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Abstract- In this paper we introduce the notion of e-gH modules which is a proper generalization of Hopfian modules
and defined as, a module M is called an e-gH if any surjective R-endomorphism g of M has an e-small kernel, a ring
R is called an e-gH ring if R is an e-gH as R-module. We give some characterizations and properties of this modules.
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INTRODUCTION

Throughout this paper all modules are unitary right R-
modules and R is an associative ring with identity. A nonzero
submodule L < M is said to be essential in M, denoted by L =
M, if NnL =+ 0 for every nonzero submodule N of M [7]. A
submodule S of M is called small, denoted by S « M, if S #
M and for every submodule L < M with the property M = S +
L implies L = M. A submodule E < M is called e-small,
denoted by E «, M, if for every essential submodule S of M
with the property M = E + S implies S = M [10]. In 1986, V.
A. Hiremath introduced the concept of Hopfian module,
defined as a module Mis called Hopfian if for every surjective
R-endomorphism of M is an isomorphism [8]. Gorbani and
Haghany introduced generalized for Hopfian called generalized
Hopfian (gH), as a module is called gH, if for every surjective
R-endomorphism of M has an small kernel [6]. Now we are
represent a new definition of a proper generalized of Hopfian,
called, e-gH, defined as, a module M is called, e-gH, if for every
surjective R-endomorphism f of M has an e-small kernel (i.e.,
Kerf <, M). In this paper we show many properties and
examples of e-gH modules. Also we generalize the notion of e-
gH modules to concept of e-gH relative to a module.

1.

2. e-gH AND SOME BASIC PROPERTES.

Definition 2.1. A nonzero R-module M is said to be an e-gH
module if every surjective R-endomorphism g of M has an e-
small kernel, i.e., kerg <, M. Moreover, a ring R is called e-
gH if, Ry is e-gH.
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Remarks and Examples 2.2.

(1) Every gH module is an e-gH module.

Proof Since every small submodule is e-small, then the result
is follows. O

(2) Every Hopfian module is an e-gH module.

Proof Since every Hopfian module is gH module, and so it is
an e-gH module, by (1). O

(3) Every Noetherian module is an e-gH module.

Proof It follows directly by ([8], Proposition 6(i)) and (2). O
(4) The concept of e-gH modules is a proper generalization of
Hopfian modules, as example: consider the 2-prifer group Z,e
as a Z-module. From ([3], p.15) Z, is a hollow Z-module, and
so it is gH as Z-module. By (1), Z-module Z,» is an e-gH
module, but it is not Hopfian, see ([8], Remark 7).

(5) The two rings Q and Z are e-gH, because that the only rings
homomorphism of them is identity map.

(6) The Z-module Z, and Q-module (also Z-module) Q are e-
gH, in fact, they are Hopfian, see ([9], Examples 1.5(b)).

Theorem 2.3. The following are equivalent for an R-module
M.

(1) M is an e-gH module.

(2) If E < M and there is an epimorphism g: M/E — M, then
E&, M.

(3) If S < M (i.e., S is a proper essential submodule of M) and
if f € End(M) is surjective, then f(S) # M.
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Proof (1) = (2) Assume g:M/E — M is an epimorphism.
Then g € End(M) is a surjective, where m: M - M /E is a
natural map. By (1), we deduce that kergm <, M. If
e € E = kerm, then m(e) =0 and so gm(e) = f(0) =0,
hence e € kergm. Therefore E < kergm and hence E <, M.
(2)=(3) Let S<M and f:M - M an epimorphism.
Suppose f(S) = M. By ([4], Lemma 3.1.8(2)), we have M =
fA(M) = f~1(f(S) =S + kerf. Moreover f:M/kerf —
M is an epimorphism, so by (2), kerf «, M and hence S = M
that is a contradiction. Hence f(S) = M.

(3) = (1) Let f € End(M) and f a surjective. To prove that
kerf «, M. Assume that S @ M such that kerf +S = M. If
S # M, soby (3), f(S) # M and hence f~1(f(S)) # M, (since
if, f7L(F(S)) =M, then F(f~1(£(S)) = fF(M) = M, and so
by ([4], Lemma 3.1.8(3)), £ (S) = f(S) n f(M) = M, therefore
kerf + S # M which isacontradiction. Then S = M and hence
kerf «, M. So (1), holds. [

Corollary 2.4. Let M be a module. Then M is e-gH if and only
if g:M/N — M is a non-epimorphism, for all N non e-small in
M.

Proposition 2.5. Let M be an R-module. Then the following
are equivalent.

(1) M is e-gH.

(2) For all epimorphism ¢ € Endgz (M), if there exist C < M
with @(C) = @ (M), then C is closed in M.

Proof (1) = (2) Suppose that M is e-gH and ¢ € Endz (M)
be an epimorphism. Assume ¢ (C) = @ (M) for some C < M.
Let S be any complement for C in M, then we have C®S 2 M.
It is obvious that C + S + kerqp = M. Since C+S <M and
kerp <, M,then C +S = M, and so C@S = M. Therefore C
is a direct summand, and hence C is closed in M.

(2) = (1) Let @ € Endz(M) be an epimorphism. Assume
kerp + C = M where C 2 M, then ¢(C) = ¢(M).By (2),Cis
closed in M, and thus C = M. Hence kerp <, M and M is e-
gH. O

Proposition 2.6. Let M be an R-module such that for any N <
M, Z,(M) < C. Then the following are equivalent:

(1) Mis e-gH.

(2) For any epimorphism ¢ € Endg (M), if there exist C < M
with kerg 4+ C = M, then M /C is nonsingular.

(3) For any epimorphism ¢ € Endg (M), if there exist C < M
with kere + C = M, then C is closed.

Proof (1) = (2) Let ¢ € Endg(M) be an epimorphism. If
kerp + C = M for some C < M. Then ¢(C) = ¢(M). From
(Proposition 2.5), C is closed in M. By our assumption,
Z,(M) < C. So by ([2], Proposition 2.6), M /C nonsingular.
(2) = (3) Let ¢ € Endz(M) be an epimorphism. Assume that
there exist C < M with kerg + C = M. Then ¢(C) = ¢(M),
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by (2) M/C is nonsingular. Hence by ([2], Proposition 2.6), C
is closed in M.

(3) = (1) Let ¢ € Endiz (M) be an epimorphism. Assume that
there exist C < M with @(C) = (M), then ¢~ 1(¢p(C)) =
¢ 1 (@(M)) and so kergp + C = M. By (3), C is closed in M.
From (Proposition 2.5), M is e-gH. O

Proposition 2.7. Every direct summand of an e-gH module is
e-gH.

Proof Let M be an e-gH module and N <® M. So, M = N®K
for some K <M. Assume that f € End(N) and an
epimorphism. Consider Ix: K — K is an identity map over K.
Then f@®I,(M) = f®I;(N®K) = f(N)®Ix(K) = NOK =
M, that means f@®Iy is an epimorphism. But M is e-gH, then
ker(f®I) K. M. It follow that ker(f®lg) =
kerf@®@kerl, = kerf@®0 = kerf,and then kerf «, M. Since
kerf < N <® M, then kerf «, N, by ([5], Lemma 2.12 (1)).
Therefore N is e-gH. O

Proposition 2.8. Let M = M;®M, such that M; and M, be
fully invariant under every surjection of M. Then M is e-gH if
and only if M; ise-gH forall i = 1,2.

Proof “If” part is follows directly by (Proposition 2.7).

“Only if” part. Let f: M — M be an R — epimorphism. Then
fi = flu;M; = M; is an R-epimorphism for all i =12,
because M; and M, are fully invariant submodules. Since M; is
e-gH, for all i=12, then kerf; <, M; so kerf=
ker(fi®f,) = ker f; ® ker f; K, M;®M, = M, by ([10],
Proposition 2.5(3)). Therefore M = M;®M, is an e-gH
module. O

Corollary 2.9. Let M =@, M; such that M, be fully invariant
under every surjection of M foralli = 1,2, ...,n. Then M is e-
gH if and only if M; ise-gH forall i = 1,2, ..., n.

Proposition 2.10. If M = M, ®M, with r;(M;)®rz(M,) = R,
then M is e-gH if and only if M; is e-gH for all i = 1,2.

Proof "If* part is follows directly by (Proposition 2.7).

"Only if" part. Let f:M - M be an R-epimorphism. As
R(M)®1rzs(M,) =R and Imf < M;®M,, then by ([1],
Proposition 1.4.2) there exists N < M; and K < M, such that
Imf = N®K implies Imf]|y, @ Imf|y, = N®K, thus
Imf|y, < M, and Imf|y, < M,. As M; ise-gH and f|, is an
R-epimorphism for all i =1,2, then kerf; <, M;. Then
kerf = ker(fi®f,) = ker f; ® ker f, K, M{®M, = M, by
([10], Proposition 2.5(3)). Hence M = M;@®M, is an e-gH
module.

Lemma 2.11. Let f: M — M be an R-isomorphism. If A is not
e-small in M then £~1(A) is not e-small in M.

Proof If A is not e-small in M, then there is a proper essential
submodule E of M such that A+ E = M. Then f~(4) +

fFUE)=fYA+E)=f"YM)=M with f73(E) is an
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essential in M. If f~X(E) =M, then E = f(f"Y(E)) =
f(M) =M that is a contradiction. Thus, f~*(E) <M and
henec f~1(A) is not e-small in M. [

Proposition 2.12. Let M be an R-module such that M /N be an
e-gH R-module forany 0 # N < M. Then M is e-gH.

Proof If false, then there is an R-epimorphism f € End(M)
such that kerf is not e-small, then kerf # 0. From 1%
isomorphism  theorem, there is an R-isomorphism
g:M/kerf - M. Let m:M - M/kerf be the natural R-
epimorphism. It follows that mg: M /kerf — M /kerf is an R-
epimorphism which ker g = g~ (kerm) = g~ 1(kerf) is not
e-small in M /kerf, by (Lemma 2.11), a contradiction. Hence
M is | e-gH R-module. [

Proposition 2.13. Let M be a nonsingular and e-gH R-module
with f € End(M) is an epimorphism and M /f (N) is singular
foralland N < M. Then f(L) <, M ifand only if L «, M.
Proof If f(L) <, M.Assume L + K = M where K 2 M. Then
f(L) + f(K) = M. By hypothesis, M/f (K) is singular and M
a nonsingular R-module, ([7], Proposition 1.21) implies that
f(K)= M. As f(L) K, M, then f(K) =M and hence K +
kerf = M. Since M is an e-gH R-module, then kerf <, M
and so K = M. Therefore L <, M. The converse is follows by
([10], Proposition 2.5(2)). O

Proposition 2.14. Let M be a module. Consider the following
assertions:

(1) for any epimorphism f € End(M), if N «, M then
fY(N) «, M.

(2) M is e-gH.

Then (1) = (2). If M is a uniform module, then (2) = (1).
Proof (1) = (2) Suppose (1) hold. If g € End(M) is a
surjective has not e-small kernel, then g=1(0) is not e-small in
M, by assumption, (0) is not e-small in M, which is a
contradiction. Hence kerg <, M and M is e-gH.

(2) = (1) Assume f € End(M) is a surjective and N <, M.
Let f~1(N) + K = M forsome K 2 M. Thus, N + f(K) = M.
Since M is uniform, then f(K) 2 M. As N «, M then f(K) =
M. It follows that K + kerf = M. By (2), kerf <, M, hence
K = M. Therefore, f~1(N) «, M. O

Theorem 2.15. Let M be a quasi-projective uniform module.
Then M is e-gH if and only if M/E is e-gH, for all E <, M.

Proof The sufficiency is clear by taking E = 0. Assume M is e-
gH, E<,M and f:M/E - M/E a surjective. Consider
m:M — M/E is a natural map. Therefore fm: M — M/E is an
homomorphism. As M is a quasi-projective module, there is a
homomorphism g:M - M such that mg=fm. So
(Img + E)/E = n(Img) = f(n(M)) = f(M/E) = M/E,

hence Img + E = M. Since E <, M and Img is essential in M
(as M is uniform), then Img = M, i.e., g is an epimorphism.
Thus, kerg <, M. As will as, tg(E) = fr(E) = E imply that
g(E) +E = g(E) + kern =n Y (rg(E)) =n~*(E) =E,

and then g(E) <E. So E + kerg = g~*(g(E)) < g~ (E),
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ie., E<g Y E). As fr = g, then ker(fm) = ker(ng), so
w1l (kerf) = g ' (kern) = g 1(E). Thus kerf =
n(n Y (kerf)) = (g *(E)) = g *(E)/E. From (Proposition
2.14), g YE) K, M and hence g Y E)/E =
m(g Y(E)) <, M/E, by ([10], Proposition 2.5(2)). So
kerf <, M/E and M/E ise-gH. O
Proposition 2.16. Let M be a module such that N is a fully
invariant submodule of M and M /N is Hopfian. If N is an e-gH
module, then so is M.
Proof Consider a surjective f € End(M). Define g€
End(M/N)byg(m+ N) =f(m)+ Nforallm+N e M/N.
Thus Img = g(M/N) = f(M)/N =M/N, ie., g is an R-
epimorphism, so g is an R-isomorphism (i.e., kerg = N),
since M/N is Hopfian. We conclude that kerf + N =
{m+N|mekerf} ={m+N|f(m) =0} = {m+N|f(m) +
N=N}={m+N|g(m+ N) =N} =kerg =N.Sokerf c
N.Puth = f|y, then h is also an R-epimorphism, because N is
fully invariant. Since N is e-gH, kerh <, N. It follow that
kerh = kerf|y = kerf N N = kerf, then kerf <, N <M,
thus kerf «, M. Hence M is an e-gH module. O
Proposition 2.17. Let M; and M, be an R-modules such that
M; = M,. Then M, is e-gH if and only if M, is e-gH.
Proof Assume that M, is an e-gH R-module such that M; = M,.
Then there is an R-isomorphism g: M; — M,. Notice that
g~ 1:M, — M, is an R-isomorphism. Let f € End(M,) be an R-
epimorphism. Put h =g lo fog. Then h € End(M;) and
h(My) =g *te f(g(M1)) =g tef(My) = g7 (M) = My,
i.e., his asurjective. Therefore kerh <, M;, as M, is e-gH. By
([10], Proposition 2.5(2)), g(kerh) <, M,. So g(kerh) =
glker(g= o fog)= g(g~'(ker(g™ o f) =f " (kerg™) =
f~1(0) = kerf. Hence kerf <, M, and M, is e-gH. O
Proposition 2.18. Let M be an R-module and let K, S < M with
M=K+ SandM/(KnS)ise-gH. Then M/K and M /S are e-
H.
I%roof If M=K+, it follows that M/(KNnS)=(K/(Kn
SHBS/(KNS)), thusK/(KNnS)and S/(K N S) are e-gH by
(Proposition 2.7). As K/(KnS)=M/S and S/(KNS) =
M/K,so M /K and M/S are e-gH, by (Proposition 2.17). O

The next is a characterization of e-gH modules.

Theorem 2.19. Let M be a module. Then M is e-gH if and only
if for any proper N <M with M/N = M, N is an e-small
submodule of M.

Proof Suppose that M is an e-gH module. Let N be a proper
submodule of M such that M/N = M. Then there is an
isomorphism y: M/N — M. Now, consider the sequence M

5 M/N i M where 7 is a canonical epimorphism map. Since M
is an e-gH module and y o w € End(M) is a surjective, then
ker(Wom) K, M. But, we have that ker(yomn)=
n l(keryp) =n"Y(N) = kerm = N, therefore N <, M.
Conversely, if g:M — M is an epimorphism, 1% isomorphism
theorem implies that M /kerg = M and kerg # M (if kerg =
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M then g = 0, a contradiction) so by assumption, kerg <, M,
and this ends the proof. O

Proposition 2.20. Let F be a property of modules preserved
under isomorphism. Assume a module M has the property F
and satisfies ACC on proper (non e-small) submodules N with
M /N has the property F, then M is e-gH.

Proof Assume that M is not e-gH, then by (Theorem 2.19),
there exists a proper non e-small submodule L, of M such that
M /L, = M. Therefore M /L, is not e-gH and has the property
F, by hypothesis. Again by (Theorem 2.19),, there is a proper
non e-small submodule L,/L, of M/L, with M/L, =
(M/Ly)/(L,/L{) = M/L,. Note that L, is a proper non e-small
submodule of M. By repeating this argument, we get an
ascending chain L, € L, € L; € --- of proper (non e-small)
submodules of M, which is a contradiction. Thus must be M is
e-gH. O

Corollary 2.21. If M is a module has ACC on proper (non e-
small) submodules N with M /N is not e-gH module, then M is
e-gH.

Proof Let F be the property for not being e-gH, and assume M
is not e-gH. From (Proposition 2.20), M must be e-gH. This
contradiction proves that M is e-gH. O

Corollary 2.22. Every nonzero module satisfies ACC on proper
(non e-small) submodules is e-gH.

Proof We may assume that M # 0 has ACC on proper (non e-
small) submodules and that F is the property of being nonzero.
By (Proposition 2.20), M must be e-gH. O

We will generalize the notion of e-gH modules as follows.

Definition 2.23. Let M, and M, be two R-modules. M, is called
e-gH relative to M,, if for each epimorphism g: M; - M,, we
have kerg <, M;.

Remark 2.24. Given the definition above,, we see that an R-
module M is e-gH if and only if M is e-gH relative to M.

The features of the e-gH module relative to a module are
described below.

Proposition 2.25. Let M; and M, be R-modules. Then the
following conditions are equivalent:

(1) M, is e-gH relative to M,.

(2) For each L <® M, L is e-gH relative to M,.

(3) Foreach L < M;, M, /L is e-gH relative to M,.

Proof (1) = (2) Assume M, = LK, where K < M; and
g:L = M, a surjective. Let m: M; — L be a projection map.
Then gm: M; — M, is a surjective and hence ker(gm) <, Mj,
from (1). It is obvious that ker(gm)=mn"'(kerg) =
kerg®K. Thus, kerg®K <, LK and hence kerg <, L, by
([10], Proposition 2.5(3)).

(2) = (1) By taking L = M;.

(1) = (3) LetL < M; and g: M, /L — M, a surjective. Hence
gm:M; - M, is a surjective, where m: M; —» M, /L is the
natural map. By (1), ker(gm) K. M;. As ker(gn) =
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n~1(kerg), hence m~'(kerg) <., M;, ([10], Proposition
2.5(1)) implies that kerg = n(nr t(kerg)) <, M,/L.
Therefore M, /L is e-gH relative to M,.

(3) = (1) Bytaking L = 0. 0O

Proposition 2.26. If M is a module with the property that for
any g € End(M), there exists an n € Z* such that kerg™ n
Img™ <, M, then M is e-gH.

Proof Let g € End (M) is a surjective. By assumption, there is
an integer n = 1 such that kerg™ n Img™ <, M. It follows
that g™ € End(M) is a surjective, i.e.,, Img™ = M. Thus,
kerg" NnImg™ = kerg" N M = kerg™ <, M. It is easy to
see that kerg < kerg", therefore kerg <, M by ([10],
Proposition 2.5(a)). Hence M is e-gH. O

Proposition 2.27. Let M be an R-module. If for any R-
epimorphism ¢: M — M, there exist n > 1 such that ker¢o™ =
kero™*i forall i € Z*, then M is e-gH.

Proof Let ¢ € End(M) be any surjective. We claim that
ker " N Ime™ = 0. Lety € ker ¢™ N Ime™. Thus ¢™(y) =
0 and y = ¢™(x) for some x € M. Hence ¢?"(x) = ¢"(y) =
0 and hence x € kerg?™. But from our assumption we have that
kerg™ = ker@™™ = ker@?", and so x € ker™ therefore
0=¢"(x) =y. Hence kerp"niImep™=0. As ¢ is a
surjective, so Ime™ = M, thus kere™ =0. But kerp S
kero™, then kerp «, M. Therefore M is e-gH. O
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