Modules in which every surjective endomorphism has an *e*-small kernel

Osama Basim Mohammaed

Department of Mathematics College of Education, University of Al-Qadisiyah Al-Qadisiyah, Iraq edu-math.post26@qu.edu.iq

Thaar Younis Ghawi

Department of Mathematics College of Education, University of Al-Qadisiyah Al-Qadisiyah, Iraq <u>thar.younis@qu.edu.iq</u> https://orcid.org/0000-0002-0637-1908

DOI: http://dx.doi.org/10.31642/JoKMC/2018/100118

Received Feb. 17, 2023. Accepted for publication Mar. 29, 2023

Abstract- In this paper we introduce the notion of e-gH modules which is a proper generalization of Hopfian modules and defined as, a module M is called an e-gH if any surjective R-endomorphism g of M has an e-small kernel, a ring R is called an e-gH ring if R is an e-gH as R-module. We give some characterizations and properties of this modules.

Keywords-component; Hopfian module, generalized Hopfian module, e-small submodule, e-gH module.

1. INTRODUCTION

Throughout this paper all modules are unitary right Rmodules and R is an associative ring with identity. A nonzero submodule $L \leq M$ is said to be essential in M, denoted by $L \trianglelefteq$ M, if $N \cap L \neq 0$ for every nonzero submodule N of M [7]. A submodule S of M is called small, denoted by $S \ll M$, if $S \neq$ *M* and for every submodule $L \leq M$ with the property M = S + ML implies L = M. A submodule $E \leq M$ is called *e*-small. denoted by $E \ll_e M$, if for every essential submodule S of M with the property M = E + S implies S = M [10]. In 1986, V. A. Hiremath introduced the concept of Hopfian module, defined as a module Mis called Hopfian if for every surjective R-endomorphism of M is an isomorphism [8]. Gorbani and Haghany introduced generalized for Hopfian called generalized Hopfian (gH), as a module is called gH, if for every surjective *R*-endomorphism of M has an small kernel [6]. Now we are represent a new definition of a proper generalized of Hopfian, called, e-gH, defined as, a module *M* is called, *e*-gH, if for every surjective *R*-endomorphism f of *M* has an *e*-small kernel (i.e., Kerf $\ll_{e} M$). In this paper we show many properties and examples of e-gH modules. Also we generalize the notion of egH modules to concept of *e*-gH relative to a module.

2. *e*-gH AND SOME BASIC PROPERTES.

Definition 2.1. A nonzero *R*-module *M* is said to be an *e*-gH module if every surjective *R*-endomorphism *g* of *M* has an *e*-small kernel, i.e., $kerg \ll_e M$. Moreover, a ring *R* is called *e*-gH if, R_R is *e*-gH.

Remarks and Examples 2.2.

(1) Every gH module is an *e*-gH module.

Proof Since every small submodule is *e*-small, then the result is follows. \Box

(2) Every Hopfian module is an *e*-gH module.

Proof Since every Hopfian module is gH module, and so it is *an e*-gH module, by (1). \Box

(3) Every Noetherian module is an *e*-gH module.

Proof It follows directly by ([8], Proposition 6(i)) and (2). \Box (4) The concept of *e*-gH modules is a proper generalization of Hopfian modules, as example: consider the 2-prüfer group $\mathbb{Z}_{2^{\infty}}$ as a \mathbb{Z} -module. From ([3], p.15) $\mathbb{Z}_{2^{\infty}}$ is a hollow \mathbb{Z} -module, and so it is gH as \mathbb{Z} -module. By (1), \mathbb{Z} -module $\mathbb{Z}_{2^{\infty}}$ is an *e*-gH module, but it is not Hopfian, see ([8], Remark 7).

(5) The two rings \mathbb{Q} and \mathbb{Z} are *e*-gH, because that the only rings homomorphism of them is identity map.

(6) The \mathbb{Z} -module \mathbb{Z} , and \mathbb{Q} -module (also \mathbb{Z} -module) \mathbb{Q} are *e*-gH, in fact, they are Hopfian, see ([9], Examples 1.5(b)).

Theorem 2.3. The following are equivalent for an R-module M.

(1) M is an e-gH module.

(2) If $E \leq M$ and there is an epimorphism $g: M/E \to M$, then $E \ll_e M$.

(3) If $S \triangleleft M$ (i.e., S is a proper essential submodule of M) and if $f \in End(M)$ is surjective, then $f(S) \neq M$.

Proof (1) \Rightarrow (2) Assume $g: M/E \rightarrow M$ is an epimorphism. Then $g\pi \in End(M)$ is a surjective, where $\pi: M \rightarrow M/E$ is a natural map. By (1), we deduce that $kerg\pi \ll_e M$. If $e \in E = ker\pi$, then $\pi(e) = 0$ and so $g\pi(e) = f(0) = 0$, hence $e \in kerg\pi$. Therefore $E \leq kerg\pi$ and hence $E \ll_e M$. (2) \Rightarrow (3) Let $S \lhd M$ and $f: M \rightarrow M$ an epimorphism. Suppose f(S) = M. By ([4], Lemma 3.1.8(2)), we have $M = f^{-1}(M) = f^{-1}(f(S) = S + kerf$. Moreover $\overline{f}: M/kerf \rightarrow M$ is an epimorphism, so by (2), $kerf \ll_e M$ and hence S = M that is a contradiction. Hence $f(S) \neq M$.

(3) ⇒ (1) Let $f \in End(M)$ and f a surjective. To prove that $kerf \ll_e M$. Assume that $S \trianglelefteq M$ such that kerf + S = M. If $S \ne M$, so by (3), $f(S) \ne M$ and hence $f^{-1}(f(S)) \ne M$, (since if, $f^{-1}(f(S)) = M$, then $f(f^{-1}(f(S)) = f(M) = M$, and so by ([4], Lemma 3.1.8(3)), $f(S) = f(S) \cap f(M) = M$, therefore $kerf + S \ne M$ which is a contradiction. Then S = M and hence $kerf \ll_e M$. So (1), holds. \Box

Corollary 2.4. Let *M* be a module. Then *M* is *e*-gH if and only if $g: M/N \to M$ is a non-epimorphism, for all *N* non *e*-small in *M*.

Proposition 2.5. Let *M* be an *R*-module. Then the following are equivalent.

(1) M is e-gH.

(2) For all epimorphism $\varphi \in End_R(M)$, if there exist $C \leq M$ with $\varphi(C) = \varphi(M)$, then C is closed in M.

Proof (1) \Rightarrow (2) Suppose that *M* is *e*-gH and $\varphi \in End_R(M)$ be an epimorphism. Assume $\varphi(C) = \varphi(M)$ for some $C \leq M$. Let *S* be any complement for *C* in *M*, then we have $C \oplus S \leq M$. It is obvious that $C + S + ker\varphi = M$. Since $C + S \leq M$ and $ker\varphi \ll_e M$, then C + S = M, and so $C \oplus S = M$. Therefore *C* is a direct summand, and hence *C* is closed in *M*.

(2) \Rightarrow (1) Let $\varphi \in End_R(M)$ be an epimorphism. Assume $ker\varphi + C = M$ where $C \trianglelefteq M$, then $\varphi(C) = \varphi(M)$. By (2), *C* is closed in *M*, and thus C = M. Hence $ker\varphi \ll_e M$ and *M* is *e*-gH. \Box

Proposition 2.6. Let *M* be an *R*-module such that for any $N \le M$, $Z_2(M) \subseteq C$. Then the following are equivalent: (1) *M* is *e*-gH.

(2) For any epimorphism $\varphi \in End_R(M)$, if there exist $C \leq M$ with $ker\varphi + C = M$, then M/C is nonsingular.

(3) For any epimorphism $\varphi \in End_R(M)$, if there exist $C \leq M$ with $ker\varphi + C = M$, then C is closed.

Proof (1) \Rightarrow (2) Let $\varphi \in End_R(M)$ be an epimorphism. If $ker\varphi + C = M$ for some $C \leq M$. Then $\varphi(C) = \varphi(M)$. From (Proposition 2.5), *C* is closed in *M*. By our assumption, $Z_2(M) \subseteq C$. So by ([2], Proposition 2.6), *M/C* nonsingular.

(2) \Rightarrow (3) Let $\varphi \in End_R(M)$ be an epimorphism. Assume that there exist $C \leq M$ with $ker\varphi + C = M$. Then $\varphi(C) = \varphi(M)$,

by (2) M/C is nonsingular. Hence by ([2], Proposition 2.6), C is closed in M.

(3) ⇒ (1) Let $\varphi \in End_R(M)$ be an epimorphism. Assume that there exist $C \leq M$ with $\varphi(C) = \varphi(M)$, then $\varphi^{-1}(\varphi(C)) = \varphi^{-1}(\varphi(M))$ and so $ker\varphi + C = M$. By (3), *C* is closed in *M*. From (Proposition 2.5), *M* is *e*-gH. □

Proposition 2.7. Every direct summand of an *e*-gH module is *e*-gH.

Proof Let *M* be an *e*-gH module and $N \leq^{\oplus} M$. So, $M = N \oplus K$ for some $K \leq M$. Assume that $f \in End(N)$ and an epimorphism. Consider $I_K: K \to K$ is an identity map over *K*. Then $f \oplus I_K(M) = f \oplus I_K(N \oplus K) = f(N) \oplus I_K(K) = N \oplus K = M$, that means $f \oplus I_K$ is an epimorphism. But *M* is *e*-gH, then $ker(f \oplus I_K) \ll_e M$. It follow that $ker(f \oplus I_K) = kerf \oplus kerI_K = kerf \oplus 0 = kerf$, and then $kerf \ll_e M$. Since $kerf \leq N \leq^{\oplus} M$, then $kerf \ll_e N$, by ([5], Lemma 2.12 (1)). Therefore *N* is *e*-gH. \Box

Proposition 2.8. Let $M = M_1 \bigoplus M_2$ such that M_1 and M_2 be fully invariant under every surjection of M. Then M is *e*-gH if and only if M_i is *e*-gH for all i = 1, 2.

Proof "If" part is follows directly by (Proposition 2.7).

"Only if" part. Let $f: M \to M$ be an R - ep imorphism. Then $f_i = f|_{M_i}: M_i \to M_i$ is an R-epimorphism for all i = 1, 2, because M_1 and M_2 are fully invariant submodules. Since M_i is e-gH, for all i = 1, 2, then $kerf_i \ll_e M_i$, so $kerf = ker(f_1 \oplus f_2) = kerf_1 \oplus kerf_1 \ll_e M_1 \oplus M_2 = M$, by ([10], Proposition 2.5(3)). Therefore $M = M_1 \oplus M_2$ is an e-gH module. \Box

Corollary 2.9. Let $M = \bigoplus_{i=1}^{n} M_i$ such that M_i be fully invariant under every surjection of M for all i = 1, 2, ..., n. Then M is e-gH if and only if M_i is e-gH for all i = 1, 2, ..., n.

Proposition 2.10. If $M = M_1 \oplus M_2$ with $r_R(M_1) \oplus r_R(M_2) = R$, then *M* is *e*-gH if and only if M_i is *e*-gH for all i = 1,2.

Proof "If" part is follows directly by (Proposition 2.7).

"Only if" part. Let $f: M \to M$ be an *R*-epimorphism. As $r_R(M_1) \oplus r_R(M_2) = R$ and $Imf \leq M_1 \oplus M_2$, then by ([1], Proposition 1.4.2) there exists $N \leq M_1$ and $K \leq M_2$ such that $Imf = N \oplus K$ implies $Imf|_{M_1} \oplus Imf|_{M_2} = N \oplus K$, thus $Imf|_{M_1} \leq M_1$ and $Imf|_{M_2} \leq M_2$. As M_i is *e*-gH and $f|_{M_i}$ is an *R*-epimorphism for all i = 1, 2, then $kerf_i \ll_e M_i$. Then $kerf = ker(f_1 \oplus f_2) = kerf_1 \oplus kerf_1 \ll_e M_1 \oplus M_2 = M$, by ([10], Proposition 2.5(3)). Hence $M = M_1 \oplus M_2$ is an *e*-gH module. \Box

Lemma 2.11. Let $f: M \to \dot{M}$ be an *R*-isomorphism. If *A* is not *e*-small in \dot{M} then $f^{-1}(A)$ is not *e*-small in *M*.

Proof If A is not e-small in \dot{M} , then there is a proper essential submodule E of \dot{M} such that $A + E = \dot{M}$. Then $f^{-1}(A) + f^{-1}(E) = f^{-1}(A + E) = f^{-1}(\dot{M}) = M$ with $f^{-1}(E)$ is an

essential in M. If $f^{-1}(E) = M$, then $E = f(f^{-1}(E)) = f(M) = \dot{M}$ that is a contradiction. Thus, $f^{-1}(E) \triangleleft M$ and hence $f^{-1}(A)$ is not *e*-small in M. \Box

Proposition 2.12. Let *M* be an *R*-module such that M/N be an *e*-gH *R*-module for any $0 \neq N \leq M$. Then *M* is *e*-gH.

Proof If false, then there is an *R*-epimorphism $f \in End(M)$ such that *kerf* is not *e*-small, then $kerf \neq 0$. From 1st isomorphism theorem, there is an *R*-isomorphism $g: M/kerf \rightarrow M$. Let $\pi: M \rightarrow M/kerf$ be the natural *R*-epimorphism. It follows that $\pi g: M/kerf \rightarrow M/kerf$ is an *R*-epimorphism which $ker \pi g = g^{-1}(ker\pi) = g^{-1}(kerf)$ is not *e*-small in M/kerf, by (Lemma 2.11), a contradiction. Hence *M* is I *e*-gH *R*-module. \Box

Proposition 2.13. Let *M* be a nonsingular and *e*-gH *R*-module with $f \in End(M)$ is an epimorphism and M/f(N) is singular for all and $N \leq M$. Then $f(L) \ll_e M$ if and only if $L \ll_e M$.

Proof If $f(L) \ll_e M$. Assume L + K = M where $K \leq M$. Then f(L) + f(K) = M. By hypothesis, M/f(K) is singular and M a nonsingular R-module, ([7], Proposition 1.21) implies that $f(K) \leq M$. As $f(L) \ll_e M$, then f(K) = M and hence K + kerf = M. Since M is an e-gH R-module, then $kerf \ll_e M$ and so K = M. Therefore $L \ll_e M$. The converse is follows by ([10], Proposition 2.5(2)). \Box

Proposition 2.14. Let *M* be a module. Consider the following assertions:

(1) for any epimorphism $f \in End(M)$, if $N \ll_e M$ then $f^{-1}(N) \ll_e M$.

(**2**) *M* is *e*-gH.

Then (1) \Rightarrow (2). If *M* is a uniform module, then (2) \Rightarrow (1).

Proof (1) \Rightarrow (2) Suppose (1) hold. If $g \in End(M)$ is a surjective has not *e*-small kernel, then $g^{-1}(0)$ is not *e*-small in M, by assumption, (0) is not *e*-small in M, which is a contradiction. Hence $kerg \ll_e M$ and M is *e*-gH.

(2) \Rightarrow (1) Assume $f \in End(M)$ is a surjective and $N \ll_e M$. Let $f^{-1}(N) + K = M$ for some $K \trianglelefteq M$. Thus, N + f(K) = M. Since M is uniform, then $f(K) \trianglelefteq M$. As $N \ll_e M$ then f(K) = M. It follows that K + kerf = M. By (2), $kerf \ll_e M$, hence K = M. Therefore, $f^{-1}(N) \ll_e M$. \Box

Theorem 2.15. Let *M* be a quasi-projective uniform module. Then *M* is *e*-gH if and only if M/E is *e*-gH, for all $E \ll_e M$.

Proof The sufficiency is clear by taking E = 0. Assume *M* is *e*gH, $E \ll_e M$ and $f: M/E \to M/E$ a surjective. Consider $\pi: M \to M/E$ is a natural map. Therefore $f\pi: M \to M/E$ is an homomorphism. As *M* is a quasi-projective module, there is a homomorphism $g: M \to M$ such that $\pi g = f\pi$. So $(Img + E)/E = \pi(Img) = f(\pi(M)) = f(M/E) = M/E$,

hence Img + E = M. Since $E \ll_e M$ and Img is essential in M (as M is uniform), then Img = M, i.e., g is an epimorphism. Thus, $kerg \ll_e M$. As will as, $\pi g(E) = f\pi(E) = E$ imply that $g(E) + E = g(E) + ker\pi = \pi^{-1}(\pi g(E)) = \pi^{-1}(E) = E$,

and then $g(E) \le E$. So $E + kerg = g^{-1}(g(E)) \le g^{-1}(E)$,

i.e., $E \leq g^{-1}(E)$. As $f\pi = \pi g$, then $ker(f\pi) = ker(\pi g)$, so $\pi^{-1}(kerf) = g^{-1}(ker\pi) = g^{-1}(E)$. Thus $kerf = \pi(\pi^{-1}(kerf)) = \pi(g^{-1}(E)) = g^{-1}(E)/E$. From (Proposition 2.14), $g^{-1}(E) \ll_e M$ and hence $g^{-1}(E)/E = \pi(g^{-1}(E)) \ll_e M/E$, by ([10], Proposition 2.5(2)). So $kerf \ll_e M/E$ and M/E is e-gH. \Box

Proposition 2.16. Let M be a module such that N is a fully invariant submodule of M and M/N is Hopfian. If N is an *e*-gH module, then so is M.

Proof Consider a surjective $f \in End(M)$. Define $g \in End(M/N)$ by g(m + N) = f(m) + N for all $m + N \in M/N$. Thus Img = g(M/N) = f(M)/N = M/N, i.e., g is an R-epimorphism, so g is an R-isomorphism (i.e., kerg = N), since M/N is Hopfian. We conclude that $kerf + N = \{m + N | m \in kerf\} = \{m + N | f(m) = 0\} = \{m+N|f(m) + N = N\} = \{m + N | g(m + N) = N\} = kerg = N$. So $kerf \subseteq N$. Put $h = f|_N$, then h is also an R-epimorphism, because N is fully invariant. Since N is e-gH, $kerh \ll_e N$. It follow that $kerh = kerf|_N = kerf \cap N = kerf$, then $kerf \ll_e N \leq M$, thus $kerf \ll_e M$. Hence M is an e-gH module. \Box

Proposition 2.17. Let M_1 and M_2 be an *R*-modules such that $M_1 \cong M_2$. Then M_1 is *e*-gH if and only if M_2 is *e*-gH.

Proof Assume that M_1 is an *e*-gH *R*-module such that $M_1 \cong M_2$. Then there is an *R*-isomorphism $g: M_1 \to M_2$. Notice that $g^{-1}: M_2 \to M_1$ is an *R*-isomorphism. Let $f \in End(M_2)$ be an *R*-epimorphism. Put $h = g^{-1} \circ f \circ g$. Then $h \in End(M_1)$ and $h(M_1) = g^{-1} \circ f(g(M_1)) = g^{-1} \circ f(M_2) = g^{-1}(M_2) = M_1$,

i.e., *h* is a surjective. Therefore $kerh \ll_e M_1$, as M_1 is *e*-gH. By ([10], Proposition 2.5(2)), $g(kerh) \ll_e M_2$. So $g(kerh) = g(ker(g^{-1} \circ f \circ g) = g(g^{-1}(ker(g^{-1} \circ f) = f^{-1}(kerg^{-1}) = f^{-1}(0) = kerf$. Hence $kerf \ll_e M_2$ and M_2 is *e*-gH. \Box

Proposition 2.18. Let *M* be an *R*-module and let $K, S \le M$ with M = K + S and $M/(K \cap S)$ is *e*-gH. Then M/K and M/S are *e*-gH.

Proof If M = K + S, it follows that $M/(K \cap S) = (K/(K \cap S)) \oplus (S/(K \cap S))$, thus $K/(K \cap S)$ and $S/(K \cap S)$ are *e*-gH by (Proposition 2.7). As $K/(K \cap S) \cong M/S$ and $S/(K \cap S) \cong M/K$, so M/K and M/S are *e*-gH, by (Proposition 2.17). \Box

The next is a characterization of *e*-gH modules.

Theorem 2.19. Let *M* be a module. Then *M* is *e*-gH if and only if for any proper $N \le M$ with $M/N \cong M$, *N* is an *e*-small submodule of *M*.

Proof Suppose that *M* is an *e*-gH module. Let *N* be a proper submodule of *M* such that $M/N \cong M$. Then there is an isomorphism $\psi: M/N \to M$. Now, consider the sequence $M \xrightarrow{\pi} \psi \to M/N \to M$ where π is a canonical epimorphism map. Since *M* is an *e*-gH module and $\psi \circ \pi \in End(M)$ is a surjective, then $ker(\psi \circ \pi) \ll_e M$. But, we have that $ker(\psi \circ \pi) = \pi^{-1}(ker\psi) = \pi^{-1}(N) = ker\pi = N$, therefore $N \ll_e M$. Conversely, if $g: M \to M$ is an epimorphism, 1^{st} isomorphism theorem implies that $M/kerg \cong M$ and $kerg \neq M$ (if kerg = M).

M then g = 0, a contradiction) so by assumption, $kerg \ll_e M$, and this ends the proof. \Box

Proposition 2.20. Let \mathcal{F} be a property of modules preserved under isomorphism. Assume a module M has the property \mathcal{F} and satisfies ACC on proper (non *e*-small) submodules N with M/N has the property \mathcal{F} , then M is *e*-gH.

Proof Assume that M is not e-gH, then by (Theorem 2.19), there exists a proper non e-small submodule L_1 of M such that $M/L_1 \cong M$. Therefore M/L_1 is not e-gH and has the property \mathcal{F} , by hypothesis. Again by (Theorem 2.19),, there is a proper non e-small submodule L_2/L_1 of M/L_1 with $M/L_2 \cong (M/L_1)/(L_2/L_1) \cong M/L_1$. Note that L_2 is a proper non e-small submodule of M. By repeating this argument, we get an ascending chain $L_1 \subseteq L_2 \subseteq L_3 \subseteq \cdots$ of proper (non e-small) submodules of M, which is a contradiction. Thus must be M is e-gH. \Box

Corollary 2.21. If M is a module has ACC on proper (non *e*-small) submodules N with M/N is not *e*-gH module, then M is *e*-gH.

Proof Let \mathcal{F} be the property for not being *e*-gH, and assume *M* is not *e*-gH. From (Proposition 2.20), *M* must be *e*-gH. This contradiction proves that *M* is *e*-gH. \Box

Corollary 2.22. Every nonzero module satisfies ACC on proper (non *e*-small) submodules is *e*-gH.

Proof We may assume that $M \neq 0$ has ACC on proper (non *e*-small) submodules and that \mathcal{F} is the property of being nonzero. By (Proposition 2.20), *M* must be *e*-gH. \Box

We will generalize the notion of *e*-gH modules as follows.

Definition 2.23. Let M_1 and M_2 be two *R*-modules. M_1 is called *e*-gH relative to M_2 , if for each epimorphism $g: M_1 \rightarrow M_2$, we have $kerg \ll_e M_1$.

Remark 2.24. Given the definition above,, we see that an R-module M is e-gH if and only if M is e-gH relative to M.

The features of the e-gH module relative to a module are described below.

Proposition 2.25. Let M_1 and M_2 be *R*-modules. Then the following conditions are equivalent:

(1) M_1 is *e*-gH relative to M_2 .

(2) For each $L \leq^{\oplus} M_1$, *L* is *e*-gH relative to M_2 .

(3) For each $L \leq M_1$, M_1/L is *e*-gH relative to M_2 .

Proof (1) \Rightarrow (2) Assume $M_1 = L \oplus K$, where $K \leq M_1$ and $g: L \to M_2$ a surjective. Let $\pi: M_1 \to L$ be a projection map. Then $g\pi: M_1 \to M_2$ is a surjective and hence $ker(g\pi) \ll_e M_1$, from (1). It is obvious that $ker(g\pi) = \pi^{-1}(kerg) = kerg \oplus K$. Thus, $kerg \oplus K \ll_e L \oplus K$ and hence $kerg \ll_e L$, by ([10], Proposition 2.5(3)).

(2) \Rightarrow (1) By taking $L = M_1$.

(1) \Rightarrow (3) Let $L \leq M_1$ and $g: M_1/L \rightarrow M_2$ a surjective. Hence $g\pi: M_1 \rightarrow M_2$ is a surjective, where $\pi: M_1 \rightarrow M_1/L$ is the natural map. By (1), $ker(g\pi) \ll_e M_1$. As $ker(g\pi) =$

 $\pi^{-1}(kerg)$, hence $\pi^{-1}(kerg) \ll_e M_1$, ([10], Proposition 2.5(1)) implies that $kerg = \pi(\pi^{-1}(kerg)) \ll_e M_1/L$. Therefore M_1/L is *e*-gH relative to M_2 . (3) \Rightarrow (1) By taking L = 0. \Box

Proposition 2.26. If *M* is a module with the property that for any $g \in End(M)$, there exists an $n \in \mathbb{Z}^+$ such that $kerg^n \cap Img^n \ll_e M$, then *M* is *e*-gH.

Proof Let $g \in End(M)$ is a surjective. By assumption, there is an integer $n \ge 1$ such that $kerg^n \cap Img^n \ll_e M$. It follows that $g^n \in End(M)$ is a surjective, i.e., $Img^n = M$. Thus, $kerg^n \cap Img^n = kerg^n \cap M = kerg^n \ll_e M$. It is easy to see that $kerg \le kerg^n$, therefore $kerg \ll_e M$ by ([10], Proposition 2.5(*a*)). Hence *M* is *e*-gH. \Box

Proposition 2.27. Let *M* be an *R*-module. If for any *R*-epimorphism $\varphi: M \to M$, there exist $n \ge 1$ such that $ker\varphi^n = ker\varphi^{n+i}$ for all $i \in \mathbb{Z}^+$, then *M* is *e*-gH.

Proof Let $\varphi \in End(M)$ be any surjective. We claim that $\ker \varphi^n \cap Im\varphi^n = 0$. Let $y \in \ker \varphi^n \cap Im\varphi^n$. Thus $\varphi^n(y) = 0$ and $y = \varphi^n(x)$ for some $x \in M$. Hence $\varphi^{2n}(x) = \varphi^n(y) = 0$ and hence $x \in \ker \varphi^{2n}$. But from our assumption we have that $\ker \varphi^n = \ker \varphi^{n+n} = \ker \varphi^{2n}$, and so $x \in \ker \varphi^n$ therefore $0 = \varphi^n(x) = y$. Hence $\ker \varphi^n \cap Im\varphi^n = 0$. As φ is a surjective, so $Im\varphi^n = M$, thus $\ker \varphi^n = 0$. But $\ker \varphi \subseteq \ker \varphi^n$, then $\ker \varphi \ll_e M$. Therefore M is e-gH. \Box

ACKNOWLEDGMENT

I want to thank Dr. Thaar Younis Ghawi, I am grateful for his continued support of my studies and research, for his perseverance, motivation and immense knowledge. I would also like to thank the referee(s) for their important recommendations that enriched this article.

References

[1] M.S. Abbas, On fully stable modules, Ph.D. Thesis, Univ. of Baghdad, Iraq, 1990.

[2] Sh. Asgari and A. Haghany, T-extending modules and t-Baer modules, Comm. Algebra 39(2011), 1605-1623

[3] J. Clark, C. Lomp, N. Vanaja, and R. Wisbauer, Lifting modules, supplements and projectivity in module theory, Front. Math., Birkhäuser, Basel (2006).

[4] F. Kasch, Modules and rings, 1982.

[5] T.Y. Ghawi, Some generalizations of g-lifting modules, Quasigroups and Related Systems, 2022, to appear.

[6] A. Ghorbani and A. Haghany, Generalized Hopfian modules, Journal of Algebra 255(2002), p. 324-341.

[7] K. R. Goodearl, Ring theory, Nonsingular rings and modules, Dekker, Newyork, 1976.

[8] V. A. Hiremath, Hopfian rings and Hopfian modules, Indian J. Pure Appl. Math. 17 (1986), p. 895-900.F. Kasch, Modules and rings module, 1982.

[9] K. Varadarajan, Hopfian and co-Hopfian objects, Publ. Mat. 36 (1992), p. 293-317.

[10] D.X. Zhou, and X.R. Zhang, small-essential submodule and morita duality, south-east Asian Bull. Math. 35(2011) 1051-1062