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Abstract- In this paper we introduce the notion of e-gH modules which is a proper generalization of Hopfian modules 

and defined as, a module 𝑀 is called an e-gH if any surjective 𝑅-endomorphism 𝑔 of 𝑀 has an e-small kernel, a ring 

𝑅 is called an e-gH ring if 𝑅 is an e-gH as R-module. We give some characterizations and properties of this modules. 
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1. INTRODUCTION  

        Throughout this paper all modules are unitary right 𝑅-

modules and 𝑅 is an associative ring with identity. A nonzero 

submodule 𝐿 ≤ 𝑀 is said to be essential in 𝑀, denoted by 𝐿 ⊴
𝑀, if 𝑁 ∩ 𝐿 ≠ 0 for every nonzero submodule 𝑁 of 𝑀 [7]. A 

submodule 𝑆 of 𝑀 is called small, denoted by 𝑆 ≪ 𝑀,  if 𝑆 ≠
𝑀 and for every submodule 𝐿 ≤ 𝑀 with the property 𝑀 = 𝑆 +
𝐿 implies 𝐿 = 𝑀. A submodule 𝐸 ≤ 𝑀 is called    𝑒-small, 

denoted by 𝐸 ≪𝑒 𝑀, if for every essential submodule 𝑆 of 𝑀 

with the property 𝑀 = 𝐸 + 𝑆 implies 𝑆 = 𝑀 [10]. In 1986, V. 

A. Hiremath introduced the concept of Hopfian module, 

defined as a module 𝑀is called Hopfian if for every surjective 

𝑅-endomorphism of 𝑀 is an isomorphism [8]. Gorbani and 

Haghany introduced generalized for Hopfian called generalized 

Hopfian (gH), as a module is called gH, if for every surjective 

𝑅-endomorphism of 𝑀 has an small kernel [6]. Now we are 

represent a new definition of a proper generalized of Hopfian, 

called, e-gH, defined as, a module 𝑀 is called, e-gH, if for every 

surjective 𝑅-endomorphism 𝑓 of 𝑀 has an 𝑒-small kernel (i.e., 

𝐾𝑒𝑟𝑓 ≪𝑒 𝑀). In this paper we show many properties and 

examples of 𝑒-gH modules. Also we generalize the notion of e-

gH modules to concept of e-gH relative to a module. 
       

2. 𝒆-𝐠𝐇 AND SOME BASIC PROPERTES.   
 

Definition 2.1. A nonzero 𝑅-module 𝑀 is said to be an e-gH 

module if every surjective 𝑅-endomorphism 𝑔 of 𝑀 has an e-

small kernel, i.e., 𝑘𝑒𝑟𝑔 ≪𝑒 𝑀. Moreover, a ring 𝑅 is called e-

gH if, 𝑅𝑅 is e-gH. 

 

Remarks and Examples 2.2.  

(1) Every gH module is an e-gH module. 

Proof Since every small submodule is e-small, then the result 

is follows.  

(2) Every Hopfian module is an e-gH module. 

Proof Since every Hopfian module is gH module, and so it is   

an e-gH module, by (1).   

(3) Every Noetherian module is an e-gH module. 

Proof It follows directly by ([8], Proposition 6(i)) and (2).  

(4) The concept of e-gH modules is a proper generalization of 

Hopfian modules, as example: consider the 2-prüfer group ℤ2∞ 

as a ℤ-module. From ([3], p.15) ℤ2∞ is a hollow ℤ-module, and 

so it is gH as ℤ-module. By (1), ℤ-module ℤ2∞ is an e-gH 

module, but it is not Hopfian, see ([8], Remark 7). 

(5) The two rings ℚ and ℤ are e-gH, because that the only rings 

homomorphism of them is identity map. 

(6) The ℤ-module ℤ, and ℚ-module (also ℤ-module) ℚ are e-

gH, in fact, they are Hopfian, see ([9], Examples 1.5(b)).                 

 
 

Theorem 2.3. The following are equivalent for an 𝑅-module 

𝑀. 

(1) 𝑀 is an e-gH module. 

(2) If  𝐸 ≤ 𝑀 and there is an epimorphism 𝑔: 𝑀 𝐸⁄ → 𝑀, then 

𝐸 ≪𝑒 𝑀. 

(3) If 𝑆 ⊲ 𝑀 (i.e., 𝑆 is a proper essential submodule of 𝑀) and 

if 𝑓 ∈ 𝐸𝑛𝑑(𝑀) is surjective, then 𝑓(𝑆) ≠ 𝑀. 
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Proof (1) ⟹ (2) Assume 𝑔: 𝑀 𝐸⁄ → 𝑀 is an epimorphism. 

Then 𝑔𝜋 ∈ 𝐸𝑛𝑑(𝑀) is a surjective, where 𝜋: 𝑀 → 𝑀 𝐸⁄  is a 

natural map. By (1), we deduce that 𝑘𝑒𝑟𝑔𝜋 ≪𝑒 𝑀. If  

𝑒 ∈ 𝐸 = 𝑘𝑒𝑟𝜋, then 𝜋(𝑒) = 0 and so 𝑔𝜋(𝑒) = 𝑓(0) = 0, 

hence 𝑒 ∈ 𝑘𝑒𝑟𝑔𝜋. Therefore 𝐸 ≤ 𝑘𝑒𝑟𝑔𝜋 and hence 𝐸 ≪𝑒 𝑀. 

(2) ⟹ (3) Let 𝑆 ⊲ 𝑀 and 𝑓: 𝑀 → 𝑀 an epimorphism. 

Suppose 𝑓(𝑆) = 𝑀. By ([4], Lemma 3.1.8(2)), we have 𝑀 =

𝑓−1(𝑀) = 𝑓−1(𝑓(𝑆) = 𝑆 + 𝑘𝑒𝑟𝑓. Moreover 𝑓: 𝑀 𝑘𝑒𝑟𝑓⁄ →

𝑀 is an epimorphism, so by (2), 𝑘𝑒𝑟𝑓 ≪𝑒 𝑀 and hence 𝑆 = 𝑀 

that is a contradiction. Hence 𝑓(𝑆) ≠ 𝑀. 

(3) ⟹ (1) Let 𝑓 ∈ 𝐸𝑛𝑑(𝑀) and 𝑓 a surjective. To prove that 

𝑘𝑒𝑟𝑓 ≪𝑒 𝑀. Assume that 𝑆 ⊴ 𝑀 such that 𝑘𝑒𝑟𝑓 + 𝑆 = 𝑀. If 

𝑆 ≠ 𝑀, so by (3), 𝑓(𝑆) ≠ 𝑀 and hence 𝑓−1(𝑓(𝑆)) ≠ 𝑀, (since 

if, 𝑓−1(𝑓(𝑆)) = 𝑀, then 𝑓(𝑓−1(𝑓(𝑆)) = 𝑓(𝑀) = 𝑀, and so 

by ([4], Lemma 3.1.8(3)), 𝑓(𝑆) = 𝑓(𝑆) ∩ 𝑓(𝑀) = 𝑀, therefore 

𝑘𝑒𝑟𝑓 + 𝑆 ≠ 𝑀 which is a contradiction. Then 𝑆 = 𝑀 and hence 

𝑘𝑒𝑟𝑓 ≪𝑒 𝑀. So (1), holds.  

Corollary 2.4. Let 𝑀 be a module. Then 𝑀 is e-gH if and only 

if 𝑔: 𝑀 𝑁⁄ → 𝑀 is a non-epimorphism, for all 𝑁 non e-small in 

𝑀. 

Proposition 2.5.  Let 𝑀 be an 𝑅-module. Then the following 

are equivalent. 

(1) 𝑀 is  e-gH. 

(2) For all epimorphism 𝜑 ∈ 𝐸𝑛𝑑𝑅(𝑀), if there exist 𝐶 ≤ 𝑀 

with 𝜑(𝐶) = 𝜑(𝑀), then 𝐶 is closed in 𝑀. 

Proof (1) ⟹ (2) Suppose that 𝑀 is e-gH and 𝜑 ∈ 𝐸𝑛𝑑𝑅(𝑀) 

be an epimorphism. Assume 𝜑(𝐶) = 𝜑(𝑀) for some 𝐶 ≤ 𝑀. 

Let 𝑆 be any complement for 𝐶 in 𝑀, then we have 𝐶⨁𝑆 ⊴ 𝑀. 

It is obvious that 𝐶 + 𝑆 + 𝑘𝑒𝑟𝜑 = 𝑀. Since  𝐶 + 𝑆 ⊴ 𝑀 and 

𝑘𝑒𝑟𝜑 ≪𝑒 𝑀, then 𝐶 + 𝑆 = 𝑀, and so 𝐶⨁𝑆 = 𝑀. Therefore 𝐶 

is a direct summand, and hence 𝐶 is closed in 𝑀.  

(2) ⟹ (1) Let 𝜑 ∈ 𝐸𝑛𝑑𝑅(𝑀) be an epimorphism. Assume 

𝑘𝑒𝑟𝜑 + 𝐶 = 𝑀 where 𝐶 ⊴ 𝑀, then 𝜑(𝐶) = 𝜑(𝑀). By (2), 𝐶 is 

closed in 𝑀, and thus 𝐶 = 𝑀. Hence 𝑘𝑒𝑟𝜑 ≪𝑒 𝑀 and 𝑀 is e-

gH.  
 

Proposition 2.6. Let 𝑀 be an 𝑅-module such that for any 𝑁 ≤

𝑀, 𝑍2(𝑀) ⊆ 𝐶. Then the following are equivalent: 

(1)  𝑀 is  e-gH. 

(2) For any epimorphism 𝜑 ∈ 𝐸𝑛𝑑𝑅(𝑀), if there exist 𝐶 ≤ 𝑀 

with 𝑘𝑒𝑟𝜑 + 𝐶 = 𝑀, then 𝑀/𝐶 is nonsingular. 

(3) For any epimorphism 𝜑 ∈ 𝐸𝑛𝑑𝑅(𝑀), if there exist 𝐶 ≤ 𝑀 

with 𝑘𝑒𝑟𝜑 + 𝐶 = 𝑀, then 𝐶 is closed. 

Proof (1) ⟹ (2) Let 𝜑 ∈ 𝐸𝑛𝑑𝑅(𝑀) be an epimorphism. If 

𝑘𝑒𝑟𝜑 + 𝐶 = 𝑀 for some 𝐶 ≤ 𝑀. Then 𝜑(𝐶) = 𝜑(𝑀). From 

(Proposition 2.5), 𝐶 is closed in 𝑀. By our assumption, 

𝑍2(𝑀) ⊆ 𝐶. So by ([2], Proposition 2.6), 𝑀/𝐶 nonsingular. 

(2) ⟹ (3) Let 𝜑 ∈ 𝐸𝑛𝑑𝑅(𝑀) be an epimorphism. Assume that 

there exist 𝐶 ≤ 𝑀 with 𝑘𝑒𝑟𝜑 + 𝐶 = 𝑀. Then 𝜑(𝐶) = 𝜑(𝑀), 

by (2) 𝑀/𝐶 is nonsingular. Hence by ([2], Proposition 2.6), 𝐶 

is closed in 𝑀.  

(3) ⟹ (1) Let 𝜑 ∈ 𝐸𝑛𝑑𝑅(𝑀) be an epimorphism. Assume that 

there exist 𝐶 ≤ 𝑀 with 𝜑(𝐶) = 𝜑(𝑀), then 𝜑−1(𝜑(𝐶)) =

𝜑−1(𝜑(𝑀)) and so 𝑘𝑒𝑟𝜑 + 𝐶 = 𝑀. By (3), 𝐶 is closed in 𝑀. 

From (Proposition 2.5), 𝑀 is e-gH.  

Proposition 2.7.  Every direct summand of an e-gH module is 

e-gH.  

Proof  Let 𝑀 be an e-gH module and 𝑁 ≤⨁ 𝑀. So, 𝑀 = 𝑁⨁𝐾 

for some 𝐾 ≤ 𝑀. Assume that 𝑓 ∈ 𝐸𝑛𝑑(𝑁) and an 

epimorphism. Consider 𝐼𝐾: 𝐾 → 𝐾 is an identity map over 𝐾. 

Then 𝑓⨁𝐼𝐾(𝑀) = 𝑓⨁𝐼𝐾(𝑁⨁𝐾) = 𝑓(𝑁)⨁𝐼𝐾(𝐾) = 𝑁⨁𝐾 =

𝑀, that means 𝑓⨁𝐼𝐾  is an epimorphism. But 𝑀 is e-gH, then 

𝑘𝑒𝑟(𝑓⨁𝐼𝐾) ≪𝑒 𝑀. It follow that 𝑘𝑒𝑟(𝑓⨁𝐼𝐾) =

𝑘𝑒𝑟𝑓⨁𝑘𝑒𝑟𝐼𝐾 = 𝑘𝑒𝑟𝑓⨁0 = 𝑘𝑒𝑟𝑓, and then 𝑘𝑒𝑟𝑓 ≪𝑒 𝑀. Since 

𝑘𝑒𝑟𝑓 ≤ 𝑁 ≤⨁ 𝑀, then 𝑘𝑒𝑟𝑓 ≪𝑒 𝑁, by ([5], Lemma 2.12 (1)). 

Therefore 𝑁 is e-gH.  

Proposition 2.8. Let 𝑀 = 𝑀1⨁𝑀2 such that 𝑀1 and 𝑀2 be 

fully invariant under every surjection of 𝑀. Then 𝑀 is e-gH if 

and only if 𝑀𝑖 is e-gH for all 𝑖 = 1,2.  

Proof “If” part is follows directly by (Proposition 2.7).  

“Only if” part. Let 𝑓: 𝑀 → 𝑀 be 𝑎𝑛 𝑅 − 𝑒𝑝imorphism. Then 

𝑓𝑖 = 𝑓|𝑀𝑖
: 𝑀𝑖 → 𝑀𝑖 is an 𝑅-epimorphism for all 𝑖 = 1,2, 

because 𝑀1 and 𝑀2 are fully invariant submodules. Since 𝑀𝑖 is 

e-gH, for all 𝑖 = 1,2, then 𝑘𝑒𝑟𝑓𝑖 ≪𝑒 𝑀𝑖, so 𝑘𝑒𝑟𝑓 =

𝑘𝑒𝑟(𝑓1⨁𝑓2) = 𝑘𝑒𝑟 𝑓1 ⨁ 𝑘𝑒𝑟 𝑓1 ≪𝑒 𝑀1⨁𝑀2 = 𝑀, by ([10], 

Proposition 2.5(3)). Therefore 𝑀 = 𝑀1⨁𝑀2 is an e-gH 

module.  

Corollary 2.9. Let 𝑀 =⊕𝑖=1
𝑛 𝑀𝑖 such that 𝑀𝑖 be fully invariant 

under every surjection of 𝑀 for all 𝑖 = 1,2, … , 𝑛. Then 𝑀 is e-

gH if and only if 𝑀𝑖 is e-gH for all 𝑖 = 1,2, … , 𝑛.  
 

  

Proposition 2.10. If 𝑀 = 𝑀1⨁𝑀2 with 𝑟𝑅(𝑀1)⨁𝑟𝑅(𝑀2) = 𝑅, 

then 𝑀 is e-gH if and only if 𝑀𝑖 is e-gH for all 𝑖 = 1,2.   

Proof "If" part is follows directly by (Proposition 2.7). 

"Only if" part. Let 𝑓: 𝑀 → 𝑀 be an 𝑅-epimorphism. As 

𝑟𝑅(𝑀1)⨁𝑟𝑅(𝑀2) = 𝑅 and 𝐼𝑚𝑓 ≤ 𝑀1⨁𝑀2, then by ([1], 

Proposition 1.4.2) there exists 𝑁 ≤ 𝑀1 and 𝐾 ≤ 𝑀2 such that 

𝐼𝑚𝑓 = 𝑁⨁𝐾 implies 𝐼𝑚𝑓|𝑀1
⨁ 𝐼𝑚𝑓|𝑀2

= 𝑁⨁𝐾, thus 

𝐼𝑚𝑓|𝑀1
≤ 𝑀1 and 𝐼𝑚𝑓|𝑀2

≤ 𝑀2. As 𝑀𝑖 is e-gH and 𝑓|𝑀𝑖
 is an 

𝑅-epimorphism for all 𝑖 = 1,2, then 𝑘𝑒𝑟𝑓𝑖 ≪𝑒 𝑀𝑖. Then 

𝑘𝑒𝑟𝑓 = 𝑘𝑒𝑟(𝑓1⨁𝑓2) = 𝑘𝑒𝑟 𝑓1 ⨁ 𝑘𝑒𝑟 𝑓1 ≪𝑒 𝑀1⨁𝑀2 = 𝑀, by 

([10], Proposition 2.5(3)). Hence 𝑀 = 𝑀1⨁𝑀2 is an e-gH 

module.  

Lemma 2.11. Let 𝑓: 𝑀 → 𝑀́  be an 𝑅-isomorphism. If 𝐴 is not 

e-small in 𝑀́ then 𝑓−1(𝐴) is not e-small in 𝑀. 

Proof If 𝐴 is not e-small in 𝑀́, then there is a proper essential 

submodule 𝐸 of 𝑀́ such that 𝐴 + 𝐸 = 𝑀́. Then 𝑓−1(𝐴) +

𝑓−1(𝐸) = 𝑓−1(𝐴 + 𝐸) = 𝑓−1(𝑀́) = 𝑀 with 𝑓−1(𝐸) is an 
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essential in 𝑀. If 𝑓−1(𝐸) = 𝑀, then 𝐸 = 𝑓(𝑓−1(𝐸)) =

𝑓(𝑀) = 𝑀́ that is a contradiction. Thus, 𝑓−1(𝐸) ⊲ 𝑀 and 

henec 𝑓−1(𝐴) is not e-small in 𝑀.  
 

Proposition 2.12. Let 𝑀 be an 𝑅-module such that 𝑀 𝑁⁄  be an 

e-gH 𝑅-module for any 0 ≠ 𝑁 ≤ 𝑀. Then 𝑀 is e-gH. 

Proof If false, then there is an 𝑅-epimorphism 𝑓 ∈ 𝐸𝑛𝑑(𝑀) 

such that 𝑘𝑒𝑟𝑓 is not e-small, then 𝑘𝑒𝑟𝑓 ≠ 0. From 1st 

isomorphism theorem, there is an 𝑅-isomorphism 

𝑔: 𝑀 𝑘𝑒𝑟𝑓⁄ → 𝑀. Let 𝜋: 𝑀 → 𝑀 𝑘𝑒𝑟𝑓⁄  be the natural 𝑅-

epimorphism. It follows that 𝜋𝑔: 𝑀 𝑘𝑒𝑟𝑓⁄ → 𝑀 𝑘𝑒𝑟𝑓⁄  is an 𝑅-

epimorphism which 𝑘𝑒𝑟 𝜋𝑔 = 𝑔−1(𝑘𝑒𝑟𝜋) = 𝑔−1(𝑘𝑒𝑟𝑓) is not 

e-small in 𝑀 𝑘𝑒𝑟𝑓⁄ , by (Lemma 2.11), a contradiction. Hence 

𝑀 is I e-gH 𝑅-module.  
     

Proposition 2.13. Let 𝑀 be a nonsingular and e-gH 𝑅-module 

with 𝑓 ∈ 𝐸𝑛𝑑(𝑀) is an epimorphism and 𝑀 𝑓(𝑁)⁄  is singular 

for all and 𝑁 ≤ 𝑀. Then 𝑓(𝐿) ≪𝑒 𝑀 if and only if 𝐿 ≪𝑒 𝑀.  

Proof  If 𝑓(𝐿) ≪𝑒 𝑀. Assume 𝐿 + 𝐾 = 𝑀 where 𝐾 ⊴ 𝑀. Then 

𝑓(𝐿) + 𝑓(𝐾) = 𝑀. By hypothesis, 𝑀 𝑓(𝐾)⁄  is singular and 𝑀 

a nonsingular 𝑅-module, ([7], Proposition 1.21) implies that 

𝑓(𝐾) ⊴ 𝑀. As 𝑓(𝐿) ≪𝑒 𝑀, then 𝑓(𝐾) = 𝑀 and hence 𝐾 +
𝑘𝑒𝑟𝑓 = 𝑀. Since 𝑀 is an e-gH 𝑅-module, then 𝑘𝑒𝑟𝑓 ≪𝑒 𝑀 

and so 𝐾 = 𝑀. Therefore 𝐿 ≪𝑒 𝑀. The converse is follows by 

([10], Proposition 2.5(2)).  
 

Proposition 2.14. Let 𝑀 be a module. Consider the following 

assertions: 

(1) for any epimorphism 𝑓 ∈ 𝐸𝑛𝑑(𝑀), if 𝑁 ≪𝑒 𝑀 then 

𝑓−1(𝑁) ≪𝑒 𝑀. 

(2) 𝑀 is e-gH.  

Then (1) ⟹ (2). If 𝑀 is a uniform module, then (2) ⟹ (1).  

Proof (1) ⟹ (2) Suppose (1) hold. If 𝑔 ∈ 𝐸𝑛𝑑(𝑀) is a 

surjective has not e-small kernel, then 𝑔−1(0) is not e-small in 

𝑀, by assumption, (0) is not e-small in 𝑀, which is  a 

contradiction. Hence 𝑘𝑒𝑟𝑔 ≪𝑒 𝑀 and 𝑀 is e-gH. 

(2) ⟹ (1) Assume 𝑓 ∈ 𝐸𝑛𝑑(𝑀) is a surjective and 𝑁 ≪𝑒 𝑀. 

Let 𝑓−1(𝑁) + 𝐾 = 𝑀 for some 𝐾 ⊴ 𝑀. Thus, 𝑁 + 𝑓(𝐾) = 𝑀. 

Since 𝑀 is uniform, then 𝑓(𝐾) ⊴ 𝑀. As 𝑁 ≪𝑒 𝑀 then 𝑓(𝐾) =
𝑀. It follows that 𝐾 + 𝑘𝑒𝑟𝑓 = 𝑀. By (2), 𝑘𝑒𝑟𝑓 ≪𝑒 𝑀, hence 

𝐾 = 𝑀. Therefore, 𝑓−1(𝑁) ≪𝑒 𝑀.  
 

Theorem 2.15. Let 𝑀 be a quasi-projective uniform module. 

Then 𝑀 is e-gH if and only if 𝑀 𝐸⁄  is e-gH, for all 𝐸 ≪𝑒 𝑀. 

Proof The sufficiency is clear by taking 𝐸 = 0. Assume 𝑀 is e-

gH, 𝐸 ≪𝑒 𝑀 and 𝑓: 𝑀 𝐸⁄ → 𝑀 𝐸⁄  a surjective. Consider 

𝜋: 𝑀 → 𝑀 𝐸⁄  is a natural map. Therefore 𝑓𝜋: 𝑀 → 𝑀 𝐸⁄  is an 

homomorphism. As 𝑀 is a quasi-projective module, there is   a 

homomorphism 𝑔: 𝑀 → 𝑀 such that 𝜋𝑔 = 𝑓𝜋. So 

(𝐼𝑚𝑔 + 𝐸) 𝐸⁄ = 𝜋(𝐼𝑚𝑔) = 𝑓(𝜋(𝑀)) = 𝑓(𝑀 𝐸⁄ ) = 𝑀 𝐸⁄ , 

hence 𝐼𝑚𝑔 + 𝐸 = 𝑀. Since 𝐸 ≪𝑒 𝑀 and 𝐼𝑚𝑔 is essential in 𝑀 

(as 𝑀 is uniform), then 𝐼𝑚𝑔 = 𝑀, i.e., 𝑔 is an epimorphism. 

Thus, 𝑘𝑒𝑟𝑔 ≪𝑒 𝑀. As will as, 𝜋𝑔(𝐸) = 𝑓𝜋(𝐸) = 𝐸 imply that 

𝑔(𝐸) + 𝐸 = 𝑔(𝐸) + 𝑘𝑒𝑟𝜋 = 𝜋−1(𝜋𝑔(𝐸)) = 𝜋−1(𝐸) = 𝐸, 

and then 𝑔(𝐸) ≤ 𝐸. So 𝐸 + 𝑘𝑒𝑟𝑔 = 𝑔−1(𝑔(𝐸)) ≤ 𝑔−1(𝐸), 

i.e., 𝐸 ≤ 𝑔−1(𝐸). As 𝑓𝜋 = 𝜋𝑔, then 𝑘𝑒𝑟 (𝑓𝜋) = 𝑘𝑒𝑟 (𝜋𝑔), so 

𝜋−1(𝑘𝑒𝑟𝑓) = 𝑔−1(𝑘𝑒𝑟𝜋) = 𝑔−1(𝐸). Thus 𝑘𝑒𝑟𝑓 =

𝜋(𝜋−1(𝑘𝑒𝑟𝑓)) = 𝜋(𝑔−1(𝐸)) = 𝑔−1(𝐸) 𝐸⁄ . From (Proposition 

2.14), 𝑔−1(𝐸) ≪𝑒 𝑀 and hence 𝑔−1(𝐸) 𝐸⁄ =

𝜋(𝑔−1(𝐸)) ≪𝑒 𝑀 𝐸⁄ , by ([10], Proposition 2.5(2)). So 

𝑘𝑒𝑟𝑓 ≪𝑒 𝑀 𝐸⁄  and 𝑀 𝐸⁄  is e-gH.  

Proposition 2.16. Let 𝑀 be a module such that 𝑁 is a fully 

invariant submodule of 𝑀 and 𝑀 𝑁⁄  is Hopfian. If 𝑁 is an e-gH 

module, then so is 𝑀. 

Proof Consider a surjective 𝑓 ∈ 𝐸𝑛𝑑(𝑀). Define 𝑔 ∈

𝐸𝑛𝑑(𝑀 𝑁⁄ ) by 𝑔(𝑚 + 𝑁) = 𝑓(𝑚) + 𝑁 for all 𝑚 + 𝑁 ∈ 𝑀 𝑁⁄ . 

Thus 𝐼𝑚𝑔 = 𝑔(𝑀 𝑁⁄ ) = 𝑓(𝑀) 𝑁⁄ = 𝑀 𝑁⁄ , i.e., 𝑔 is an 𝑅-

epimorphism, so 𝑔 is an 𝑅-isomorphism (i.e., 𝑘𝑒𝑟𝑔 = 𝑁), 

since 𝑀 𝑁⁄  is Hopfian. We conclude that 𝑘𝑒𝑟𝑓 + 𝑁 =

{𝑚 + 𝑁| 𝑚 ∈ 𝑘𝑒𝑟𝑓} = {𝑚 + 𝑁 |𝑓(𝑚) = 0} = {𝑚+𝑁|𝑓(𝑚) + 

𝑁 = 𝑁} = {𝑚 + 𝑁|𝑔(𝑚 + 𝑁) = 𝑁} = 𝑘𝑒𝑟𝑔 = 𝑁. So 𝑘𝑒𝑟𝑓 ⊆

𝑁. Put ℎ = 𝑓|𝑁, then ℎ is also an 𝑅-epimorphism, because 𝑁 is 

fully invariant. Since 𝑁 is e-gH, 𝑘𝑒𝑟ℎ ≪𝑒 𝑁. It follow that 

𝑘𝑒𝑟ℎ = 𝑘𝑒𝑟𝑓|𝑁 = 𝑘𝑒𝑟𝑓 ∩ 𝑁 = 𝑘𝑒𝑟𝑓, then 𝑘𝑒𝑟𝑓 ≪𝑒 𝑁 ≤ 𝑀, 

thus 𝑘𝑒𝑟𝑓 ≪𝑒 𝑀. Hence 𝑀 is an e-gH module.  

Proposition 2.17. Let 𝑀1 and 𝑀2 be an 𝑅-modules such that 

𝑀1 ≅ 𝑀2. Then 𝑀1 is e-gH if and only if 𝑀2 is e-gH.  

Proof Assume that 𝑀1 is an e-gH 𝑅-module such that 𝑀1 ≅ 𝑀2. 

Then there is an 𝑅-isomorphism 𝑔: 𝑀1 → 𝑀2. Notice that 

𝑔−1: 𝑀2 → 𝑀1 is an 𝑅-isomorphism. Let 𝑓 ∈ 𝐸𝑛𝑑(𝑀2) be an 𝑅-

epimorphism. Put ℎ = 𝑔−1 ∘ 𝑓 ∘ 𝑔. Then ℎ ∈ 𝐸𝑛𝑑(𝑀1) and  

ℎ(𝑀1) = 𝑔−1 ∘ 𝑓(𝑔(𝑀1)) = 𝑔−1 ∘ 𝑓(𝑀2) = 𝑔−1(𝑀2) = 𝑀1, 

i.e., ℎ is a surjective. Therefore 𝑘𝑒𝑟ℎ ≪𝑒 𝑀1, as 𝑀1 is e-gH. By 

([10], Proposition 2.5(2)), 𝑔(𝑘𝑒𝑟ℎ) ≪𝑒 𝑀2. So 𝑔(𝑘𝑒𝑟ℎ) =
𝑔(𝑘𝑒𝑟(𝑔−1 ∘ 𝑓 ∘ 𝑔)=  𝑔(𝑔−1(𝑘𝑒𝑟(𝑔−1 ∘ 𝑓) = 𝑓−1(𝑘𝑒𝑟𝑔−1) =
𝑓−1(0) = 𝑘𝑒𝑟𝑓. Hence 𝑘𝑒𝑟𝑓 ≪𝑒 𝑀2 and 𝑀2 is e-gH.  

Proposition 2.18.  Let 𝑀 be an 𝑅-module and let 𝐾, 𝑆 ≤ 𝑀 with 

𝑀 = 𝐾 + 𝑆 and 𝑀/(𝐾 ∩ 𝑆) is e-gH. Then 𝑀/𝐾 and 𝑀/𝑆 are  e-

gH. 

Proof If 𝑀 = 𝐾 + 𝑆, it follows that 𝑀/(𝐾 ∩ 𝑆) = (𝐾/(𝐾 ∩
𝑆))⨁(𝑆/(𝐾 ∩ 𝑆)),  thus 𝐾/(𝐾 ∩ 𝑆) and 𝑆/(𝐾 ∩ 𝑆) are e-gH by 

(Proposition 2.7). As 𝐾/(𝐾 ∩ 𝑆) ≅ 𝑀/𝑆 and 𝑆/(𝐾 ∩ 𝑆) ≅
𝑀/𝐾, so 𝑀/𝐾 and 𝑀/𝑆 are e-gH, by (Proposition 2.17).  
 

The next is a characterization of e-gH modules.   
 

Theorem 2.19. Let 𝑀 be a module. Then 𝑀 is e-gH if and only 

if for any proper 𝑁 ≤ 𝑀 with 𝑀 𝑁⁄ ≅ 𝑀, 𝑁 is an e-small 

submodule of 𝑀.  

Proof Suppose that 𝑀 is an e-gH module. Let 𝑁 be a proper 

submodule of 𝑀 such that 𝑀 𝑁⁄ ≅ 𝑀. Then there is an 

isomorphism 𝜓: 𝑀 𝑁⁄ → 𝑀. Now, consider the sequence 𝑀
𝜋
→ 𝑀 𝑁⁄

𝜓
→ 𝑀 where 𝜋 is a canonical epimorphism map. Since 𝑀 

is an e-gH module and 𝜓 ∘ 𝜋 ∈ 𝐸𝑛𝑑(𝑀) is a surjective, then 

𝑘𝑒𝑟 (𝜓 ∘ 𝜋) ≪𝑒 𝑀. But, we have that 𝑘𝑒𝑟 (𝜓 ∘ 𝜋) =
𝜋−1(𝑘𝑒𝑟𝜓) = 𝜋−1(𝑁) = 𝑘𝑒𝑟𝜋 = 𝑁, therefore 𝑁 ≪𝑒 𝑀. 

Conversely, if 𝑔: 𝑀 → 𝑀 is an epimorphism, 1st isomorphism 

theorem implies that 𝑀 𝑘𝑒𝑟𝑔⁄ ≅ 𝑀 and 𝑘𝑒𝑟𝑔 ≠ 𝑀 (if 𝑘𝑒𝑟𝑔 =
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𝑀 then 𝑔 = 0, a contradiction) so by assumption, 𝑘𝑒𝑟𝑔 ≪𝑒 𝑀, 

and this ends the proof.  

Proposition 2.20. Let ℱ be a property of modules preserved 

under isomorphism. Assume a module 𝑀 has the property ℱ 

and satisfies ACC on proper (non e-small) submodules 𝑁 with 

𝑀 𝑁⁄  has the property ℱ, then 𝑀 is e-gH.  

Proof Assume that 𝑀 is not e-gH, then by (Theorem 2.19), 

there exists a proper non e-small submodule 𝐿1 of 𝑀 such that 

𝑀 𝐿1⁄ ≅ 𝑀. Therefore 𝑀 𝐿1⁄  is not e-gH and has the property 

ℱ, by hypothesis. Again by (Theorem 2.19),, there is a proper 

non e-small submodule 𝐿2 𝐿1⁄  of 𝑀 𝐿1⁄  with 𝑀 𝐿2⁄ ≅
(𝑀 𝐿1⁄ ) (𝐿2 𝐿1)⁄⁄ ≅ 𝑀 𝐿1⁄ . Note that 𝐿2 is a proper non e-small 

submodule of 𝑀. By repeating this argument, we get an 

ascending chain 𝐿1 ⊆  𝐿2 ⊆ 𝐿3 ⊆ ⋯ of proper (non e-small) 

submodules of 𝑀, which is a contradiction. Thus must be 𝑀 is 

e-gH.  
 

Corollary 2.21. If 𝑀 is a module has ACC on proper (non e-

small) submodules 𝑁 with 𝑀 𝑁⁄  is not e-gH module, then 𝑀 is 

e-gH.  

Proof Let ℱ be the property for not being e-gH, and assume 𝑀 

is not e-gH. From (Proposition 2.20), 𝑀 must be e-gH. This 

contradiction proves that 𝑀 is e-gH.  
 

Corollary 2.22. Every nonzero module satisfies ACC on proper 

(non e-small) submodules is e-gH.   

Proof We may assume that 𝑀 ≠ 0 has ACC on proper (non e-

small) submodules and that ℱ is the property of being nonzero. 

By (Proposition 2.20), 𝑀 must be e-gH.  
 

We will generalize the notion of e-gH modules as follows. 
 

Definition 2.23. Let 𝑀1 and 𝑀2 be two 𝑅-modules. 𝑀1 is called 

e-gH relative to 𝑀2, if for each epimorphism 𝑔: 𝑀1 → 𝑀2, we 

have 𝑘𝑒𝑟𝑔 ≪𝑒 𝑀1.   
 

Remark 2.24. Given the definition above,, we see that an 𝑅-

module 𝑀 is   e-gH if and only if 𝑀 is e-gH relative to 𝑀. 
 

The features of the e-gH module relative to a module are 

described below.   

Proposition 2.25. Let 𝑀1 and 𝑀2 be 𝑅-modules. Then the 

following conditions are equivalent: 

(1) 𝑀1 is e-gH relative to 𝑀2. 

(2) For each 𝐿 ≤⨁ 𝑀1, 𝐿 is e-gH relative to 𝑀2. 

(3) For each 𝐿 ≤ 𝑀1, 𝑀1 𝐿⁄  is e-gH relative to 𝑀2.  

Proof (1) ⟹ (2) Assume 𝑀1 = 𝐿⨁𝐾, where 𝐾 ≤ 𝑀1 and 

𝑔: 𝐿 → 𝑀2 a surjective. Let 𝜋: 𝑀1 → 𝐿 be a projection map. 

Then 𝑔𝜋: 𝑀1 → 𝑀2 is a surjective and hence 𝑘𝑒𝑟 (𝑔𝜋) ≪𝑒 𝑀1, 

from (1). It is obvious that 𝑘𝑒𝑟 (𝑔𝜋) = 𝜋−1(𝑘𝑒𝑟𝑔) =
𝑘𝑒𝑟𝑔⨁𝐾. Thus, 𝑘𝑒𝑟𝑔⨁𝐾 ≪𝑒 𝐿⨁𝐾 and hence 𝑘𝑒𝑟𝑔 ≪𝑒 𝐿, by 

([10], Proposition 2.5(3)).  

(2) ⟹ (1) By taking 𝐿 = 𝑀1. 

(1) ⟹ (3) Let 𝐿 ≤ 𝑀1 and 𝑔: 𝑀1 𝐿⁄ → 𝑀2 a surjective. Hence 

𝑔𝜋: 𝑀1 → 𝑀2 is       a surjective, where 𝜋: 𝑀1 → 𝑀1 𝐿⁄  is the 

natural map. By (1), 𝑘𝑒𝑟 (𝑔𝜋) ≪𝑒 𝑀1. As 𝑘𝑒𝑟 (𝑔𝜋) =

𝜋−1(𝑘𝑒𝑟𝑔), hence 𝜋−1(𝑘𝑒𝑟𝑔) ≪𝑒 𝑀1, ([10], Proposition 

2.5(1)) implies that 𝑘𝑒𝑟𝑔 = 𝜋(𝜋−1(𝑘𝑒𝑟𝑔)) ≪𝑒 𝑀1 𝐿⁄ . 

Therefore 𝑀1 𝐿⁄  is e-gH relative to 𝑀2.  

(3) ⟹ (1) By taking 𝐿 = 0.  
 

Proposition 2.26. If 𝑀 is a module with the property that for 

any 𝑔 ∈ 𝐸𝑛𝑑(𝑀), there exists an 𝑛 ∈ ℤ+ such that 𝑘𝑒𝑟𝑔𝑛 ∩
𝐼𝑚𝑔𝑛 ≪𝑒 𝑀, then 𝑀 is e-gH.  

Proof Let 𝑔 ∈ 𝐸𝑛𝑑(𝑀) is a surjective. By assumption, there is 

an integer 𝑛 ≥ 1 such that 𝑘𝑒𝑟𝑔𝑛 ∩ 𝐼𝑚𝑔𝑛 ≪𝑒 𝑀. It follows 

that 𝑔𝑛 ∈ 𝐸𝑛𝑑(𝑀) is a surjective, i.e., 𝐼𝑚𝑔𝑛 = 𝑀. Thus, 

𝑘𝑒𝑟𝑔𝑛 ∩ 𝐼𝑚𝑔𝑛 = 𝑘𝑒𝑟𝑔𝑛 ∩ 𝑀 = 𝑘𝑒𝑟𝑔𝑛 ≪𝑒 𝑀. It is easy to 

see that 𝑘𝑒𝑟𝑔 ≤ 𝑘𝑒𝑟𝑔𝑛, therefore 𝑘𝑒𝑟𝑔 ≪𝑒 𝑀 by ([10], 

Proposition 2.5(a)). Hence 𝑀 is e-gH.  
 

Proposition 2.27. Let 𝑀 be an 𝑅-module. If for any 𝑅-

epimorphism 𝜑: 𝑀 → 𝑀, there exist 𝑛 ≥ 1 such that 𝑘𝑒𝑟𝜑𝑛 =
𝑘𝑒𝑟𝜑𝑛+𝑖 for all 𝑖 ∈ ℤ+, then 𝑀 is e-gH. 

Proof Let 𝜑 ∈ 𝐸𝑛𝑑(𝑀) be any surjective. We claim that 

𝑘𝑒𝑟 𝜑𝑛 ∩ 𝐼𝑚𝜑𝑛 = 0. Let 𝑦 ∈ 𝑘𝑒𝑟 𝜑𝑛 ∩ 𝐼𝑚𝜑𝑛. Thus 𝜑𝑛(𝑦) =
0 and 𝑦 = 𝜑𝑛(𝑥) for some 𝑥 ∈ 𝑀. Hence 𝜑2𝑛(𝑥) = 𝜑𝑛(𝑦) =
0 and hence 𝑥 ∈ 𝑘𝑒𝑟𝜑2𝑛. But from our assumption we have that 

𝑘𝑒𝑟𝜑𝑛 = 𝑘𝑒𝑟𝜑𝑛+𝑛 = 𝑘𝑒𝑟𝜑2𝑛, and so 𝑥 ∈ 𝑘𝑒𝑟𝜑𝑛 therefore 

0 = 𝜑𝑛(𝑥) = 𝑦. Hence 𝑘𝑒𝑟 𝜑𝑛 ∩ 𝐼𝑚𝜑𝑛 = 0. As 𝜑 is a 

surjective, so 𝐼𝑚𝜑𝑛 = 𝑀, thus 𝑘𝑒𝑟𝜑𝑛 = 0. But 𝑘𝑒𝑟𝜑 ⊆
𝑘𝑒𝑟𝜑𝑛, then  𝑘𝑒𝑟𝜑 ≪𝑒 𝑀. Therefore 𝑀 is e-gH.  
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