Decomposition Matrix for the projective Characters S_{28} , p=11 Ahmed Hussein Jassim Department of Mathematics University of Basrah, Basrah, Iraq ahmed h.jassim@uobasrah.edu.iq Orcid.org/0000-0001-5581-8326 Saeed-Abdulameer Taban Department of Mathematics University of Basrah, Basrah, Iraq saeed.taban@uobasrah.edu.iq Orcid.org/0000-0003-2133-6817 DOI: http://dx.doi.org/10.31642/JoKMC/2018/110112 Received Mar. 28, 2023. Accepted for publication May. 26, 2023 **Abstract**— In this work, we compute the decomposition matrix to the spin characteristics of S_28 for a given field of characteristic p=11, the connections between the irreducible modular spin characters and the irreducible spin characters of S_28 . The technique employed in this study is (r,r)-inducing, which creates projective characters for S_28 by using the projective characters of S_27 . Maple was used to seeing all available columns and then choosing the potentially appropriate columns of them. In order to explore irreducible modular spin characteristics, general correlations and theorems will be discovered as a result of this research. Keywords—Irreducible modular spin characters, Representation group, Decomposition matrix to the spin characters. ## I. INTRODUCTION The spin representations of S n are representations without Z in their kernel, as shown in [11], and are created by a central subgroup $Z=\{-1,1\}$ in the representation group \bar{S} n of the symmetric group S_n. The various components of the npartitions serve as labels for the spin characters of the spin representations of S_n, and they are indicated by $\langle \alpha \rangle$. In fact, there is one irreducible spin character represented by $[(\alpha)]^*$ that is self-associate if $\alpha = (\alpha \ 1, \alpha \ 2, \dots \alpha \ m)$ and n-m is even. If n-m is odd, there are two associate spin characters denoted by and $\langle \alpha \rangle'$ see [11,6]. The relationships between the irreducible spin characters and the irreducible modular spin characters of S n serve as the decomposition matrix for spin characters. The number of rows corresponds to the number of projective characters, and the number of columns to the number of (p,α) -regular classes [9]. Any spin characters of S n can be written as a liner combination using the irreducible spin character's non-negative coefficients [5]. The method (r,r)-inducing (restricting) is used to distribute the spin characters into p-blocks see [4,10]. Numerous individuals have made contributions to this area of study and do research on this subject [13,14,1,12,3,2]. In this study, we identify the spin character decomposition matrix for the S_28 over fields of characteristic p=11. Let's establish certain notations and terminologies before we state any results. The terms "p.s." (p.i.s.) and "m.s." (i.m.s.) stand for "principal spin character" (indecomposable) and "modular spin character" (irreducible), respectively. "d_i" stands for "p.i.s." of S_n, "D_i" stands for "p.i.s." of S_(n-1), and $\langle \rangle$ no is the number of i.m.s. ## II. PRELIMINARIES For the study, some important conclusions were needed. **Theorem 2.1** [11] Degree of the spin character $\langle \alpha_1, ..., \alpha_m \rangle$ = $2^{[(n-m)/2]} \frac{n!}{\prod_{i=1}^m \alpha_i!} \prod_{1 \le i < j \le m} \frac{(\alpha_i - \alpha_j)}{(\alpha_i + \alpha_j)}$ **Theorem 2.2** [7] Let *B* be a p-block G of defect one $|G| = m_0 p^a$ and let *b* be the number of *p*-conjugate classes to the irreducible ordinary character χ of G then: 1. There exists a positive integer number *N* such that the irreducible ordinary characters lying in the block *B* can be partitioned into two disjoint classes: $$B_1 = \{ \chi \in B | b, deg\chi \equiv Nmodp^a \},$$ $B_2 = \{ \chi \in B | b, deg\chi \equiv -Nmodp^a \}.$ 2. Each coefficient of the decomposition matrix of the block *B* is 1 or 0. **Theorem 2.3** [8] Let G be a group of order $m_0 p^a$, where $(p, m_0) = 0$. If c is a principal character of sub group H of G, then deg $c \equiv 0 \mod p^a$ **Theorem 2.4** [6] Let p be odd and n be even. If $p \nmid n$, then $\langle n \rangle = \varphi \langle n \rangle$ and $\langle n \rangle' = \varphi \langle n \rangle'$ are distinct irreducible modular spin characters of degree $2^{(n-2)/2}$. # III. DECOMPOSITION MATRIX FOR THE SPIN CHARACTERS OF S_{28} Decomposition matrix for \bar{S}_{28} of degree (332,276), and it is decomposed in to blocks of character it consists of 52 blocks which are B_1, B_2, B_3, B_4 of defect two, B_5, B_6, \dots, B_{18} of defect one the others block of defect zero. case 1. The decomposition matrix for the blocks B_1 of type associative as shown in the **Tables 1**. | Table1 l | Rlock R | | |----------|---------|--| | | | | | | | | | | | | | | | | | 17 | | 1. B |-----------------------|-------|-------|----------|--|---------|--|---------|-------|-----------|----------|----------|--|--|----------|----------|----------|----------|--|----------|----------|----------|--|----------|----------|--|----------|----------|----------|----------|--|----------|----------|----------|----------|----------|----------|--|----------|----------|----------| | spin characters | | | | | | 1 | | , - | 1 | | | | 1 | | | | | Dec | omj | oosi | tion | ma | itrix | | ı — | | | | | ı — | | | | | | | 1 | | | _ | | (28) | 1 | _ | ш | | \vdash | | (28) | _ | 1 | | <u> </u> | | ļ | | | | | | <u> </u> | <u> </u> | <u> </u> | ш | Ш | \vdash | | ⟨22,6⟩* | 1 | 1 | | 1 | ш | | | | (21,6,1) | | | 1 | | 1 | Ш | | | | (21,6,1) ['] | | | | 1 | | 1 | Ш | | | | (20,6,2) | | | | | 1 | | 1 | Ш | | | | (20,6,2) | | | | | | 1 | | 1 | (19,6,3) | | | | | | | 1 | | 1 | (19,6,3) | | | | | | | | 1 | | 1 | (18,6,4) | | | | | | | | | 1 | | 1 | (18,6,4) | | | | | | | | | | 1 | | 1 | (17,11)* | 1 | 1 | 1 | 1 | | | | | | | | | 1 | 1 | (17,10,1) | 1 | 1 | 1 | | 1 | | | | | | | | 1 | | 1 | (17,10,1) | 1 | 1 | | 1 | | 1 | | | | | | | | 1 | | 1 | (17,9,2) | | | | | 1 | | 1 | | | | 1 | | | | 1 | | 1 | П | П | | | (17,9,2) ['] | | | | | | 1 | | 1 | | | 1 | | | | | 1 | | 1 | (17,8,3) | | | | | | | 1 | | 1 | | | | | | | | 1 | | 1 | (17,8,3)' | | | | | | l | | 1 | 1 | 1 | | | | | | | | 1 | | 1 | | | | | | | | | | | | | | | | | | | П | | | (17,7,4) | | | | | | | | | 1 | | 1 | | | | | | | | 1 | | 1 | (17,7,4)' | | | | | | | | | | 1 | | 1 | | | | | | | | 1 | | 1 | (17,6,5) | | | | | | | | | | | 1 | | | | | | | | | | 1 | (17,6,5)' | | | | | | | | | 1 | | | 1 | | | | | | | | | | 1 | (15,7,6) | | | | | | | | | | | | | | | | | | | 1 | | 1 | | 1 | | | | | | | | | | | | | | | | | | | (15,7,6)' | 1 | | 1 | | 1 | | | | | | | | | | | | | | | | | | (14,8,6) | | | | | | | | | 1 | | | | | | | | 1 | | 1 | Ē | | Ē | 1 | Ī | 1 | | | | | | | | | | | | | | | | | (14,8,6)' | | | | | | | | | | | | | | | | | | 1 | | 1 | | | | 1 | | 1 | | | | | | | | | | | | | | | | (13,9,6) | | | | | | | | | | | | | | | 1 | | 1 | | | | | | | | 1 | | 1 | | | | | | | | | | | | | | | (13,9,6)' | | | | | | | | | 1 | | | | | | Ī | 1 | | 1 | | | | | | | Ē | 1 | | 1 | | | | | | | | | | | | | | (12,10,6) | 2 | | | | | | | | 1 | | | | 1 | 1 | 1 | | | Ē | | | | | | | | | 1 | | 1 | 1 | | | | | | | | | | | | (12,10,6)' | | 2 | | | | | | | | | | | 1 | 1 | | 1 | | | | | | | | | | | | 1 | 1 | 1 | | | | | | | | | | | | (11,10,6,1)* | | | | | | | | | 1 | | | | 1 | 1 | | | | | | | | | | | | | 1 | 1 | 1 | 1 | 1 | 1 | | | | | | | | | | (11,9,6,2)* | | | | | | | | | 1 | | | | | | | | | | | | | | | | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | | | | | | | (11,8,6,3)* | | | | t | | t | | t | 1 | | | t | | | | | | | | | | | 1 | 1 | 1 | 1 | | Ė | Ė | Ė | | Ť | 1 | 1 | 1 | 1 | | Н | П | | | (11,7,6,4)* | | | | t | | t | | t | 1 | | | t | | | | | | | | | | | 1 | | | Ħ | | | | | | | Ė | Ė | 1 | | | Н | П | | | (10,9,6,2,1) | | | | | | | | | 1 | | | | | | | | | | | | | | | Ī | | | | | 1 | | | | 1 | | Ē | Ť | 1 | | | | | (10,9,6,2,1)' | | | | | | | | | \vdash | - | 1 | | | _ | 1 | | | Ė | 1 | | | | (10,8,6,3,1) | | | | | | | | | \vdash | _ | 1 | | 1 | - | 1 | | 1 | | 1 | | | (10,8,6,3,1) | | | | | | | | 1 | 1 | - | 1 | | 1 | Ė | 1 | Ħ | 1 | | (10,7,6,4,1) | | | | | | | | | \dagger |
 - | | - | 1 | - | | Ħ | 1 | Ė | | (10,7,6,4,1) | | | \vdash | \vdash | | \vdash | | t | \vdash | | | \vdash | \vdash | | \vdash | | | <u> </u> | | _ | | <u> </u> | | \vdash | <u> </u> | H | | | | <u> </u> | | \vdash | | | _ | 1 | \vdash | H | - | 1 | | (9,8,6,3,2) | | | \vdash | \vdash | | \vdash | | t | \vdash | | | \vdash | \vdash | | \vdash | | | <u> </u> | | _ | | <u> </u> | | \vdash | <u> </u> | H | | | | <u> </u> | 1 | \vdash | | | _ | 1 | \vdash | H | 1 | _ | | (9,8,6,3,2)' | | | | | 1 | | 1 | + | 1 | 1 | 1 | | | | | | | | | - | | | | | | H | | | | | 1 | 1 | | | - | | | H | 1 | 1 | | (9,7,6,4,2) | | | | | 1 | | 1 | + | 1 | 1 | 1 | | | | | | | | | - | | | | | | H | | | | | | 1 | | | - | | 1 | H | 1 | | | (9,7,6,4,2)' | | | | | | <u> </u> | | ╁ | \vdash | - | 1 | 1 | 1 | | (8,7,6,4,3) | | | \vdash | \vdash | | \vdash | | + | \vdash | | | \vdash | \vdash | - | 1 | 1 | \vdash | 1 | | (8,7,6,4,3) | | | - | \vdash | | \vdash | | + | \vdash | | | \vdash | \vdash | - | 1 | 1 | \vdash | | | \0,7,0,4,3} | д | d | д | d | а | ٦ | ٦ | d | 4 | d | d | d | d | d | d | d | д | d | d | d | d | d | d | d | d | d | d | d | d | d | d | d | d | d | д | d | d | | d_{39} | d | | | u_1 | u_2 | u_3 | u_4 | μ_5 | u_6 | μ_7 | u_8 | u_9 | u_{10} | u_{11} | u_{12} | μ_{13} | u_{14} | u_{15} | u_{16} | u_{17} | u_{18} | u_{19} | u_{20} | u_{21} | u_{22} | u_{23} | u_{24} | u_{25} | u_{26} | u_{27} | u_{28} | u_{29} | u_{30} | u_{31} | u_{32} | u_{33} | u_{34} | u_{35} | u_{36} | u_{37} | u_{38} | u_{39} | u_{40} | **Proof.** Using (6,6)-inducing of p.i.s. method on D_1 for S_{27} to S_{28} we have $$D_1 \uparrow^{(6,6)} S_{28} = (\langle 27 \rangle^* + \langle 22,5 \rangle + \langle 22,5 \rangle' + \langle 16,11 \rangle + \langle 16,11 \rangle' + 2\langle 16,10,1 \rangle^* + 2\langle 12,10,5 \rangle^*) \uparrow^{(6,6)} S_{28}$$ = $\langle 28 \rangle + \langle 28 \rangle' + 2\langle 22,6 \rangle^* + 2\langle 17,11 \rangle^* + 2\langle 17,10,1 \rangle + 2\langle 17,10,1 \rangle' + 2\langle 12,10,6 \rangle + 2\langle 12,10,6 \rangle' = c_1$ Similarly, using $(\mathbf{r},\overline{\mathbf{r}})$ —inducing of p.i.s. for S_{27} to S_{28} gives $D_{111}\uparrow^{(0,1)}S_{27}=d_3, D_{112}\uparrow^{(0,1)}S_{27}=d_4, \quad D_3\uparrow^{(6,6)}S_{27}=c_2, \quad D_4\uparrow^{(6,6)}S_{27}=c_3, \quad D_5\uparrow^{(6,6)}S_{27}=c_4, \quad D_6\uparrow^{(6,6)}S_{27}=c_5, \quad D_{113}\uparrow^{(0,1)}S_{27}=d_{13}, D_{114}\uparrow^{(0,1)}S_{27}=d_{14}, D_8\uparrow^{(6,6)}S_{27}=c_6, \quad D_9\uparrow^{(6,6)}S_{27}=c_7, \quad D_{10}\uparrow^{(6,6)}S_{27}=c_8, D_{11}\uparrow^{(6,6)}S_{27}=c_{9}, \quad D_{12}\uparrow^{(6,6)}S_{27}=c_{10}, \quad D_{13}\uparrow^{(6,6)}S_{27}=c_{11}, D_{14}\uparrow^{(6,6)}S_{27}=c_{12}, \quad D_{115}\uparrow^{(0,1)}S_{27}=d_{29}, D_{116}\uparrow^{(0,1)}S_{27}=d_{30}, D_{16}\uparrow^{(6,6)}S_{27}=c_{12}, \quad D_{117}\uparrow^{(0,1)}S_{27}=d_{33}, \quad D_{118}\uparrow^{(0,1)}S_{27}=d_{34}, \quad D_{119}\uparrow^{(0,1)}S_{27}=d_{35}, \quad D_{120}\uparrow^{(0,1)}S_{27}=d_{36}, \quad D_{19}\uparrow^{(6,6)}S_{27}=c_{14}, D_{20}\uparrow^{(6,6)}S_{27}=c_{15},$ respectively. Now that $\langle 28 \rangle$ and $\langle 28 \rangle'$ are distinct irreducible modular spin characters (**Theorem 2.4**), c_1 must divide into d_1 , d_2 . Since $\langle 20,6,2 \rangle \neq \langle 20,6,2 \rangle'$ are distinct irreducible modular spin characters so c_2 or c_3 is split. Suppose c_2 is split to d_5 , d_6 , but $\langle 19,6,3 \rangle \neq \langle 19,6,3 \rangle'$ then c_3 split to d_7 , d_8 . If c_3 split to d_7 , d_8 , and frome $(11,\alpha)$ -regular classes $$\langle 20,6,2 \rangle - \langle 19,6,3 \rangle + \langle 18,6,4 \rangle \neq$$ $\langle 20,6,2 \rangle' - \langle 19,6,3 \rangle' + \langle 18,6,4 \rangle'$ (1 then c_2 also split to d_5 , d_6 . So in both cases we get c_2 and c_3 are splits. A split is made in c_4 or c_5 because of $\langle 18,6,4 \rangle \neq \langle 18,6,4 \rangle'$. If c_4 is divided into d_9 and d_{10} , However, $\langle 17,6,5 \rangle \neq \langle 17,6,5 \rangle'$ split c_5 to d_{11} , d_{12} after that. If c_5 split, and frome $(11,\alpha)$ -regular classes $$\begin{array}{ll} \langle 17,7,4\rangle - \langle 17,6,5\rangle \neq \langle 17,7,4\rangle' - \langle 17,6,5\rangle' & (2)\\ \text{then } c_4 \text{ split , so in both cases we get } c_4 \text{ and } c_5 \text{ are splits.}\\ \text{Since } \langle 17,9,2\rangle \neq \langle 17,9,2\rangle' \text{ so } c_6 \text{ or } c_7 \text{ is split. Suppose } c_6 \text{ is split to } d_{15},\ d_{16},\ \text{but } \langle 14,8,6\rangle \neq \langle 14,8,6\rangle' \text{ then } c_7 \text{ split to } d_{17},d_{18} \text{ .} \text{ If } c_7 \text{ split to } d_{17},d_{18} \text{ , and frome } (11,\alpha)\text{-regular classes} \end{array}$$ $$\langle 17,9,2 \rangle - \langle 17,8,3 \rangle + \langle 17,7,4 \rangle$$ $\neq \langle 17,9,2 \rangle' - \langle 17,8,3 \rangle' + \langle 17,7,4 \rangle'$ (3) then c_6 split, so in both cases we get c_6 and c_7 are splits. Since $\langle 17,7,4 \rangle \neq \langle 17,4,4 \rangle'$ it follows that either c_8 or c_9 is split. Suppose c_8 is split to d_{19} , d_{20} , but $\langle 17,6,5 \rangle \neq \langle 17,6,5 \rangle'$ then c_9 split to d_{21} , d_{22} . If c_9 split, and frome $(11, \alpha)$ -regular classes $\langle 17,7,4 \rangle - \langle 17,6,5 \rangle \neq \langle 17,7,4 \rangle' - \langle 17,6,5 \rangle'$ (4) then c_8 split, so in both cases we get c_8 and c_9 are splits. c_{10} or c_{11} is split because of $\langle 14,8,6 \rangle \neq \langle 14,8,6 \rangle'$. Suppose c_{10} is divided into d_{23} and d_{24} . However, $\langle 13,9,6 \rangle \neq \langle 13,9,6 \rangle'$ then split c_{11} to d_{25},d_{26} . If c_{11} split, and frome $(11,\alpha)$ -regular classes $$\langle 14,8,6 \rangle - \langle 13,9,6 \rangle + \langle 12,10,6 \rangle \neq$$ $\langle 14,8,6 \rangle' - \langle 13,9,6 \rangle' + \langle 12,10,6 \rangle'$ (5) then c_{10} split, so in both cases we get c_{10} and c_{11} are splits. Since $\langle 13,9,6 \rangle \neq \langle 13,9,6 \rangle'$ so $c_{12}=d_{27}+d_{28}$ or there are two columns φ_1,φ_2 such that $$\begin{split} \varphi_1 &= a_1 \langle 13,9,6 \rangle + a_2 \langle 12,10,6 \rangle + a_3 \langle 11,10,6,1 \rangle^* + \\ a_4 \langle 11,9,6,2 \rangle^* + a_5 \langle 11,8,6,3 \rangle^* + a_6 \langle 11,7,6,4 \rangle^* + \\ a_7 \langle 10,9,6,2,1 \rangle + a_8 \langle 10,8,6,3,1 \rangle + a_9 \langle 10,7,6,4,1 \rangle \\ +a_{10} \langle 9,8,6,3,2 \rangle + a_{11} \langle 9,7,6,4,2 \rangle + a_{12} \langle 8,7,6,4,3 \rangle \end{split}$$ $$\begin{split} \varphi_2 &= a_1 \langle 13.9.6 \rangle' + a_2 \langle 12.10.6 \rangle + a_3 \langle 11.10.6.1 \rangle^* \\ &+ a_4 \langle 11.9.6.2 \rangle^* + a_5 \langle 11.8.6.3 \rangle^* + a_6 \langle 11.7.6.4 \rangle^* + \end{split}$$ $a_7(10,9,6,2,1)' + a_8(10,8,6,3,1)' + a_9(10,7,6,4,1)' + a_{10}(9,8,6,3,2)' + a_{11}(9,7,6,4,2)' + a_{12}(8,7,6,4,3)'$ to find are since $(13,9,6) \downarrow S_{27} = (12,9,6)^{*2} + (13,8,6)^{*2} + (13,9,5)^{*4} = 8$ of i.m.s., then we have $a_1 \in \{0,1,2,3,4\}$. In the same way we got $a_2, a_6 \in \{0,1,\ldots,6\}, \ a_3 \in \{0,1,\ldots,8\}, \ a_4, \ a_5 \in \{0,1,\ldots,12\}, \ a_7, \ a_9 \in \{0,1,\ldots,4\}, \ a_8 \in \{0,1,\ldots,7\}, \ a_{10}, a_{11} \in \{0,1,2,3\}, \ a_{12} \in \{0,1,\}.$ let $a_1 = 1$ (if $a_1 = 0$ then c_{12} is split). since $(13,9,6) \downarrow S_{27} \cap (11,7,6,4)^* \downarrow S_{27}$ has no i.m.s so $a_6 = 0$, the same way we get a_7, \ldots, a_{12} are equal to zero, , we must discuss all probabilities such that the degree $\varphi_1, \varphi_2 \equiv 0 \mod 11^2$, that's difficult, so we do the algorithm by maple program in appendix to help us and we find it are equal to 352 probabilities, therefore, we aim to limit the number of possibilities, since inducing m.s. is m.s. we have: Similarly in the following equations $$(\langle 11,8,6,2 \rangle - \langle 13,8,6 \rangle^* + \langle 17,8,2 \rangle^*) \uparrow^{(3,9)}$$ $$hence \ a_4 \ge a_1$$ $$(\langle 13,8,6 \rangle^* - \langle 11,8,6,2 \rangle - \langle 10,8,6,2,1 \rangle^*)$$ $$\uparrow^{(3,9)} S_{28} \ hence \ a_1 \ge a_4 \ \therefore \ a_1 = a_4$$ $$(8)$$ then we get degrees $\varphi_1, \varphi_2 \equiv 0 \mod 11^2$ only when $\varphi_1 + \varphi_2 = m(d_{27} + d_{28})$, $m \in \{1,2,3,4\}$ in order for " φ_1, φ_2 is split the c_{12} ". Since $\langle 9,8,6,3,2 \rangle \neq \langle 9,8,6,3,2 \rangle'$ so c_{13} or c_{15} is split. Suppose c_{13} is split to d_{31} , d_{32} , but $\langle 9,7,6,4,2 \rangle \neq \langle 9,7,6,4,2 \rangle'$ then c_{15} split to d_{39}, d_{40} . If c_{15} split and frome $(11,\alpha)$ -regular classes. $$\langle 9,8,6,3,2 \rangle - \langle 9,7,6,4,2 \rangle + \langle 8,7,6,4,3 \rangle \neq (9,8,6,3,2)' - \langle 9,7,6,4,2 \rangle' + \langle 8,7,6,4,3 \rangle'$$ then c_{13} split, so in both cases we get c_{13} and c_{15} are splits. Finly, since $\langle 8,7,6,4,3 \rangle \neq \langle 8,7,6,4,3 \rangle'$ so c_{14} divided or there are two columns φ_1,φ_2 . Suppose $a_{12}=1$, but block $\boldsymbol{B_1}$ is associate so there must be another column associate with c_{14} then $\langle 8,7,6,4,3 \rangle$ has 3 i.m.s., but $\langle 8,7,5,4,3 \rangle \downarrow S_{27}$ has only two of i.m.s. so
this contradicts the hypothesis, then $c_{14}=d_{39}+d_{40}$. Using the information above, we divide c_1 into c_{15} and then turn to **Table 1**. Case 2. Table 2 shows the decomposition matrices for the spin block B_2 of the double type. Table 2. Block B_2 | Spin character | | | | | | | | 1401 | | ecomp | | ı matr | ix | | | | | | | | |----------------| | ⟨27,1⟩* | 1 | | | | | | | | | COMP | 0014101 | | <u> </u> | | | | | | | | | (23,5)* | 1 | 1 | (22,5,1) | 1 | 1 | 1 | 1 | 1 | 1 | | | | | | | | | | | | | | | | | | (20,5,2,1)* | | | 1 | | 1 | | | | | | | | | | | | | | | | | (19,5,3,1)* | | | | 1 | 1 | 1 | | | | | | | | | | | | | | | | (18,5,4,1)* | - | | | | 1 | 1 | | | | | | | | | | | | | | | | ⟨16,12⟩* | | 1 | | | | | 1 | | | | | | | | | | | | | | | (16,11,1) | 1 | 1 | 1 | | | | 1 | 1 | | | | | | | | | | | | | | (16,9,2,1)* | | | 1 | 1 | | | | 1 | 1 | | | | | | | | | | | | | (16,8,3,1)* | | | | 1 | 1 | | | | 1 | 1 | | | | | | | | | | | | (16,7,4,1)* | | | | | 1 | 1 | | | | 1 | 1 | | | | | | | | | | | (16,6,5,1)* | | | | | | 1 | | | | | 1 | | | | | | | | | | | (15,7,5,1)* | | | | | | | | | | 1 | 1 | 1 | | | | | | | | | | (14,8,5,1)* | | | | | | | | | 1 | 1 | | 1 | 1 | | | | | | | | | (13,9,5,1)* | | | | | | | | 1 | 1 | | | | 1 | 1 | | | | | | | | (12,11,5) | 1 | | | | | | 1 | 1 | | | | | | | 1 | | | | | | | (12,10,5,1)* | | | | | | | 2 | 1 | | | | | | 1 | 2 | 2 | | | | | | (12,9,5,2)* | | | | | | | | | | | | | 1 | 1 | 1 | 2 | 1 | | | | | (12,8,5,3)* | | | | | | | | | | | | 1 | 1 | | | | 1 | 1 | | | | (12,7,5,4)* | | | | | | | | | | | | 1 | | | | | | 1 | | | | (11,9,5,2,1) | | | | | | | | | | | | | | | 1 | 1 | 1 | | 1 | | | (11,8,5,3,1) | | | | | | | | | | | | | | | | 1 | 1 | 1 | 1 | 1 | | (11,7,5,4,1) | | | | | | | | | | | | | | | | | | 1 | | 1 | | (9,8,5,3,2,1)* | | | | | | | | | | | | | | | | 1 | | | | 1 | | (9,7,5,4,2,1)* | | | | | | | | | | | | | | | | | | | 1 | 1 | | (8,7,5,4,3,1)* | | | | | | | | | | | | | | | | | | | 1 | | | _ | d_{41} | d_{42} | d_{43} | d_{44} | d_{45} | d_{46} | d_{47} | d_{48} | d_{49} | d_{50} | d_{51} | d_{52} | d_{53} | d_{54} | d_{55} | d_{56} | d_{57} | d_{58} | d_{59} | d_{60} | **Proof.** Using (r, \overline{r}) - inducing of p.i.s. $D_{21}, D_2, D_3, ..., D_{11}, D_{185}, D_{45}, D_{47}, D_{49}, D_{16}, D_{162}, D_{55}, D_{19}, D_{20}$, for S_{27} to S_{28} , and on $(11, \alpha)$ -regular classes: - 1. $\langle 22,5,1 \rangle = \langle 22,5,1 \rangle'$ - 2. $\langle 16,11,1 \rangle = \langle 16,11,1 \rangle'$ - 3. $\langle 12,11,5 \rangle = \langle 12,11,5 \rangle'$ - 4. $\langle 11,9,5,2,1 \rangle = \langle 11,9,5,2,1 \rangle'$ - 5. $\langle 11,8,5,3,1 \rangle = \langle 11,8,5,3,1 \rangle'$ - 6. $\langle 11,7,5,4,1 \rangle = \langle 11,7,5,4,1 \rangle'$ - 7. $\langle 9,7,5,4,2,1 \rangle^* = \langle 8,7,5,4,3,1 \rangle^* + \langle 11,7,5,4,1 \rangle \langle 12,7,5,4 \rangle^* + \langle 15,7,5,1 \rangle^* \langle 16,7,4,1 \rangle^* + \langle 18,5,4,1 \rangle^*$ - 8. $\langle 11,7,5,4,1 \rangle = \langle 11,8,5,3,1 \rangle \langle 11,9,5,2,1 \rangle + \langle 12,11,5 \rangle \langle 16,11,1 \rangle + \langle 23,5 \rangle^* \langle 27,1 \rangle^*$ - 9. $\langle 12,8,5,3 \rangle^* = \langle 12,7,5,4 \rangle^* + \langle 12,9,5,2 \rangle^* \langle 12,10,5,1 \rangle^* + \langle 12,11,5 \rangle + \langle 16,12 \rangle^* \langle 23,5 \rangle^*$ - 10. $\langle 16,7,4,1 \rangle^* = \langle 16,6,5,1 \rangle^* + \langle 16,8,3,1 \rangle^* \langle 16,9,2,1 \rangle^* + \langle 16,11,1 \rangle \langle 16,12 \rangle^* + \langle 27,1 \rangle^*$ - 11. $\langle 12,10,5,1 \rangle = 2\langle 9,8,5,3,2,1 \rangle^* 2\langle 9,7,5,4,2,1 \rangle^* + 2\langle 8,7,5,4,3,1 \rangle^* + 2\langle 12,11,5 \rangle 2\langle 27,1 \rangle^* \langle 13,9,5,1 \rangle^* + \langle 14,8,5,1 \rangle^* \langle 15,7,5,1 \rangle^* + \langle 16,6,5,1 \rangle^* \langle 18,5,4,1 \rangle^* + \langle 19,5,3,1 \rangle^* \langle 20,5,2,1 \rangle^* + \langle 22,5,1 \rangle^* \langle 23,5 \rangle^* \langle 27,1 \rangle^*.$ - 12. $\langle 9,8,5,3,2,1 \rangle^* = \langle 11,8,5,3,1 \rangle \langle 8,7,5,4,3,1 \rangle^* \langle 12,8,5,3 \rangle^* + \langle 15,7,5,1 \rangle^* \langle 16,7,4,1 \rangle^* + \langle 18,5,4,1 \rangle^*$ Then the matrix contains at most 32 columns since the number of the i.m.s. is equal or less than the number of the spin characters, but **Table 2** contains at most 20 columns since there are 12 equations corresponding the spin characters of S_{28} in B_2 . Then we get **Table 2**. Case 3. The decomposition matrix for the spin block B_3 of type double is a Table 3. Table 3. Block B_3 | Spin character | | | | | | | | | Deco | mposi | tion n | ıatrix | | | | | | | | | |------------------| | (26,2)* | 1 | (24,4)* | 1 | 1 | (22,4,2) | | 1 | 1 | | | | | | | | | | | | | | | | | | | (21,4,2,1)* | | | 1 | 1 | | | | | | | | | | | | | | | | | | (19,4,3,2)* | | | | 1 | 1 | | | | | | | | | | | | | | | | | (17,5,4,2)* | | | | | 1 | 1 | | | | | | | | | | | | | | | | (16,6,4,2)* | | | | | 1 | 1 | 1 | | | | | | | | | | | | | | | (15,13) * | | 1 | | | | | | 1 | | | | | | | | | | | | | | (15,11,2) | 1 | 1 | 1 | | | | | 1 | 1 | | | | | | | | | | | | | (15,10,2,1)* | | | 1 | 1 | | | | | 1 | 1 | | | | | | | | | | | | (15,8,3,2)* | | | | 1 | 1 | | | | | 1 | 1 | | | | | | | | | | | (15,7,4,2)* | | | | | 1 | | 1 | | | | 1 | 1 | | | | | | | | | | (15,6,5,2)* | | | | | | | 1 | | | | | 1 | | | | | | | | | | (14,8,4,2)* | | | | | | | | | | 1 | 1 | 1 | 1 | | | | | | | | | (13,11,4) | 1 | | | | | | | 1 | 1 | | | | | 1 | | | | | | | | (13,10,4,1)* | | | | | | | | 2 | 1 | 1 | | | | 1 | 1 | | | | | | | (13,9,4,2)* | | | | | | | | | | 1 | | | 1 | | 1 | 1 | | | | | | (13,8,4,3)* | | | | | | | | | | | | 1 | 1 | | | 1 | 1 | | | | | (13,6,5,4)* | | | | | | | | | | | | 1 | | | | | 1 | | | | | (12,10,4,2)* | | | | | | | | 2 | | | | | | 2 | 1 | 1 | | 2 | | | | (11,10,4,2,1) | | | | | | | | | | | | | | 1 | | 1 | | 1 | 1 | | | (11,8,4,3,2) | | | | | | | | | | | | | | | | 1 | 1 | 1 | 1 | 1 | | (11,6,5,4,2) | | | | | | | | | | | | | | | | | 1 | | | 1 | | (10,8,4,3,2,1)* | | | | | | | | | | | | | | | | | | 1 | | 1 | | (10,6,5,4,2,1)* | | | | | | | | | | | | | | | | | | | 1 | 1 | | (8,6,5,4,3,2)* | | | | | | | | | | | | | | | | | | | 1 | | | | d_{61} | d_{62} | d_{63} | d_{64} | d_{65} | d_{66} | d_{67} | d_{68} | d_{69} | d_{70} | d_{71} | d_{72} | d_{73} | d_{74} | d_{75} | d_{76} | d_{77} | d_{78} | d_{79} | d_{80} | **Proof.** Using (r, \overline{r}) -inducing of p.i.s. D_{21} , D_{23} , D_{25} , D_{27} , D_{29} , $D_{31},\ D_{33},\ D_{35},\ D_{79},\ D_{38},\ D_{41},\ D_{43},\ D_{218},\ D_{87},\ D_{89},\ D_{53},\ D_{55},$ D_{124}, D_{57}, D_{59} of S_{27} to S_{28} , and on (11, α)-regular classes: - 1. $\langle 22,4,2 \rangle = \langle 22,4,2 \rangle'$ - 2. $\langle 15,11,2 \rangle = \langle 15,11,2 \rangle'$ - 3. $\langle 13,11,4 \rangle = \langle 13,11,4 \rangle'$ - 4. $\langle 11,10,4,2,1 \rangle = \langle 11,10,4,2,1 \rangle'$ - 5. $\langle 11,8,4,3,2 \rangle = \langle 11,8,4,3,2 \rangle^{6}$ - 6. $\langle 11,6,5,4,2 \rangle = \langle 11,6,5,4,2 \rangle'$ - 7. $(15,6,5,2)^* =$ $(15,7,4,2)^* - (15,8,3,2)^* + (15,10,2,1)^* - (15,11,2) +$ $(15,13)^* - (26,2)^*$ - 8. $\langle 13,6,5,4 \rangle^* =$ $\langle 13,8,4,3 \rangle^* - \langle 13,9,4,2 \rangle^* + \langle 13,10,4,1 \rangle^* - \langle 13,11,4 \rangle (15,13)^* + (26,2)^*$ - 9. $\langle 11,6,5,4,2 \rangle = \langle 11,8,4,3,2 \rangle \langle 11,10,4,2,1 \rangle +$ $\langle 13,11,4 \rangle - \langle 15,11,2 \rangle + \langle 22,4,2 \rangle$ - 10. $\langle 10,6,5,4,2,1 \rangle^* = \langle 11,6,5,4,2 \rangle + \langle 8,6,5,4,3,2 \rangle^*$ $-\langle 13,6,5,4\rangle^* + \langle 15,6,5,2\rangle^* - \langle 16,6,4,2\rangle^* + \langle 17,5,4,2\rangle^*$ - 11. $2\langle 8,6,5,4,3,2\rangle^* = 2\langle 11,10,4,2,1\rangle \langle 12,10,4,2\rangle^* (13,9,4,2)^* + (13,10,4,1)^* - (13,11,4) + (14,8,4,2)^* \langle 15,7,4,2 \rangle^* - \langle 15,10,2,1 \rangle^* + \langle 15,11,2 \rangle + \langle 15,13 \rangle^* +$ $(16,6,4,2)^* - (17,5,4,2)^* + (19,4,3,2)^* - (24,4)^* +$ 2(26,2)* - 12. $\langle 11,8,4,3,2 \rangle = \langle 10,8,4,3,2,1 \rangle^* + \langle 8,6,5,4,3,2 \rangle^* \langle 13,8,4,3 \rangle^* + \langle 14,8,4,2 \rangle^* - \langle 15,8,3,2 \rangle^* + \langle 19,4,3,2 \rangle^*$ Then the matrix contains at most 20 columns since there are 12 equations corresponding the spin characters of S_{28} in B_3 . Then we get **Table 3**. Case 4. The block B_4 of type associate's decomposition matrix, as given in Tables 4. Decomposition matrix Spin character (25,2,1) (25.2.1) (24,3,1) 24.3.1 (23,3,2) (23,3,2) (22,3,2,1)* 1 1 1 (18,4,3,2,1) 1 (18,4,3,2,1)'(17,5,3,2,1)(16,6,3,2,1) (16,6,3,2,1) (15,7,3,2,1) (15,7,3,2,1) 1 (14,13,1) (14,13,1) (14,12,2) 1 (14.12.2)1 1 1 (14,11,2,1)1 1 (14,8,3,2,1) 1 1 (14,8,3,2,1)'1 (14,7,4,2,1) (14,7,4,2,1)'(14,6,5,2,1) (14,6,5,2,1) (13,12,3) (13,12,3) (13,11,3,1)* 1 1 1 1 1 1 1 1 1 1 1 (13,9,3,2,1) 1 (13,9,3,2,1) (13,7,4,3,1) (13,7,4,3,1) 1 (13,6,5,3,1) (13,6,5,3,1)'(12,11,3,2) 1 1 1 (12,10,3,2,1) 1 (12,10,3,2,1) (12,7,4,3,2) 1 1 (12,7,4,3,2) (12,6,5,3,2) (12,6,5,3,2) (11,7,4,3,2,1)* 1 | 1 | 1 1 (11,6,5,3,2,1) 1 (7,6,5,4,3,2,1) (7,6,5,4,3,2,1) d_{95} d_{91} **Proof.** The following values are obtained by using (r, \bar{r}) inducing
of p.i.s. for S_{27} to S_{28} D_{101} , D_{106} , D_{65} , D_{67} , D_{68} , ..., $D_{76},\ D_{107},\ D_{79},\ D_{81},\ D_{82},\ ...,\ D_{87},\ D_{89},\ D_{90},\ D_{109},\ D_{110},\ D_{95},$ D_{97} , D_{98} , D_{99} respectively. Since $\langle 25,2,1 \rangle \neq \langle 25,2,1 \rangle'$ so c_1 divided or there are two columns φ_1, φ_2 also since $\langle 25, 2, 1 \rangle \downarrow$ $S_{27} = \langle 24,2,1 \rangle^{*1} + \langle 25,2 \rangle^{1} = 2$ of i.m.s., then we have $a_1 \in \{0,1\}$. In the same way we got $a_{26} = 0$, $a_5 \in \{0,1\}$, a_4 , $a_6, a_9 \in \{0,1,2\}, a_2, a_3, a_7, a_8, a_{14}, a_{25} \in \{0,1,2,3\}, a_{12}, a_{17},$ $a_{19} \in \{0,1,\dots,4\}, \quad a_{13}, \quad a_{23}, \quad a_{24} \in \{0,1,\dots,5\}, \quad a_{18}, \quad a_{20} \in$ $\{0,1,\ldots,6\},\quad a_{11},\quad a_{15}\in\{0,1,\ldots,7\},\quad a_{22}\in\{0,1,\ldots,8\},\quad a_{10},$ $a_{16} \in \{0,1,\dots,9\},\, a_{21} \in \{0,1,\dots,10\}.$ let $a_1 = 1 (\text{if } a_1 = 0 \text{ then }$ c_1 is split), and since block B_4 is associate so there must be another column associate with c_1 then $\langle 25,2,1 \rangle$ has 3 i.m.s but $\langle 25,2,1 \rangle \downarrow S_{27}$ has only two of i.m.s. so that $a_1 = 0$, then $c_1 = d_{81} + d_{82}$. Since $\langle 23,3,2 \rangle \neq \langle 23,2,1 \rangle'$ so $c_2 = d_{83} + d_{82} = d_{83} + d_{83} = d_{83} + d_{83} = d_{83} = d_{83} + d_{83} = d_{83} = d_{83} + d_{83} = d_{83}$ d_{84} , $c_3 = d_{85} + d_{86}$ or there are two columns φ_1, φ_2 . To find are let $a_3 \in \{1,2,3\}$, since $\langle 23,3,2 \rangle \downarrow S_{27} \cap \langle 18,4,3,2 \rangle \downarrow S_{27}$ has no i.m.s so $a_5 = 0$, the same way we get $a_6, a_7, a_8, a_{12}, a_{13}, ..., a_{25}$ are equal to zero, we get $\varphi_1 = a_2 \langle 24,3,1 \rangle + a_3 \langle 23,3,2 \rangle + a_4 \langle 22,3,2,1 \rangle^* + a_9 \langle 14,13,1 \rangle + a_{10} \langle 14,12,2 \rangle + a_{11} \langle 14,11,2,1 \rangle^*$ $\varphi_2 = a_2 \langle 24,3,1 \rangle' + a_3 \langle 23,3,2 \rangle' + a_4 \langle 22,3,2,1 \rangle^* + a_9 \langle 14,13,1 \rangle' + a_{10} \langle 14,12,2 \rangle' + a_{11} \langle 14,11,2,1 \rangle^*$ we must discuss all probabilities such that the degree $\varphi_1, \varphi_2 \equiv 0 \ mod \ 11^2$, so we do the algorithm by maple program in appendix to help us and we find it are equal to 123 probabilities, therefore, since inducing m.s. is m.s. then: $$(\langle 14,13 \rangle - \langle 24,3 \rangle + \langle 25,2 \rangle) \uparrow^{(0,1)} S_{28}$$ $$hence \ a_9 \ge a_2$$ $$(\langle 24,3 \rangle - \langle 14,13 \rangle + \langle 12,10,3,2 \rangle) \uparrow^{(0,1)} S_{28}$$ $$hence \ a_2 \ge a_9 \ \therefore \ a_2 = a_9$$ $$(\langle 23,3,1 \rangle^* - \langle 14,12,1 \rangle^* + \langle 12,11,3,1 \rangle)$$ $$\uparrow^{(0,1)} S_{28} \ hence \ a_2 + a_3 \ge a_9 + a_{10}$$ $$(12)$$ $$((14,12,1)^* - (23,3,1)^*) \uparrow^{(0,1)} S_{28} hence$$ (13) $a_9 + a_{10} \ge a_2 + a_3 : a_2 + a_3 = a_9 + a_{10}$ We get degrees $\varphi_1, \varphi_2 \equiv 0 \mod 11^2$ only when $\varphi_1 + \varphi_2 = m(d_{83} + d_{84}) + n(d_{85} + d_{86})$ such that $m = 0, n \in \{1,2,3\}$ or $m = 1, n \in \{0,1,2\}$ or $m = 2, n \in \{0,1\}$ then c_2 and c_3 splits. Since $\langle 14,13,1 \rangle \neq \langle 14,13,1 \rangle'$ so $c_4 = d_{97} + d_{98}$ or there are two columns φ_1, φ_2 . Let $a_9 \in \{1,2\}$ (if $a_9 = 0$ then c_4 is split), since $\langle 14,13,1 \rangle \downarrow S_{27} \cap \langle 14,8,3,2,1 \rangle \downarrow S_{27}$ has no i.m.s so $a_{12} = 0$, the same way we get $a_{13}, a_{14}, a_{17}, a_{18}, a_{19}, a_{22}, \ldots, a_{26}$ are equal to zero, then we get $$\begin{split} \varphi_1 &= a_9 \langle 14,13,1 \rangle + a_{10} \langle 14,12,2 \rangle + a_{11} \langle 14,11,2,1 \rangle^* \\ &+ a_{15} \langle 13,12,3 \rangle + a_{16} \langle 13,11,3,1 \rangle^* + a_{20} \langle 12,11,3,2 \rangle^* \\ &+ a_{21} \langle 12,10,3,2,1 \rangle, \end{split}$$ $\varphi_2 = a_9 \langle 14,13,1 \rangle' + a_{10} \langle 14,12,2 \rangle' + a_{11} \langle 14,11,2,1 \rangle^* + a_{15} \langle 13,12,3 \rangle' + a_{16} \langle 13,11,3,1 \rangle^* + a_{20} \langle 12,11,3,2 \rangle^* + a_{21} \langle 12,10,3,2,1 \rangle'$. so we do the algorithm by maple program in appendix to help us and we find it are equal to 8146 probabilities, therefore, since inducing m.s. is m.s. then: $$(\langle 13,11,2,1\rangle + \langle 24,2,1\rangle^* - \langle 13,12,2\rangle) \uparrow^{(3,9)} S_{28}$$ hence $a_{11} + a_{16} \ge a_{10} + a_{15}$ (14) $((13,12,2)^* - (13,11,2,1)^* + (13,8,3,2,1))$ $\uparrow^{(3,9)} S_{28} \ hence \ a_{10} + a_{15} \ge a_{11} + a_{16}$ $\therefore a_{10} + a_{15} = a_{11} + a_{16}$ (15) $(\langle 12,11,3,1\rangle + \langle 23,3,1\rangle^* - \langle 14,12,1\rangle^*)$ $\uparrow^{(2,10)} S_{28} \text{ hence } a_{20} \ge a_{10}$ (16) $(\langle 14,12,1\rangle^* - \langle 12,11,3,1\rangle + \langle 12,9,3,2,1\rangle^*)$ $\uparrow^{(2,10)} S_{28} \text{ hence } a_{10} \ge a_{20} : a_{10} = a_{20}$ (17) $(\langle 13,10,3,1\rangle^* - \langle 14,13\rangle + \langle 24,3\rangle)$ $\uparrow^{(0,1)} S_{28} \ hence \ a_{16} \ge a_9$ (18) $(\langle 13,10,3,1\rangle + \langle 13,10,3,1\rangle' - \langle 13,11,3\rangle^* + \langle 25,2\rangle + \langle 25,2\rangle^*) \uparrow^{(0,1)} S_{28} \ hence \ a_{16} \ge a_{15}$ (19) $(\langle 14,12,1\rangle^* - \langle 12,9,3,2,1\rangle^* + \langle 12,11,3,1\rangle)$ $\uparrow^{(2,10)} S_{28}hence a_9 + a_{21} \ge a_{16}$ (20) $$(\langle 11,10,3,2,1\rangle^* + \langle 14,13\rangle + \langle 14,13\rangle' + \langle 13,9,3,2\rangle - \langle 12,10,3,2\rangle) \uparrow^{(0,1)} S_{28}$$ $hence \ a_9 \ge a_{20}$ (21) then we get degrees $\varphi_1, \varphi_2 \equiv 0 \mod 11^2$ only when $\varphi_1 + \varphi_2 = m(d_{97} + d_{98}), m \in \{1,2\}$, so that $c_4 = d_{97} + d_{98}$. Since $\langle 14,12,2 \rangle \neq \langle 14,12,2 \rangle'$ so c_5 split or there are two columns φ_1, φ_2 . Let $a_{10} \in \{1,2,\ldots,9\}$, since $\langle 14,12,2 \rangle \downarrow S_{27} \cap \langle 14,8,3,2,1 \rangle \downarrow S_{27}$ has no i.m.s then $a_{12} = 0$, in the same a_{13} , $a_{14}, a_{17}, a_{18}, a_{19}, a_{22}, \ldots, a_{25}$ are equal to zero, then we get $\varphi_1 = a_{10}\langle 14,12,2 \rangle + a_{11}\langle 14,11,2,1 \rangle^* + a_{15}\langle 13,12,3 \rangle + a_{16}\langle 13,11,3,1 \rangle^* + a_{20}\langle 12,11,3,2 \rangle^* + a_{21}\langle 12,10,3,2,1 \rangle,$ $\varphi_2 = a_{10}\langle 14,12,2 \rangle' + a_{11}\langle 14,11,2,1 \rangle^* + a_{15}\langle 13,12,3 \rangle' + a_{16}\langle 13,11,3,1 \rangle^* + a_{20}\langle 12,11,3,2 \rangle^* + a_{21}\langle 12,10,3,2,1 \rangle'$. we must discuss all probabilities such that the degree $\varphi_1, \varphi_2 \equiv 0 \mod 11^2$, by maple program in appendix to help us and we find it are equal to **3667** probabilities, therefore, $$(\langle 11,10,3,2,1\rangle^* + \langle 14,13\rangle + \langle 14,13\rangle' + \langle 13,9,3,2\rangle - \langle 12,10,3,2\rangle) \uparrow^{(0,1)} S_{28}$$ $hence \ a_{21} \ge a_{20} + a_{21} : a_{20} = 0$ (22) and Eqs. (14-17) get degrees $\varphi_1, \varphi_2 \not\equiv 0 \mod 11^2$ contradiction with Theorem 2.3. Then $c_5 = d_{99} + d_{100}$. Since $\langle 13,12,3 \rangle \neq \langle 13,12,3 \rangle'$ so $c_6 = d_{107} + d_{108}$ or there are two columns φ_1, φ_2 . Let $a_{15} \in \{1,2,\ldots,7\}$ since $\langle 13,12,3 \rangle \downarrow S_{27} \cap S$ $\langle 13,9,3,2,1 \rangle \downarrow S_{27}$ has no i.m.s so $a_{17}=0$, the same way we get $a_{17}, a_{18}, a_{19}, a_{22}$..., a_{25} are equal to zero, then we get $\varphi_1=a_{15}\langle 13,12,3 \rangle + a_{16}\langle 13,11,3,1 \rangle^* + a_{20}\langle 12,11,3,2 \rangle^* + a_{21}\langle 12,10,3,2,1 \rangle$, $$\begin{split} \varphi_2 &= a_{15}\langle 13,12,3\rangle' + a_{16}\langle 13,11,3,1\rangle^* + a_{20}\langle 12,11,3,2\rangle^* + a_{21}\langle 12,10,3,2,1\rangle'. \end{split}$$ by maple program in appendix we find it are equal to 44 probabilities, therefore, $$(\langle 13,12,2\rangle^* - \langle 13,11,2,1\rangle + \langle 13,8,3,2,1\rangle^*)$$ $$\uparrow^{(3,9)} S_{28} \text{ hence } a_{15} \ge a_{16}$$ (23) and Eq. (22) we get degrees $\varphi_1, \varphi_2 \not\equiv 0 \mod 11^2$ contradiction with **(Theorem 2.3.)**, then $c_6 = d_{107} + d_{108}$. $\langle 13,9,3,2,1 \rangle \neq \langle 13,9,3,2,1 \rangle'$ so $c_7 = d_{111} + d_{112}$ or there are two columns φ_1, φ_2 . Let $a_{17} \in \{1,2,3,4\}$. Since $\langle 13,9,3,2,1 \rangle \downarrow S_{27} \cap \langle 13,6,5,3,1 \rangle \downarrow S_{27}$ has no i.m.s so $a_{19} = 0$, the same way we get a_{23} , a_{25} are equal to zero, then we get $\begin{array}{l} \varphi_1 = a_{17}\langle 13,9,3,2,1\rangle + a_{18}\langle 13,7,4,3,1\rangle + a_{20}\langle 12,11,3,2\rangle^* \\ + a_{21}\langle 12,10,3,2,1\rangle + a_{22}\langle 12,7,4,3,2\rangle + a_{24}\langle 11,7,4,3,2,1\rangle^* \\ \varphi_2 = a_{17}\langle 13,9,3,2,1\rangle' + a_{18}\langle 13,7,4,3,1\rangle' + \\ a_{20}\langle 12,11,3,2\rangle^* + a_{21}\langle 12,10,3,2,1\rangle' + a_{22}\langle 12,7,4,3,2\rangle' + \\ a_{24}\langle 11,7,4,3,2,1\rangle^*, \end{array}$ by maple program in appendix we find it are equal to **967** probabilities, therefore, $$(\langle 13,7,4,2,1 \rangle^* - \langle 13,8,3,2,1 \rangle^* + \langle 13,11,2,1 \rangle)$$ $$\uparrow^{(3,9)} S_{28} \ hence \ a_{18} \ge a_{17}, \ \ a_{17} = a_{18}$$ (26) $$(\langle 13,6,4,3,1 \rangle^* + \langle 11,6,3,2,1 \rangle - \langle 12,6,4,3,2 \rangle^*)$$ $$\uparrow^{(5,7)} S_{28} \text{ hence } a_{18} + a_{24} \ge a_{22}$$ (27) $(\langle 12,6,4,3,2 \rangle^* - \langle 13,6,4,3,1 \rangle -$ $$\langle 11,6,4,3,2,1 \rangle^* + \langle 14,6,4,2,1 \rangle^* \rangle \uparrow^{(5,7)} S_{28}$$ hence $a_{22} \ge a_{18} + a_{24}$, $a_{22} = a_{18} + a_{24}$ (28) $$(\langle
12,10,3,2 \rangle - \langle 13,9,3,2 \rangle + \langle 14,8,3,2 \rangle)$$ $$\uparrow^{(0,1)} S_{28} \text{ hence } a_{20} + a_{21} \ge a_{17}$$ (29) $$(\langle 13,9,3,2 \rangle - \langle 12,10,3,2 \rangle + \langle 13,11,3 \rangle^*)$$ $$\uparrow^{(0,1)} S_{28} \text{ hence } a_{17} \ge a_{20} + a_{21}, \\ \therefore a_{17} = a_{20} + a_{21}$$ (30) We get degrees $\varphi_1, \varphi_2 \equiv 0 \mod 11^2$ only when $\varphi_1 + \varphi_2 = m(d_{111} + d_{112}), m \in \{1,2,3,4\}$. So that c_7 is split. $\langle 13,7,4,3,1 \rangle \neq \langle 13,7,4,3,1 \rangle'$ so $c_8 = d_{113} + d_{114}$ or there are two columns.Let $a_{18} \in \{1,2,\ldots,6\}$. $$\begin{split} \varphi_1 &= a_{18}\langle 13,7,4,3,1\rangle + a_{19}\langle 13,6,5,3,1\rangle + a_{20}\langle 12,11,3,2\rangle^* \\ &+ a_{21}\langle 12,10,3,2,1\rangle + a_{22}\langle 12,7,4,3,2\rangle + a_{23}\langle 12,6,5,3,2\rangle + \\ &a_{24}\langle 11,7,4,3,2,1\rangle^* \;, \end{split}$$ $\varphi_2 = a_{17}\langle 13,9,3,2,1 \rangle' + a_{18}\langle 13,7,4,3,1 \rangle' + a_{18}\langle 13,6,1,2,1 13,6,1,2,1,2,1 \rangle' + a_{18}\langle 13,6,1,2,1,2,1 \rangle' + a_{18}\langle 13,6,1,2,1,2,1,2 13,6,1,2,1,2 \rangle' + a_{18}\langle 13,6,1,2,1,2 \rangle' + a_{18}\langle 13$ $\begin{array}{l} a_{19}\langle 13,6,5,3,1\rangle' + a_{20}\langle 12,11,3,2\rangle^* \\ + a_{21}\langle 12,10,3,2,1\rangle' + a_{22}\langle 12,7,4,3,2\rangle' + a_{23}\langle 12,6,5,3,2\rangle' + \\ a_{24}\langle 11,7,4,3,2,1\rangle^*. \end{array}$ by maple program in appendix we find it are equal to **27794** probabilities, therefore, $$(\langle 13,7,4,3 \rangle - \langle 13,6,5,3 \rangle) \uparrow^{(0,1)} S_{28}$$ hence $a_{18} \ge a_{19}$ (31) $$(\langle 13,6,5,3 \rangle - \langle 13,7,4,3 \rangle + \langle 13,9,3,2 \rangle)$$ $\uparrow^{(0,1)} S_{28} \text{ hence } a_{19} \ge a_{18}, \therefore a_{18} = a_{19}$ (32) $$\begin{array}{l} (\langle 11,10,3,2,1\rangle^* - \langle 12,10,3,2\rangle \\ + \langle 13,10,3,1\rangle) \uparrow^{(0,1)} S_{28} hence \ 0 \geq a_{22} \quad (33) \\ (\langle 12,9,3,2,1\rangle^* - \langle 12,7,4,3,1\rangle^* + \langle 12,6,5,3,1\rangle^*) \\ \uparrow^{(2,10)} S_{28} hence \ a_{21} + a_{23} \geq a_{22} \quad (34) \\ (\langle 12,7,4,3,1\rangle^* - \langle 12,6,5,3,1\rangle^* - \langle 12,9,3,2,1\rangle^* \\ + \langle 14,12,1\rangle) \uparrow^{(2,10)} S_{28} \\ hence \ a_{22} \geq a_{21} + a_{23}, \\ \vdots \ a_{22} = a_{21} + a_{23} \\ (\langle 11,7,4,3,2\rangle^* - \langle 11,6,5,3,2\rangle^* - \langle 11,10,3,2,1\rangle^* \\ + \langle \langle 13,11,3\rangle^*\rangle) \uparrow^{(0,1)} S_{28} \\ hence \ a_{22} + a_{24} \geq a_{23} + a_{25} + a_{21} \\ (\langle 11,6,5,3,2\rangle^* + \langle 11,10,3,2,1\rangle^* - \langle 11,7,4,3,2\rangle^*) \\ \uparrow^{(0,1)} S_{28} hence \ a_{25} + a_{23} + a_{21} \geq a_{22} + a_{24} \\ \\ \vdots \ a_{25} + a_{23} + a_{21} = a_{22} + a_{24} \\ (\langle 13,6,5,3\rangle + \langle 13,6,5,3\rangle' - \langle 11,6,5,3,2\rangle^* + \end{array}$$ $$(\langle 11,6,5,3,2\rangle^* - \langle 13,6,5,3\rangle + \langle 13,6,5,3\rangle' - \langle 10,6,5,3,2,1\rangle - \langle 10,6,5,3,2,1\rangle' + \langle 7,6,5,4,3,2\rangle + \langle 7,6,5,4,3,2\rangle' + \langle 14,6,5,2\rangle + \langle 14,6,5,2\rangle')$$ $$\uparrow^{(0,1)} S_{28} \ hence \ a_{23} \ge 2a_{19} + a_{25},$$ $$\therefore a_{23} = 2a_{19} + a_{19}$$ (39) $\langle 10,6,5,3,2,1 \rangle + \langle 10,6,5,3,2,1 \rangle' \uparrow^{(0,1)} S_{28}$ hence $2a_{19} + a_{25} \ge a_{23}$ $\varphi_1 = a_{22}\langle 12,7,4,3,2\rangle + a_{23}\langle 12,6,5,3,2\rangle + a_{24}\langle 11,7,4,3,2,1\rangle^*$ then we get degree $\varphi_1, \varphi_2 \neq 0 \mod 11^2$. So that c_8 is split. Since $\langle 12,10,3,2,1\rangle \neq \langle 12,10,3,2,1\rangle'$ so $c_9 = d_{115} + d_{116}$ or there are two columns φ_1, φ_2 . Let $a_{21} \in \{1,2,\ldots,10\}$. $+a_{25}\langle 11,6,5,3,2,1\rangle^*$ $$\begin{split} \varphi_2 &= a_{22}\langle 12,7,4,3,2\rangle' + a_{23}\langle 12,6,5,3,2\rangle' + a_{24}\langle 11,7,4,3,2,1\rangle^* \\ &+ a_{25}\langle 11,6,5,3,2,1\rangle^*. \end{split}$$ by maple program in appendix we find it are equal to 9 probabilities, therefore, $$(\langle 12,7,4,3,1 \rangle^* - \langle 12,6,5,3,1 \rangle^*)$$ $\uparrow^{(2,10)} S_{28}hence a_{22} \ge a_{21}$ (40) Frome Eq.(34) we get degrees $\varphi_1, \varphi_2 \equiv 0 \mod 11^2$. only when $\varphi_1 + \varphi_2 = m(d_{119} + d_{120}), m \in \{1,2,3\}$. So that c_{10} is split. Using the information above, we divide c_1 into c_{10} and then turn to **Table 5**. **Case 5** Decomposition matrix for the blocks B_5 , B_7 of type duble and B_6 of type associte as shown in the **Tables 5**. | | | | | | | | Table | 5. B | locks | B_5, B_5 | $_{5}$, B_{7} | | | | | | | | | | | |-----------------------|----------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|------------|------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------| | Block | Spin character | | | | | | | |] | Decor | nposi | tion r | natri | ĸ | | | | | | | | | | (25,3)* | 1 | (14,11,3) | 1 | 1 | B_5 | (14,10,3,1)* | | 1 | 1 | | | | | | | | | | | | | | | | | | | D ₅ | (14,9,3,2)* | | | 1 | 1 | | | | | | | | | | | | | | | | | | | (14,7,4,3)* | | | | 1 | 1 | | | | | | | | | | | | | | | | | | (14,6,5,3)* | | | | | 1 | | | | | | | | | | | | | | | | | | (23,4,1) | | | | | | 1 | | | | | | | | | | | | | | | | | (23,4,1)' | | | | | | | 1 | | | | | | | | | | | | | | | | (15,12,1) | | | | | | 1 | | 1 | | | | | | | | | | | | | | | (15,12,1)' | | | | | | | 1 | | 1 | | | | | | | | | | | | | | (12,11,4,1)* | | | | | | | | 1 | 1 | 1 | 1 | | | | | | | | | | | \boldsymbol{B}_6 | (12,9,4,2,1) | | | | | | | | | | 1 | | 1 | | | | | | | | | | | (12,9,4,2,1)' | | | | | | | | | | | 1 | | 1 | | | | | | | | | | (12,8,4,3,1) | | | | | | | | | | | | 1 | | 1 | | | | | | | | | (12,8,4,3,1)' | | | | | | | | | | | | | 1 | | 1 | | | | | | | | (12,6,5,4,1) | | | | | | | | | | | | | | 1 | | | | | | | | | (12,6,5,4,1)' | | | | | | | | | | | | | | | 1 | | | | | | | | (21,7)* | | | | | | | | | | | | | | | | 1 | | | | | | | (18,10)* | | | | | | | | | | | | | | | | 1 | 1 | | | | | \boldsymbol{B}_7 | (11,10,7) | | | | | | | | | | | | | | | | | 1 | 1 | | | | D 7 | (10,9,7,2)* | | | | | | | | | | | | | | | | | | 1 | 1 | | | | (10,8,7,3)* | | | | | | | | | | | | | | | | | | | 1 | 1 | | | (10,7,6,5)* | 1 | | | | d_{121} | d_{122} | d_{123} | d_{124} | d_{125} | d_{126} | d_{127} | d_{128} | d_{129} | d_{130} | d_{131} | d_{132} | d_{133} | d_{134} | d_{135} | d_{136} | d_{137} | d_{138} | d_{139} | d_{140} | (38) $\begin{array}{l} \varphi_1 = a_{20}\langle 12,11,3,2\rangle^* + a_{21}\langle 12,10,3,2,1\rangle + \\ a_{22}\langle 12,7,4,3,2\rangle + a_{23}\langle 12,6,5,3,2\rangle + a_{24}\langle 11,7,4,3,2,1\rangle^* + \\ a_{25}\langle 11,6,5,3,2,1\rangle^*, \end{array}$ $\varphi_2 = a_{20}\langle 12,11,3,2\rangle^* + a_{21}\langle 12,10,3,2,1\rangle' + a_{22}\langle 12,7,4,3,2\rangle' + a_{23}\langle 12,6,5,3,2\rangle' + a_{24}\langle 11,7,4,3,2,1\rangle^* + a_{25}\langle 11,6,5,3,2,1\rangle^*.$ by maple program in appendix we find it are equal to **722** probabilities, therefore, Frome Eqs.(33-37) we get degree $\varphi_1, \varphi_2 \not\equiv 0 \mod 11^2$. So that c_9 is split. $\langle 12,7,4,3,2 \rangle \neq \langle 127,4,3,2 \rangle'$ so c_{10} split or there are two columns φ_1, φ_2 . Let $a_{22} \in \{1,2,...,8\}$. **Proof.** By using(r, \bar{r})-inducing of p.i.s., D_{63} , D_{65} , D_{67} , D_{75} , D_{73} , D_{25} , D_{37} , D_{47} , D_{48} , D_{45} , D_{46} , D_{43} , D_{44} , D_{111} , D_{113} , D_{115} , D_{117} , D_{119} for S_{27} to S_{28} gives d_{121} , d_{122} ,..., d_{125} , c_1 , c_2 , d_{130} , d_{131} , ..., d_{140} , respectively. for S_{27} to S_{28} . To find $\boldsymbol{B_5}$, $\boldsymbol{B_7}$, since - degree $\{(14,11,3) + (14,11,3)', (14,9,3,2)^*, (14,6,5,3)^*\} \equiv 99 \mod 11^2,$ - degree $\{(25,3)^*, (14,10,3,1)^*, (14,7,4,3)^*\} \equiv -99 \mod 11^2,$ - degree $\{(21,7)^*, (11,10,7) + (11,10,7)', (10,8,7,3)^*\} \equiv 99 \mod 11^2,$ degree{ $(18,10)^*$, $(10,9,7,2)^*$, $(10,7,6,5)^*$ } \equiv $-99 \mod 11^2$. and on $(11, \alpha)$ -regular classes **2.2**) c_2 must split to $d_{128} + d_{129}$. Hence the decomposition matrix for this block is **Table 5**. Case 6. Decomposition matrix for the blocks B_8 , B_9 of type associte as shown in the Tables 8. | Table 6. Blocks B_8 , B | Table | 6. | B | locks | B_{\circ} . | B_{\circ} | |-----------------------------|-------|----|---|-------|---------------|-------------| |-----------------------------|-------|----|---|-------|---------------|-------------| | Block | Spin character | | | | | | | |] | Decoi | nposi | tion r | natrix | ζ. | | | | | | | | |-------|----------------| | | (21,5,2) | 1 | ⟨21,5,2⟩′ | | 1 | (16,10,2) | 1 | | 1 | (16,10,2)' | | 1 | | 1 | | | | | | | | | | | | | | | | | | | (13,10,5) | | | 1 | | 1 | | | | | | | | | | | | | | | | | B_8 | (13,10,5)' | | | | 1 | | 1 | | | | | | | | | | | | | | | | | (11,10,5,2)* | | | | | 1 | 1 | 1 | 1 | | | | | | | | | | | | | | | (10,8,5,3,2) | | | | | | | 1 | | 1 | | | | | | | | | | | | | | (10,8,5,3,2)′ | | | | | | | | 1 | | 1 | | | | | | | | | | | | | (10,7,5,4,2) | |
| | | | | | | 1 | | | | | | | | | | | | | | (10,7,5,4,2)' | | | | | | | | | | 1 | | | | | | | | | | | | | (21,4,3) | | | | | | | | | | | 1 | | | | | | | | | | | | (21,4,3)′ | | | | | | | | | | | | 1 | | | | | | | | | | | (15,10,3) | | | | | | | | | | | 1 | | 1 | | | | | | | | | | (15,10,3)' | | | | | | | | | | | | 1 | | 1 | | | | | | | | | (14,10,4) | | | | | | | | | | | | | 1 | | 1 | | | | | | | B_9 | (14,10,4)′ | | | | | | | | | | | | | | 1 | | 1 | | | | | | | (11,10,4,3)* | | | | | | | | | | | | | | | 1 | 1 | 1 | 1 | | | | | (10,9,4,3,2) | | | | | | | | | | | | | | | | | 1 | | 1 | | | | (10,9,4,3,2)' | | | | | | | | | | | | | | | | | | 1 | | 1 | | | (10,6,5,4,3) | | | | | | | | | | | | | | | | | | | 1 | | | | (10,6,5,4,3)′ | 1 | | | | d_{141} | d_{142} | d_{143} | d_{144} | d_{145} | d_{146} | d_{147} | d_{148} | d_{149} | d_{150} | d_{151} | d_{152} | d_{153} | d_{154} | d_{155} | d_{156} | d_{157} | d_{158} | d_{159} | d_{160} | **Proof.** Using (r, \bar{r}) -inducing of p.i.s. D_2 , D_9 , D_{13} , D_{17} , D_{18} , $D_{121}, D_{122}, \dots, D_{125}$ to S_{28} gives $c_1, c_2, c_3, \dots, c_{10}$, respectively. Since $(21,5,2) \neq (21,5,2)'$ and $(21,5,2) \downarrow S_{27} \cap \{(13,10,5),$ $(11,10,5,2)^*$, $\langle 10,8,5,3,2 \rangle, \langle 10,7,5,4,2 \rangle \} \downarrow S_{27}$ i.m.s.Then $c_1 = d_{141} + d_{142}$. Since $\langle 13,10,5 \rangle \neq \langle 13,10,5 \rangle'$ then c_2 split or there are two columns. Suppose there are columns: $$\phi_1 = a_1\langle 16,10,2 \rangle + a_2\langle 13,10,5 \rangle + a_3\langle 11,10,5,2 \rangle^* + a_4\langle 10,8,5,3,2 \rangle + a_5\langle 10,7,5,4,2 \rangle,$$ $$\phi_2 = a_1\langle 16,10,2 \rangle' + a_2\langle 13,10,5 \rangle' + a_3\langle 11,10,5,2 \rangle^* + a_4\langle 10,8,5,3,2 \rangle' + a_5\langle 10,7,5,4,2 \rangle'$$ to describe it since $\langle 13,10,5 \rangle \downarrow S_{27}$ has 12 of i.m.s and B_8 of defect one then we have $a_1, a_2 \cdots a_5 \in \{0,1\}$. Suppose $a_2 = 1$, since $\langle 13,10,5 \rangle \downarrow S_{27} \cap \{\langle 10,8,5,3,2 \rangle, \langle 10,7,5,4,2 \rangle\} \downarrow S_{27}$ has no i.m.s. so a_4 , $a_5 = 0$, but degree ϕ_1 , $\phi_2 \equiv 0 \mod 11^2$ only when - 1. $\langle 14,11,3 \rangle = \langle 14,11,3 \rangle'$ - $(14,6,5,3)^* = (14,7,4,3)^* (14,9,3,2)^* +$ $\langle 14,10,3,1 \rangle^* - \langle 14,11,3 \rangle + \langle 25,3 \rangle^*$ - $\langle 11,10,7\rangle = \langle 11,10,7\rangle'$ - $(10,7,6,5)^* = (10,8,7,3)^* (10,9,7,2)^* +$ $\langle 11,10,7 \rangle - \langle 18,10 \rangle^* + \langle 21,7 \rangle^*$ then ech blocks contains at 5. To find B_6 since $(23,4,1) \neq$ $\langle 23,4,1\rangle'$, and $\langle 23,4,1\rangle \downarrow S_{27} \cap \{\langle 12,11,4,1\rangle^*,\langle 12,9,4,2,1\rangle,$ $(12,8,4,3,1), (12,6,5,4,2,1)\} \downarrow S_{27}$ has no i.m.s then $c_1 =$ $d_{126} + d_{127}$, also since B_6 of defect one then from (**Theorem** • $$a_1 = a_2 = 1$$ and $a_3 = 0 \Rightarrow c_2 = d_{143} + d_{144}$ or • $$a_1 = 0$$ and $a_2 = a_3 = 1 \Rightarrow c_3 = d_{145} + d_{146}$ So $c_2 = d_{143} + d_{144}$. As since B_8 of defect one then from (**Theorem 2.2**) c_3 , c_4 must splits to $d_{145} + d_{146}$ and $d_{147} +$ d_{148} , respectively. Since $\langle 10,7,5,4,2 \rangle \neq \langle 10,7,5,4,2 \rangle'$ then c_5 must split to $d_{149} + d_{150}$ then we get B_8 . To find the blocks $\boldsymbol{B_9}$ since $\langle 21,4,3 \rangle \neq \langle 21,4,3 \rangle', \langle 21,4,3 \rangle \downarrow S_{27} \cap$ $\{\langle 14,10,4\rangle, \langle 11,10,4,3\rangle^*, \langle 10,9,4,3,2\rangle, \langle 10,6,5,4,3\rangle\} \downarrow S_{27}$ has no i.m.s then $c_6 = d_{161} + d_{162}$. Since $\langle 14,10,4 \rangle \neq \langle 14,10,4 \rangle'$ then c_7 divided or there are two columns. Suppose there $\phi_1 = a_1 \langle 15, 10, 3 \rangle + a_2 \langle 14, 10, 4 \rangle + a_3 \langle 11, 10, 4, 3 \rangle^* + a_4 \langle 11, 10, 4, 3 \rangle^*$ $a_4(10,9,4,3,2) + a_5(10,6,5,4,3),$ $\phi_2 = a_1 \langle 15, 10, 3 \rangle' + a_2 \langle 14, 10, 4 \rangle' + a_3 \langle 11, 10, 4, 3 \rangle^*$ $+a_4\langle 10,9,4,3,2\rangle' + a_5\langle 10,6,5,4,3\rangle',$ columns: to describe it since $\langle 14,10,4 \rangle \downarrow S_{27}$ has 7 of i.m.s and B_9 of defect one then $a_1, a_2 \cdots a_5 \in \{0,1\}$. Suppose $a_1 = 1$ ($a_1 =$ $0 \Rightarrow c_7$ is split) since $(14,10,4) \downarrow S_{27} \cap \{(10,9,4,3,2),$ (10,6,5,4,3)} $\downarrow S_{27}$ has no i.m.s. so $a_4, a_5 = 0$. But degree $\phi_1, \phi_2 \equiv 0 \bmod 11^2$ only when - $a_1 = a_2 = 1$ and $a_3 = 0 \Rightarrow c_7 = d_{153} + d_{154}$ or - $a_1 = 0$ and $a_2 = a_3 = 1 \Rightarrow c_8 = d_{155} + d_{156}$ Block Spin character Decomposition matrix (20,8) (19,9)* 1 1 (11,9,8) 1 1 B_{10} (10,9,8,1) (9,8,7,4) (9,8,6,5) ⟨20,7,1⟩ 1 (20,7,1)'(18,9,1) 1 (18,9,1) (12,9,7) B_{11} (12,9,7) 1 (11,9,7,1)* (9,8,7,3,1) 1 (9,8,7,3,1) (9,7,6,5,1) (9,7,6,5,1) (20,5,3) (20,5,3)'1 (16.9.3)(16,9,3) (14,9,4) (14,9,5) B_{12} (11,9,5,3)* 1 (10,9,5,3,1) (10,9,5,3,1) (9,7,5,4,3) (9,7,5,4,3) Table 7. Blocks B_8 , B_9 #### **Proof.** Since - degree $\{(19,9)^*, (10,9,8,1)^*, (9,8,6,5)^*\} \equiv 110 \mod 11^2$ - degree $\{(20,8)^*, (11,9,8) + (11,9,8)', (9,8,7,4)^*\} \equiv -110 \ mod \ 11^2$ By using (4,8)-inducing of p.i.s. D_{126} , D_{128} , D_{130} , D_{132} , D_{134} for S_{27} to S_{28} , and from (11, α)-regular classes: - 1. $\langle 11,9,8 \rangle \neq \langle 11,9,8 \rangle'$ - 2. $\langle 9,8,6,5 \rangle^* = \langle 9,8,7,4 \rangle^* \langle 10,9,8,1 \rangle^* + \langle 11,9,8 \rangle \langle 19,9 \rangle^* + \langle 20,8 \rangle^*$ then we get blocks B_{10} . To find blocks B_{11} , B_{12} , using (r,\bar{r}) -inducing of p.i.s. D_{126} , D_{127} , D_{130} , D_{132} , D_{133} , D_{134} , D_{135} , D_{137} , D_3 , D_8 , D_{12} , D_{232} , D_{233} , D_{20} to S_{28} gives d_{166} , d_{167} , c_1 , c_2 , d_{172} , d_{173} , d_{174} , d_{175} , c_3 , c_4 , c_5 , d_{182} , d_{183} , c_6 respectively. Since $\langle 12,9,7 \rangle \neq \langle 12,9,7 \rangle'$ $\langle 12,9,7 \rangle \downarrow S_{27} \cap \{\langle 9,8,7,3,1 \rangle, \langle 9,7,6,5,1 \rangle\} \downarrow S_{27}$ has no i.m.s then c_1 divided or there are two columns. Suppose there are two columns: So $c_7 = d_{153} + d_{154}$, also since $\textbf{\textit{B}}_9$ of defect one then c_8 , c_9 must splits to d_{155} , d_{156} and d_{157} , d_{158} , respectively. finally since $\langle 10,6,5,4,3 \rangle \neq \langle 10,6,5,4,3 \rangle'$ then c_{10} must split to $d_{159} + d_{160}$. Hence the decomposition matrix for this block is **Table** 6. **Case 7.** The decomposition matrix for the blocks B_{10} of type duble and B_{11} , B_{12} of type associte as shown in the **Tables** 7. $\phi_1 = a_1 \langle 18, 9, 1 \rangle + a_2 \langle 12, 9, 7 \rangle + a_3 \langle 11, 9, 7, 1 \rangle^*, \phi_2 = a_1 \langle 18, 9, 1 \rangle' + a_2 \langle 12, 9, 7 \rangle' + a_3 \langle 11, 9, 7, 1 \rangle^*,$ to describe columns since $\langle 12,9,7 \rangle \downarrow S_{27}$ has 8 of i.m.s and since B_{11} of defect one then we have $a_1, a_2, a_3 \in \{0,1\}$. Suppose $a_2 = 1$, but degrees $\phi_1, \phi_2 \equiv 0 \mod 11^2$ only when - $a_1 = a_2 = 1$ and $a_3 = 0 \Rightarrow c_1 = d_{168} + d_{169}$ or - $a_1 = 0$ and $a_2 = a_3 = 1 \Rightarrow c_2 = d_{170} + d_{171}$ So $c_1 = d_{168} + d_{169}$. As since $\textbf{\textit{B}}_{11}$ of defect one then c_2 must splits to d_{170} , d_{171} then we get block $\textbf{\textit{B}}_{11}$. Since $\langle 20,5,3 \rangle \neq \langle 20,5,3 \rangle'$ and $\langle 20,5,3 \rangle \downarrow S_{27} \cap \{\langle 14,9,4 \rangle, \langle 11,9,5,3 \rangle^*, \langle 10,9,5,3,1 \rangle, \langle 9,7,5,4,3 \rangle\} \downarrow S_{27}$ has no i.m.s then $c_3 = d_{176} + d_{177}$. Since $\langle 14,9,4 \rangle \neq \langle 14,9,5 \rangle'$ then c_4 divided or there are two columns. Suppose there are two columns: $$\begin{array}{l} \phi_1 = a_1 \langle 16,9,3 \rangle + a_2 \langle 14,9,4 \rangle + a_3 \langle 11,9,5,3 \rangle^* + \\ a_4 \langle 10,9,5,3,1 \rangle + a_5 \langle 9,7,5,4,3 \rangle, \\ \phi_1 = a_1 \langle 16,9,3 \rangle' + a_2 \langle 14,9,4 \rangle' + a_3 \langle 11,9,5,3 \rangle^* + \\ a_4 \langle 10,9,5,3,1 \rangle' + a_5 \langle 9,7,5,4,3 \rangle', \end{array}$$ to describe it since $\langle 14,9,4 \rangle \downarrow S_{27}$ has 8 of i.m.s and since \pmb{B}_{12} of defect one then we have $a_1,a_2\cdots a_5 \in \{0,1\}$. Suppose $a_2=1$, since $\langle 14,9,4 \rangle \downarrow S_{27} \cap \{\langle 10,9,5,3,1 \rangle, \langle 9,7,5,4,3 \rangle\} \downarrow S_{27}$ has no i.m.s. so $a_4,a_5=0$. But degree $\phi_1,\phi_2\equiv 0 \ mod \ 11^2$ only when - $a_1 = a_2 = 1$ and $a_3 = 0 \Rightarrow c_4 = d_{178} + d_{179}$ or - $a_1 = 0$ and $a_2 = a_3 = 1 \Rightarrow c_5 = d_{180} + d_{181}$ So $c_4 = d_{178} + d_{179}$. As since B_{12} of defect one then c_5 must split to d_{180} , d_{181} . finally since $\langle 9,7,5,4,3 \rangle \neq \langle 9,7,5,4,3 \rangle'$ then c_6 must split to d_{184} , d_{185} . Hence the decomposition matrix for this block is **Table** 7. Case 8. The decomposition matrix for the blocks B_{13} , B_{15} of type duble and B_{14} of type associte as shown in the **Tables** 8. Rlock Snin character **Decomposition matrix** (20,4,3,1)* (15,9,3,1)* (14,9,4,1)* 1 1 (12,9,4,3)* (11,9,4,3,1) (9,6,5,4,3,1)* 1 1 (19,7,2) (19,7,2) (18,8,2) 1 (18,8,2) 1 1 (13,8,7) (13,8,7) (11,8,7,2)* 1 1 (10,8,7,2,1) 1 (10,8,7,2,1) (8,7,6,5,2) 1 (8,7,6,5,2) (19,6,2,1)* (17,8,2,1)* ⟨13,8,6,1⟩* 1 B_{15} (12,8,6,2)* 1 (11,8,6,2,1) (8,7,6,4,2,1)* 1 $\left|d_{187}\right|d_{188}\left|d_{189}\right|d_{190}\left|d_{191}\right|d_{192}\left
d_{193}\right|$ $\left|d_{194}\right|d_{195}\left|d_{196}\right|d_{197}\left|d_{198}\right|d_{199}\left|d_{200}\right|d_{201}$ Table 8. Blocks B_{13} , B_{14} , B_{15} **Proof.** To find B_{13} , B_{15} Since - degree $\{(15,9,3,1)^*, (12,9,4,3)^*, (9,6,5,4,3,1)^*\} \equiv 88 \mod 11^2$ - degree $\{\langle 20,4,3,1\rangle^*, \langle 14,9,4,1\rangle^*, \langle 11,9,4,3,1\rangle + \langle 11,9,4,3,1\rangle'\} \equiv -88 \ mod \ 11^2$ - degree $\{\langle 19,6,2,1\rangle^*, \langle 13,8,6,1\rangle^*, \langle 11,8,6,2,1\rangle + \langle 11,8,6,2,1\rangle'\} \equiv 66 \mod 11^2$ - degree $\{(17,8,2,1)^*, (12,8,6,2)^*,$ $$(8,7,6,4,2,1)^*$$ $\equiv -66 \mod 11^2$ By using (r,\bar{r}) -inducing of p.i.s. $D_{29},\ D_{37},\ D_{43},\ D_{49},\ D_{59}$, $D_{151},\ D_{152},\ D_{160},\ D_{162},\ D_{155}$ for S_{27} to S_{28} , and since on $(11,\alpha)$ -regular classes: - 1. $\langle 11,9,4,3,1 \rangle = \langle 11,9,4,3,1 \rangle'$ - 2. $\langle 9,6,5,4,3,1 \rangle^* = \langle 11,9,4,3,1 \rangle \langle 12,9,4,3 \rangle^* + \langle 14,9,4,1 \rangle^* \langle 15,9,3,1 \rangle^* + \langle 20,4,3,1 \rangle^*$ - 3. $\langle 11,8,6,2,1 \rangle \neq \langle 11,8,6,2,1 \rangle'$ - 4. $\langle 8,7,6,4,2,1 \rangle^* = \langle 11,8,6,2,1 \rangle \langle 12,8,6,2 \rangle^* + \langle 13,8,6,1 \rangle^* \langle 17,8,2,1 \rangle^* + \langle 19,6,2,1 \rangle^*.$ then each block contains at most 5 columns. To find block ${\bf B_{14}}$ using $(r,\bar r)$ -inducing of p.i.s. D_{146} , D_{147} , D_{148} , D_{150} , D_{234} , D_{235} of S_{27} to S_{28} gives $c_1,c_2,c_3,d_{197},d_{198},$ c_4 ,respectively. Since $\langle 19,7,2\rangle \neq \langle 19,7,2\rangle'$ and $\langle 19,7,2\rangle \downarrow S_{27} \cap \{\langle 13,8,7\rangle,\langle 11,8,7,2\rangle^*$, $\langle 10,8,7,2,1\rangle,\langle 8,7,6,5,2\rangle\} \downarrow S_{27}$ has no i.m.s then $c_1=d_{191}+d_{192}$. Since $\langle 13,8,7\rangle \neq \langle 13,8,7\rangle'$ then c_2 divided or there are two columns. Suppose there are two columns: $\begin{array}{l} \phi_1 = a_1 \langle 18,8,2 \rangle + a_2 \langle 13,8,7 \rangle + a_3 \langle 11,8,7,2 \rangle^* + \\ a_4 \langle 10,8,7,2,1 \rangle + a_5 \langle 8,7,6,5,2 \rangle, \\ \phi_1 = a_1 \langle 18,8,2 \rangle' + a_2 \langle 13,8,7 \rangle' + a_3 \langle 11,8,7,2 \rangle^* + \\ a_4 \langle 10,8,7,2,1 \rangle' + a_5 \langle 8,7,6,5,2 \rangle', \\ \text{to describe it since } \langle 13,8,7 \rangle \downarrow S_{27} \text{ has 4 of i.m.s and } B_{12} \text{ of defect one then } a_1,a_2 \cdots a_5 \in \{0,1\}. \text{ Suppose } a_2 = 1,\text{since } \langle 13,8,7 \rangle \downarrow S_{27} \cap \{(10,8,7,2,1), \langle 8,7,6,5,2 \rangle\} \downarrow S_{27} \text{ has no i.m.s.} \end{array}$ - so a_4 , $a_5 = 0$. But degree ϕ_1 , $\phi_2 \equiv 0 \mod 11^2$ only when \bullet $a_1 = a_2 = 1$ and $a_3 = 0 \Rightarrow c_2 = d_{193} + d_{194}$ or - $a_1 = 0$ and $a_2 = a_3 = 1 \Rightarrow c_3 = d_{195} + d_{196}$ So $c_2 = d_{193} + d_{194}$. As since $\textbf{\textit{B}}_{14}$ of defect one then $c_3 = d_{195} + d_{196}$. finally since $\langle 8,7,6,5,2 \rangle \neq \langle 8,7,6,5,2 \rangle'$ then c_4 must split to $d_{199} + d_{200}$. Hence the decomposition matrix for this block is **Table** 8. Case 9. The decomposition matrix for the blocks B_{16} of type associte and B_{17} , B_{18} of type duble as shown in **Tables** 9. | Block | Spin character | | | | | | | |] | Deco | mpos | ition | matri | X | | | | | | | | |-----------------|-----------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|------------------|-----------|-----------|-----------|-----------|-----------|-----------| | | (19,5,4) | 1 | (19,5,4)′ | | 1 | (16,8,4) | 1 | | 1 | (16,8,4)′ | | 1 | | 1 | | | | | | | | | | | | | | | | | | | (15,8,5) | | | 1 | | 1 | | | | | | | | | | | | | | | | | B ₁₆ | (15,8,5)′ | | | | 1 | | 1 | | | | | | | | | | | | | | | | | (11,8,5,4)* | | | | | 1 | 1 | 1 | 1 | | | | | | | | | | | | | | | (10,8,5,4,1) | | | | | | | 1 | | 1 | | | | | | | | | | | | | | (10,8,5,4,1)' | | | | | | | | 1 | | 1 | | | | | | | | | | | | | (9,8,5,4,2) | | | | | | | | | 1 | | | | | | | | | | | | | | (9,8,5,4,2)′ | | | | | | | | | | 1 | | | | | | | | | | | | | (18,6,3,1)* | | | | | | | | | | | 1 | | | | | | | | | | | | (17,7,3,1)* | | | | | | | | | | | 1 | 1 | | | | | | | | | | B ₁₇ | (14,7,6,1)* | | | | | | | | | | | | 1 | 1 | | | | | | | | | D 17 | (12,7,6,3)* | | | | | | | | | | | | | 1 | 1 | | | | | | | | | (11,7,6,3,1) | | | | | | | | | | | | | | 1 | 1 | | | | | | | | (9,7,6,3,2,1)* | | | | | | | | | | | | | | | 1 | | | | | | | | (18,5,3,2)* | | | | | | | | | | | | | | | | 1 | | | | | | | (16,7,3,2)* | | | | | | | | | | | | | | | | 1 | 1 | | | | | B ₁₈ | (14,7,5,2)* | | | | | | | | | | | | | | | | | 1 | 1 | | | | 218 | (13,7,5,3)* | | | | | | | | | | | | | | | | | | 1 | 1 | | | | (11,7,5,3,2) | | | | | | | | | | | | | | | | | | | 1 | 1 | | | (10,7,5,3,2,1)* | 1 | | | | d_{206} | d_{207} | d_{208} | d_{209} | d_{210} | d_{211} | d_{212} | d_{213} | d_{214} | d_{215} | d_{216} | d_{217} | d_{218} | d ₂₁₉ | d_{220} | d_{221} | d_{222} | d_{223} | d_{224} | d_{225} | Table 9. Blocks B_{16} , B_{17} , B_{18} **Proof.** To find block B_{16} using (r, \bar{r}) -inducing of p.i.s. D_6 , D_{11} , D_{13} , D_{236} , D_{237} , D_{16} of S_{27} to S_{28} gives c_1 , c_2 , c_3 , d_{212} , d_{213} , c_4 , respectively. Since $\langle 19, 5, 4 \rangle \neq \langle 19, 5, 4 \rangle'$ and $\langle 19, 5, 4 \rangle \downarrow S_{27} \cap \{\langle 15, 8, 5 \rangle, \langle 11, 8, 5, 4 \rangle^*,$ $\langle 10,8,5,4,1 \rangle$, $\langle 9,8,5,4,2 \rangle$ } $\downarrow S_{27}$ has no i.m.s then $c_1 = d_{206} + d_{207}$. Since $\langle 15,8,5 \rangle \neq \langle 15,8,5 \rangle'$ then c_2 divided or there are two columns. Suppose there are two columns: $\begin{aligned} \phi_1 &= a_1 \langle 16,8,4 \rangle + a_2 \langle 15,8,5 \rangle + a_3 \langle 11,8,5,4 \rangle^* + a_4 \langle 10,8,5,4,1 \rangle + a_5 \langle 9,8,5,4,2 \rangle, \end{aligned}$ $$\begin{split} \phi_1 &= a_1 \langle 16,8,4 \rangle' + a_2 \langle 15,8,5 \rangle' + a_3 \langle 11,8,5,4 \rangle^* + a_4 \langle 10,8,5,4,1 \rangle' + a_5 \langle 9,8,5,4,2 \rangle'. \end{split}$$ To describe columns since $\langle 15,8,5 \rangle \downarrow S_{27}$ has 6 of i.m.s and since B_{16} of defect one then we have $a_1, a_2 \cdots a_5 \in \{0,1\}$. Suppose $a_2 = 1$, since $\langle 15,8,5 \rangle \downarrow S_{27} \cap \{\langle 10,8,5,4,1 \rangle, \langle 9,8,5,4,2 \rangle\} \downarrow S_{27}$ has no i.m.s. so $a_4, a_5 = 0$. But degree $\phi_1, \phi_2 \equiv 0 \ mod \ 11^2$ only when - $a_1 = a_2 = 1$ and $a_3 = 0 \Rightarrow c_2 = d_{208} + d_{209}$ or - $a_1 = 0$ and $a_2 = a_3 = 1 \Rightarrow c_3 = d_{210} + d_{211}$ So $c_2 = d_{208} + d_{209}$, also since B_{16} of defect one then $c_3 = d_{210} + d_{211}$. Since $\langle 9, 8, 5, 4, 2 \rangle \neq \langle 9, 8, 5, 4, 2 \rangle'$ then c_4 must split to $d_{214} + d_{215}$. Hence block B_{16} . To find blocks B_{17} and B_{18} , since - degree {\langle 17,7,3,1\rangle^*, \langle 12,7,6,3\rangle^*, - $(9,7,6,3,2,1)^*$ $\} \equiv 88 \ mod \ 11^2$ - degree $\{(18,6,3,1)^*, (14,7,6,1)^*, (11,7,6,3,1) + (11,7,6,3,1)'\} \equiv -88 \mod 11^2$ - degree $\{(18,5,3,2)^*, (14,7,5,2)^*(11,7,5,3,2) + (11,7,5,3,2)^*\} \equiv 77 \mod 11^2$ - degree $\{(\langle 16,7,3,2\rangle^*,\langle 13,7,5,3\rangle^*,\langle 10,7,5,3,2,1\rangle^*\}$ $\equiv -77 \ mod \ 11^2$ By using (r, \bar{r}) –inducing of p.i.s. D_{166} , D_{167} , D_{175} , D_{177} , D_{170} , D_{71} , D_{75} , D_{83} , D_{91} , D_{95} for S_{27} to S_{28} , and since on $(11, \alpha)$ -regular classes: - 1. $\langle 11,7,6,3,1 \rangle = \langle 11,7,6,3,1 \rangle'$ - 2. $\langle 9,7,6,3,2,1 \rangle^* = \langle 11,7,6,3,1 \rangle \langle 12,7,6,3 \rangle^* + \langle 14,7,6,1 \rangle^* \langle 17,7,3,1 \rangle^* \langle 18,6,3,1 \rangle^*$ - 3. $\langle 11,7,5,3,2 \rangle = \langle 11,7,5,3,2 \rangle'$ - 4. $\langle 10,7,5,3,2,1 \rangle = \langle 11,7,5,3,2 \rangle \langle 13,7,5,3 \rangle^* + \langle 14,7,5,2 \rangle^* \langle 16,7,3,2 \rangle^* + \langle 18,5,3,2 \rangle^*.$ then each block contains at most 5 columns so we get **Table** 9. ### 4. CONCLUSIONS In this research, the decomposition matrix of the S_{28} If the field characteristic is prime was found, which is equal to $B_1 \oplus B_2 \oplus, \ldots, \oplus B_{69}$, the decomposition matrix for the spin characters of the symmetric group is connected between the irreducible spin characters and the irreducible modular spin characters. We had to conduct multiple studies in order to have enough data to discover new properties and theorems because there isn't a general formula for studying the topic, especially when we prove the field and the change of groups. This is what previous researchers did when they looked at the division matrix at the field where the characteristic is 0. We used maple programming to see all correct probabilities. then examine irreducible modular spin characters, and lastly classify groups. #### Appendix(Maple Programming) Let approximation matrix for the block to the spin characters of S_{28} and field has characteristic p = 11 | Degree | Spin characters | Approxima | ation matrix | |--------|-----------------|-----------|--------------| | D_1 | α | a_1 | | | D_1 | α' | | a_1 | | D_2 | γ^* | a_2 | a_2 | | | | | | | | | | | | D_i | δ | a_i | | | A_i | δ' | | a_i | | | | Q_1 | φ_2 | $a_i \in \mathbb{N}, \ \forall i$. To find discuss all
probabilities such that the ``` degree Y_1, Y_2 \equiv 0 \mod 7^3. >P:=p^3; A_1 := D_1; A_2 := D_2; A_i := D_1; S := 0; j := 1; for a_1 from 0 to n_1 do for a_2 from 0 to n_2 do for a_i from 0 to n_i do S:= A_1 * a_1 + A_2 * a_2 + \cdots + A_i * a_I; G := modp(S, P); if G = 0 then print(j, 'a_1' = a_1, 'a_2' = a_2, ..., 'a_i' = a_i); j := j + 1; fi; S := S; od; od; od; ``` #### REFERENCES - [1] A. H. Jassim, "11-Brauer trees of S₂₀, " Journal of Basrah Researches(Sciences).40, pp. 76-86, 2014. - [2] A. H. Jassim, "11- Modular Characters for \bar{S}_{27} ," Journal of University of Babylon for Pure and Applied Sciences. 27, pp. 303-317,2019. - [3] A. H. Jassim, and M. M. Jawad, "Decomposition matrices for the spin characters of S26 Modulo 11, " Basrah Journal of Science. 37, pp. 253-261, 2019. - [4] A. K. Yaseen, "Modular spin representations of the symmetric groups," Ph.D. Dissertation, Aberystwyth University, Aberystwyth, Aberystwyth, United Kingdom, 1987. - [5] A. O. Morris, "The spin representation of the symmetric group, "proc. London Math, Soc., 3(12), pp.55-76, 1962 - [6] A. O. Morris, and A.K. Yaseen, "Decomposition matrices for spin characters of symmetric group," Proc. of Royal society of Edinburgh. 108A,pp.145-164, 1988. - [7] B. M. Puttaswamaiah, and J. D. Dixon, "Modular representation of finite groups, " New York, Academic Press, 1977. - [8] G. James, "The modular characters of Mathieu groups," J. Algebra. 27, pp.57–111, 1973. - [9] J. F. Humphreys, "Blocks of the Projective representations of symmetric groups, " J. London Math. Society. 33, pp. 441-452, 1986. - [10] J. F. Humphreys, "Projective modular representations of finite groups, " J. London Math, Soc., 16, pp.51-66, 1977. - [11]J. Schur, "Uber die Darstellung der symmetrischen und der alternierenden gruppe durch gebrochene lineare subtituttionen, "j,Reine ang.Math. 139, pp.155-250, 1911. - [12] N. M. Yacoob, "Decomposition Matrices of the Spin Characters of the Symmetric Group S21, S22 Modulo p = 11 and S_{22} modulo p = 7, "M.Sc. Thesis Basrah University. 2014. - [13] S. A. Taban, and A. H. Jassim, "The Brauer trees of the symmetric groups S_{17} and S_{18} modulo p = 11, "Basrah Journal of Science, 30A, pp. 149-165, 2012. - [14] S. A. Taban, and A. H. Jassim, "Irreducible modular spin characters of the symmetric group S_{19} modulo p = 11, "Basrah Journal of Science 31A, pp. 59-74, 2013.