴 possess property (𝑏) if 𝐴 possess property (gb) 

Proof: Suppose 𝐴 possess property(gb), then,𝜎𝑎(𝐴)\
𝜎𝐵Λ+

(𝐴) = 𝜋(𝐴), let 𝜂 ∈ σ�̇�(𝐴)\𝜎 Λ+
(𝐴), then, 𝛼(𝐴 − 𝜂𝐼) <

∞. Now, since 𝐴 possess (gb) property we have 𝜂  is a pole of 

𝜌(𝐴) then  𝜂 is isolated in spectrum of 𝐴, since 𝐴 ∈ class 𝐴𝑁 

then 𝐴 is poleriod i.e. 𝜂 ∈ π∘(𝐴). For the reverse inclusion, 

let 𝜂 ∈ π0(𝐴), then, 𝜂 ∈ 𝜋(𝐴), since 𝐴 possess (gb) property 

then 𝜂 ∈ 𝜎𝑎(𝐴)\𝜎𝐵Λ+
(𝐴),  by Remark 2.1, we have 𝜂 ∉

𝜎 Λ+
(𝐴). Thus A possess (b) property. 

Proposition 2.3. Let 𝐴 ∈ class-𝐴𝑁. Then 𝐴 admits property 

(𝑔𝑤) if and only if 𝐴 possesses (gb)  property.  

Proof: As consequence of [5]-Lemma1, we have 𝜋(𝐴) = 𝐸(𝐴), 

and then the proof is completed. 

Theorem 2.4. Let 𝐴 ∈ class- 𝐴𝑁, and 𝐴∗ has SVEP at 𝜂. If 𝐴 

posess property (gw) then A satisfies generelized Weyl's 

theorem. 

Proof: Let 𝜂 ∈ 𝜎(𝐴)\𝜎𝐵𝑊(𝐴), since 𝜎𝐵Λ+
−(𝐴) ⊆ 𝜎𝐵𝑊(𝐴), then, 

𝜂 ∉ 𝜎𝐵Λ+
−(𝐴). In addition, 𝐴∗ has SVEP at 𝜂, then 𝜎(𝐴) =

𝜎a(𝐴) so that 𝜂 ∈ 𝜎𝑎(𝐴) ∖ 𝜎𝐵Λ+
−(𝐴). But, 𝐴 admits (gw) 

property, thus 𝜂 ∈ 𝐸(𝐴). Now, let 𝜂 ∈ 𝐸(𝑇) = {𝜂 ∈ 

iso 𝜎(𝐴): 0 < 𝛼(𝐴 − 𝜂I)}. Since 𝐴 has (gw) property with 𝐴∗ 

has SVEP with 𝜂 ∉ 𝜎𝐵Λ+
−(𝐴), thus 𝜂 ∉ 𝜎𝐵𝑊(𝐴) so that A 

satisfies generalized Weyl's theorem. 

III. NEW SPECTRAL PROPERTIES FOR UNBOUNDED 

CLASS-𝑨𝑵     

In this section, we start to define new spectral 

properties for the unbounded class-𝐴𝑁, these properties were 

define to the bounded case [11], we relate them to some variant 

of Weyl’s theorems and established the relation between given 

ideas. 

 

Definition 3.1. An operator 𝐴 ∈ 𝐶(ℋ) is said to have property 

(ao) if 𝜎(𝐴)\𝜎Λ+
−(𝐴) = 𝜋𝑎(𝐴). 

Remark 3.2. If 𝐴 ∈ class-𝐴𝑁 and 𝐴∗ has SVEP then A satisfies 

(ao) property. 

Proof: since 𝐴 ∈ class-𝐴𝑁 and 𝐴∗ has SVEP, then 𝐴 satisfies 𝑎-

Browder’s theorem by [Theorem 6, 5]. Now, let 𝜂 ∈
𝜎𝑎(𝐴)\𝜎Λ+

−(𝐴) = 𝜋𝑎
0(𝐴)but 𝜎𝑎(𝐴) ⊆ 𝜎(𝐴) and 𝜋𝑎

0 ⊆ 𝜋𝑎 thus, 

𝜂 ∈ 𝜎(𝐴)\𝜎Λ+
−(𝐴) = 𝜋𝑎(𝐴) then, 𝐴 possess (ao) property. 

Definition 3.3. An operator 𝐴 ∈ 𝐶(ℋ) is possess 

property (asz) if 𝜎(𝐴)\𝜎Λ+
−(𝐴) = 𝜋(𝐴). 
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Remark 3.4. If 𝐴 or 𝐴∗ is a class-𝐴𝑁 operator with 𝛼(𝐴) < ∞, 

then A satisfies (asz) property. 

Proof: since 𝐴 or 𝐴∗ is a class-𝐴𝑁 operator then 𝐴 satisfies 

generalized Weyl’s theorem and generalized Browder’s 

theorem and these theorems are equivalent [5]: 𝜎(𝐴)\
𝜎𝐵𝑊(𝐴) = 𝐸(𝐴) by Remark 2.1. We get 𝐴-𝜂𝐼 is upper semi-

Fredholm operator, then 𝜆 ∉ 𝜎Λ+
−(A). Since, A satisfies 

generalized Weyl's theorem and 𝜂 ∈ 𝐸(𝐴) then 𝜂 ∈ iso𝜎(𝐴), 

also, 𝐸(𝐴) = 𝜋(𝐴), then, 𝜂 ∈ 𝜎(𝐴) ∣ 𝜎Λ+
−(𝐴) = 𝜋(𝐴) thus, A 

satisfies (asz) property. 

Definition 3.5. An operator 𝐴 ∈ 𝐶(ℋ) is said to satisfies (0) 

property if 𝜎(𝐴) ∖ 𝜎Λ+
−(𝐴) = 𝐸𝑎(𝐴) 

Proposition 3.6. If 𝐴 ∈ class-𝐴𝑁 and 𝐴∗ has SVEP, then 𝐴 own 

property (o) 

Proof: since 𝐴 ∈ class-𝐴𝑁 and since 𝐴∗ has SVEP then  𝐴 

satisfies 𝑎-Weyl's theorem [5] : 𝜎𝑎(𝐴)\𝜎Λ+
−(𝐴) = 𝐸𝑎

0(𝐴). Since 

𝜎𝑎(𝐴) ⊆ 𝜎(𝐴) and for all 𝜂 ∈ 𝐸𝑎
0(𝐴) we have 𝜂 ∈ 𝐸𝑎(𝐴), from 

all of that, we get 𝐴 own property (0). 

Definition 3.7. An operator 𝐴 ∈ 𝐶(𝐻) is said to possess 

property (𝑠𝑧) if 𝜎(𝐴) ∖ 𝜎Λ+
−(𝐴) = 𝐸(𝐴) 

Proposition 3.8. If 𝐴 ∈ class-𝐴𝑁 then it has the property(𝑠𝑧).  

Proof: since 𝐴 ∈ class-𝐴𝑁, then 𝐴 satisfies generalized Weyl's 

theorem: 𝜎(𝐴)\𝜎𝐵𝑊(𝐴) = 𝐸(𝑇) [5] and by Remark 2.1. 𝜎𝐵𝑊 

(A) ⊆ 𝜎Λ+
−(A) then 𝜂 ∉ 𝜎Λ+

−(A)thus 𝐴 satisfies (𝑠𝑧) property. 

Remark 3.9. Let 𝐴 ∈ class-𝐴𝑁 and 𝐴∗ has SVEP with 𝜎(𝐴) =
𝜎𝑎(𝐴). Then the properties (0) and (𝑠𝑧) are equivalent. 

Proof: suppose 𝐴 has (o) property then 𝜎(𝐴) ∖ 𝜎Λ+
−(𝐴) =

𝐸𝑎(𝐴), since by assumption 𝜎(𝐴) = 𝜎𝑎(𝐴), then 𝐸(𝐴) =
𝐸𝑎(𝐴), thus 𝐴 possess (𝑠𝑧). Conversely, we have the similar 

conclusion. 

 

IV. CONCLUSION  

  Spectral properties are defined in large for many classes of 

bounded operators, also, the study of Weyl’s theorems were 

limited to the bounded case. In this paper we state some of these 

properties to the operators that are unbounded and belong to 

class AN. Moreover, we established the relation and equivalent 

among these properties. 
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