Analysis of Backward Fuzzy Doubly Stochastic Differential Equations

Hassan khaleel Ismail
Department of Mathematics
College of computer science and Mathematics, University of Kufa
Najaf, Iraq
hassank.rwazg@uokufa.edu.iq
Orcid.org/0009-0008-7784-1357

Falah Hassan Sarhan
Department of Mathematics
College of Education for Girls, University of Kufa
Najaf, Iraq
falahl.sarhan@uokufa.edu.iq
Orcid.org/0000-0001-5687-0783

DOI: http://dx.doi.org/10.31642/JoKMC/2018/100205
Received Apr. 25, 2023, Accepted for publication Jun. 1, 2023

Abstract—In this paper, we study formula for the backward doubly fuzzy stochastic differential equations (BFDSDEs). In the beginning, we study some basic concepts, definitions, and Hypotheses to obtain the numerical scheme for BFDSDEs, as our scheme depends on the partition of interval [0, T]. In our work, we prove that under Lipschitz conditions, the approximation solution for the backward fuzzy doubly stochastic differential equations converges to the exact solution by using mean square error, and prove the existence and uniqueness of approximations solutions to BFDSDEs.

Keywords—: Backward Doubly Fuzzy Stochastic Differential Equations, Backward Fuzzy Stochastic Differential Equations,

1- INTRODUCTION

We consider the BDSDEs that have the following

\[X(t) = \xi + \int_0^T \Psi(s, X(s), \Gamma(s)) ds + \int_0^T \Phi(s, X(s), \Gamma(s)) dW(s) \]

\[- \int_0^T \Gamma(s) dB(s) \]

(1)

Where \{W(t), 0 \leq t \leq T\} and \{B(t), 0 \leq t \leq T\} are two independent Wiener processes defined on the complete probability spaces \((\Omega_1, Y_1, P_1)\) and \((\Omega_2, Y_2, P_2)\) respectively, and \(T < \infty\) is a finite time horizon with the natural filtration \((Y_t, 0 \leq t \leq T)\) and \(\xi\) is a terminal condition such that \(E[|\xi|^2] < \infty\). Clearly, two stochastic processes \((X(t), \Gamma(t)), 0 \leq t \leq T\) with values in \(R \times R\) which is \(Y_{-t}\) adapted and satisfies equation (1), an adapted solution to the equation is said to be this pair. Pardoux and Peng [6] proved the existence and uniqueness of the adapted solution for BSDEs under the Lipschitz condition. Peng [7] proved that a comparison theorem can be used to solve one-dimensional backward stochastic differential equations under Lipschitz conditions. Cao and Yan [8] and Liu and Ren [9] also generalized this theorem. Zhao et al [10] introduced a new numerical approach for BSDEs is presented, which uses the Monte Carlo method to approximate mathematical expectation. Falah and Liu [11] proposed the numerical method for backward stochastic differential equations with non-Lipschitz coefficients. Ma et al [12] proposed an effective numerical technique that reduces the difficulty of building an approximate solution by preventing discretized filtration from convergent to Brownian filtration. Pardoux and Peng [13] presented a class for the backward doubly stochastic differential equations and proved the existence and uniqueness of the adapted solutions. Aman, [14] proposed a numerical method for the class of BDSDEs that may have terminal values that depend on a path. Owo [15] presented a result for the existence and uniqueness of backward doubly stochastic differential equations whose coefficients satisfy the stochastic Lipschitz condition. Matoussi and Sallah [16] proposed a numerical solution for backward doubly stochastic differential equations with random terminal time. Bao et al [17] presented a numerical scheme for the BDSDEs using the splitting-up method.
On the other hand, Stojakovic [18] demonstrated that fuzzy random variables with values in separable Banach space exist and are unique when the appropriate Lipschitz condition is met. Kim [19] proved that this solution exists and is unique under the appropriate Lipschitz condition. Malinowski [20] studied fuzzy stochastic integrals and described some of their characteristics. Also, he demonstrated the existence of solutions to stochastic fuzzy differential equations governed by m-dimensional Brownian motion. Nayak and Chakraverty [21] proposed that the fuzzy stochastic Ito integral concept has also been used to locate the precise method’s solutions. To handle the fuzzy numbers associated with the fuzzy stochastic differential equations (FSDE), a numerical solution of the FSDE to a broad methodology has been described. Malinowski [22] demonstrated that a unique solution can be found for fuzzy stochastic differential equations of decreasing fuzziness when the necessary approximation sequences and coefficients are used. In this work, we present some fundamental ideas and presumptions for studying the backward fuzzy doubly stochastic differential equations. Additionally, we go over the approximate solution of BDFSDEs under Lipschitz conditions.

This paper is organized as follows: In Section 2, we introduce some basic premises, spaces, and assumptions used to study the approximate solution for BDFSDEs. In section 3, we give some basic definitions and concepts of fuzzy solutions of the backward stochastic differential equations. In section 4, we present a numerical scheme of BDFSDEs. In section 5, we discussed that the approximate solutions of BDFSDEs converge to the exact solution under the Lipschitz condition and also the existence and uniqueness of the approximate solution to the above equation.

2- PRELIMINARIES AND BASIC HYPOTHESES SELECTING A TEMPLATE

In this section, we present some of the basic concepts, spaces, and conditions used in the sequel [23]. As a result, we assume two independent Wiener Processes \(W(t), 0 \leq t \leq T \) and \(B(t), 0 \leq t \leq T \), defined on the complete probability spaces \((\Omega_1, Y_1, P_1)\) and \((\Omega_2, Y_2, P_2)\), respectively, and a finite time horizon \(T < \infty \). We denote

\[
Y_{t,s}^B = \sigma(B(r)-B(s), s \leq r \leq t), \quad Y_{t,s}^W = \sigma(W(r),0 \leq r \leq t).
\]

Moreover, we consider \(\Omega = \Omega_1 \times \Omega_2, Y = Y_1 \otimes Y_2 \) and \(P = P_1 \otimes P_2 \). In addition, we put \(Y = Y^W \otimes Y^B \otimes M \), where \(M \) is the collection of \(\varnothing \)-null sets of \(Y \). That is to say, the \(\sigma \)-fields \(Y \), \(0 \leq t \leq T \), be \(\varnothing \)-complete, and the family of \(\sigma \)-algebra \(Y = \{ Y_t \}_{t \in [0,T]} \) be neither decreasing nor increasing, it is not filtration. We assume the Euclidean norm \(| \cdot | \) in \(R^2 \) and \(R^{2 \times d} \), the following spaces are used

1. Let \(H_2^\infty(R^2) \) be the space of \(Y \)-predictable processes \(X: \Omega \times [0,T] \rightarrow R^2 \) s.t. \(E \left[\sup_{t \in [0,T]} |X(t)|^2 \right] < \infty \).
2. Let \(S_2^\infty(R^{2 \times d}) \) be the space of \(Y \)-adapted processes \(\Gamma: \Omega \times [0,T] \rightarrow R^{2 \times d} \) s.t. \(E \left[\int_0^T |\Gamma(t)|^2 dt \right] < \infty \).

The spaces \(H_2^\infty(R^2) \) and \(S_2^\infty(R^{2 \times d}) \) are done with the norm \(\|X\|^2_{H_2^\infty} = E \left[\sup_{t \in [0,T]} |X(t)|^2 \right] \) and \(\|\Gamma\|^2_{S_2^\infty} = E \left[\int_0^T |\Gamma(t)|^2 dt \right] \), respectively.

We consider the backward doubly stochastic differential equations:

\[
dX(t) = \Psi(t, X(t), \Gamma(t))dt + \Phi(t, X(t), \Gamma(t))dW(t) - \Gamma(t)dB(t) \tag{2}
\]

Where \(\Psi \) and \(\Phi \) are Borel measurable function and \(\{ W(t), 0 \leq t \leq T \} \) is \(\varnothing \)-dimensional Wiener process, and \(\xi \) is given \(Y_t \)-a measurable random variable with \(E|\xi|^2 < \infty \).

Suppose that \(\Psi: \Omega \times [0,T] \times R^1 \times R^{2 \times d} \rightarrow R^1 \) and \(\Phi: \Omega \times [0,T] \times R^1 \rightarrow R^{2 \times d} \) are jointly measurable and \((X, \Gamma) \in R^1 \times R^{2 \times d} \).

The following conditions are used:

\begin{align*}
(\text{H}_1) & \quad |\Psi(X_1, \Gamma_1, t) - \Psi(X_2, \Gamma_2, t)| \leq K(|X_1 - X_2|^2 + |\Gamma_1 - \Gamma_2|^2) \\
(\text{H}_2) & \quad E[|\Phi(X, \Gamma)|^2] \leq K(1 + |X|^2 + |\Gamma|^2)
\end{align*}

where \(K > 0 \), and for all \(t \in [0,T], X_1, X_2 \in R^1 \) and \(\Gamma_1, \Gamma_2 \in R^{2 \times d} \).

Theorem(2.1) [2] Let \(p \geq 2 \) and \(\Phi \in \mathcal{L}^{-2,2}([0,T], R^{2 \times d}) \) such that

\[
E \left[\int_0^T |\Phi(s)|^p ds \right] < \infty,
\]

then

\[
E \left[\sup_{0 \leq t \leq T} \int_0^t |\Phi(s)|^p dW_s \right] \leq \frac{p^2}{2(p-1)T} E \left[\int_0^T |\Phi(s)|^p ds \right] \]

Theorem (2.2) [2] (Gronwall’s inequality) Let \(T > 0 \) and \(C \geq 0 \). Let \(X(\cdot) \) be a Borel measurable bounded nonnegative function on \([0,T] \), and let \(X(\cdot) \) be a nonnegative integrable function on \([0,T] \). If \(X(t) \leq C + \int_0^t X(s)ds \) for all \(0 \leq t \leq T \) then

\[
X(t) \leq C \exp \left(\int_0^t X(s)ds \right) \quad \text{for all} \quad 0 \leq t \leq T
\]

3. Fuzzy Solution of the Backward Stochastic Differential Equations

Let \(\eta(R^2) \) be the family of all compact, convex, nonempty subsets \(R^2 \). We denote the fuzzy set space of \(R^2 \) as \(B(R^2) \), i.e. the set of functions \(\varphi: R^2 \rightarrow [0,1] \) such that \(\varphi^0 \in \eta(R^2) \) for every \(\beta \in [0,1] \), where \(\varphi^0 = \{ a \in R^2 : \varphi(a) \geq \beta \} \) for \(\beta \in [0,1] \) and \(\varphi^0 = \{ a \in R^2 : \varphi(a) > 0 \} \). Assume \((\Omega_1, Y_1, P_1) \) and
\[(\Omega_2, Y_2, P_2)\) are probability spaces together with a filtration \[\{\mathcal{F}_t\}_{t \in [0, T]}, \mathcal{T} \in (0, \infty),\] observing the usual conditions.

A mapping \(X: \Omega \rightarrow B(R^d)\) such a variable is called a fuzzy random variable, if \([X]^{\beta_0}: \Omega \rightarrow \eta(R^d)\) is an \(Y\)-measurable multi-function for each \(\beta \in [0, 1]\).

Definition (1): [20] Let \((\Omega, \mathcal{Y}, P)\) is a complete probability space, we can say \(\mathcal{Y}: \Omega \rightarrow \mathcal{Y}(R^d)\) be fuzzy random variable if for each \(\beta \in [0, 1] \}, [X]^{\beta_0}: \Omega \rightarrow \eta(R^d)\) be \(Y\)-measurable.

Definition (2): [20] A mapping \(X: [0, 1] \times \Omega \rightarrow \mathcal{Y}(R^d)\) called a fuzzy stochastic process, if the mapping \(X(t, .) = X(t): \Omega \rightarrow \mathcal{Y}(R^d)\) be a fuzzy random variable.

Definition (3): [20] A fuzzy stochastic process \(X\) be \(\delta_\infty\)-continuous if the mappings \(X(., W): [0, 1] \rightarrow \mathcal{Y}(R^d)\) be \(\delta_\infty\)-continuous functions.

We consider the backward fuzzy doubly stochastic differential equations as

\[
dX(t) = -\Psi(t, X(t), \Gamma(t)) dt + \Phi(t, X(t), \Gamma(t)) dW(t) - \Gamma(t) dB(t) \tag{3}
\]

where \(\Psi: \Omega \times [0, 1] \times R^d \times R^d \rightarrow R^d \) and \(X_T: \Omega \rightarrow R^d\) is a fuzzy random variable

4. **Numerical Scheme of the BDSDEs**

In this section, we present a numerical scheme based on a discretization of (1). Therefore, for each integer \(n \geq 1\) and \(T \in [0, T]\), assume \(0 = t_0 < t_1 < \cdots < t_n = T\), be a partition of \([0, T]\) and denote

\[
\pi^T = t_i = \frac{T}{n}, 1 \leq i \leq n, \quad \Delta W(t_{i-1}) = W(t_{i-1}) - W(t_i)
\]

\[
\Delta B(t_{i-1}) = B(t_{i-1}) - B(t_i)
\]

where \(i = 0, 1, \ldots, n - 1\) and \(\Delta t = \max \Delta t_i\). For the small interval \([t_i, t_{i+1})\), the BFSDEs is following:

\[
X_{t_i} = X_{t_{i-1}} + \int_{t_i}^{t_{i+1}} \Psi(s, X(s), \Gamma(s)) ds + \int_{t_i}^{t_{i+1}} \Phi(s, X(s), \Gamma(s)) dW(s) - \int_{t_i}^{t_{i+1}} \Gamma(s) dB(s)
\]

Therefore, the approximation formula is

\[
X_{t_i} \approx \Psi^X(t_i, X_{t_{i-1}}, \Gamma_{t_{i-1}}) + \Phi(t, X_{t_{i-1}}, \Gamma_{t_{i-1}}) \Delta W(t_{i-1}) - \Gamma_{t_{i-1}} \Delta B(t_{i-1}) \tag{5}
\]

with \(X(T) = \xi(T)\) on \(0 \leq t \leq T\), so we consider a class of BFSDEs as follows:

\[
X_{t_i} \approx \int_{t_i}^{t_{i+1}} \Psi(s, X_{t_{i-1}}, \Gamma_{t_{i-1}}) ds + \int_{t_i}^{t_{i+1}} \Phi(s, X_{t_{i-1}}, \Gamma_{t_{i-1}}) dW(s) - \int_{t_i}^{t_{i+1}} \Gamma_{t_{i-1}} dB(s) \tag{6}
\]

Lemma (4.1): Assume the Lipschitz conditions are fulfilled, then it holds that

\[
E[\sup_{0 \leq s \leq T} |X(t)|^2 + \int_0^T |\Gamma(s)|^2 ds] \leq M \tag{7}
\]

Proof: From the first part of inequality (7), we get that

\[
|X(t)|^2 \leq |X(t) + \int_0^t \Psi(s, X(s), \Gamma(s)) ds + \int_0^t \Phi(s, X(s), \Gamma(s)) dW(s) - \int_0^t \Gamma(s) dB(s)|^2
\]

By elementary inequality \(|a + b + c + d|^2 \leq 4(|a|^2 + |b|^2 + |c|^2 + |d|^2)\), we have that

\[
|X(t)|^2 \leq 4|X(t)|^2 + 4 \int_0^T |\Psi(s, X(s), \Gamma(s))|^2 ds + 4 \int_0^T |\Phi(s, X(s), \Gamma(s))|^2 dW^2(s) + 4 \int_0^T |\Gamma(s)|^2 dB^2(s)
\]

Taking the expectation and supremum, we obtain that

\[
E[\sup_{0 \leq s \leq T} |X(t)|^2] \leq 4E[|X(t)|^2 + 4(T)E[\sup_{0 \leq s \leq T} |\Psi(s, X(s), \Gamma(s))|^2 ds + 4E[\sup_{0 \leq s \leq T} |\Phi(s, X(s), \Gamma(s))|^2 dW^2(s)] + 4E[\sup_{0 \leq s \leq T} |\Gamma(s)|^2 dB^2(s)]]
\]

By using theorem (2.1), we get that

\[
E[\sup_{0 \leq s \leq T} |X(t)|^2] \leq 4E[|X(T)|^2 + 4(T)E[\Psi(s, X(s), \Gamma(s))|^2 ds + 4E[\Phi(s, X(s), \Gamma(s))^2 dW^2(s)] + 4E[\Gamma(s)|^2 dB^2(s)]
\]

Using Lipschitz condition \(H_2\) we have that

\[
E[\sup_{0 \leq s \leq T} |X(t)|^2] \leq 4E[|X(T)|^2 + 4(T)E[\Psi(s, X(s), \Gamma(s))|^2 ds + 16E[\Phi(s, X(s), \Gamma(s))^2 dW^2(s)] + 16E[\Gamma(s)|^2 dB^2(s)]
\]

where \(K_1 = 4E[|X(T)|^2]\), we get that

\[
E[\sup_{0 \leq s \leq T} |X(t)|^2] \leq K_1 + 4K(T)(1 + E[|X|^2 + E[|\Gamma|^2])T
\]

\[
+ 16E[|\Gamma|^2 + (T) \tag{8}
\]
Now, we take the second part of inequality (7), we have that
\[
E \int_0^T |\Gamma(s)|^2 ds = \int_0^T E|\Gamma(s)|^2 ds.
\]
Then, we obtain that
\[
E \int_0^T |\Gamma(s)|^2 ds = E|\Gamma(t)|^2 \int_0^T ds.
\] (9)

From equations (8) and (9) we obtain that
\[
E \left[\sup_{0 \leq t \leq T} |X(t)|^2 + \int_0^T |\Gamma(s)|^2 ds \right] \leq K_1 + 4K(T)(1+E|X|^2+E|\Gamma|^2)(T) + 17E|\Gamma(t)|^2(T).
\]
Let \(K_2 = 4K(T)(1+E|X|^2+E|\Gamma|^2)(T) \) and \(K_3 = 17E|\Gamma(t)|^2(T) \), we have that
\[
E \left[\sup_{0 \leq t \leq T} |X(t)|^2 + \int_0^T |\Gamma(s)|^2 ds \right] \leq K_1 + K_2 + K_3.
\]
Choosing \(M = K_1 + K_2 + K_3 \), we get that
\[
E \left[\sup_{0 \leq t \leq T} |X(t)|^2 + \int_0^T |\Gamma(s)|^2 ds \right] \leq M
\]

Lemma (4.2). Under Lipschitz conditions, for all \(p \geq 2 \), there exists a positive constant \(M_1 \) and \(M_2 \) such that
\[
E \left(\sup_{0 \leq t \leq T} |X(t)|^p \right) \leq M_1
\]
and
\[
E \left(\sup_{0 \leq t \leq T} |\Gamma(t)|^p \right) \leq M_2
\]

Proof.
\[
|X(t)|^p = |X(0)| + \int_0^T |\Psi(s, X(s), \Gamma(s)) ds + \int_0^T |\Phi(s, X(s), \Gamma(s))|dW(s) + \int_0^T |\Gamma(s)|dB(s)|^p
\]
By using elementary inequality \(|a + b + c + d|^p \leq 4^{p-1}(|a|^p + |b|^p + |c|^p + |d|^p) \), we have that
\[
|X(t)|^p \leq 4^{p-1}|X(0)|^p + \int_0^T |\Psi(s, X(s), \Gamma(s))|d\Gamma(s)|^p + 4^{p-1}\int_0^T |\Phi(s, X(s), \Gamma(s))|dW(s)|^p + 4^{p-1}\int_0^T |\Gamma(s)|dB(s)|^p.
\]
Taking the expectation and supremum of the inequality above, we obtain that
\[
E \left(\sup_{0 \leq t \leq T} |X(t)|^p \right) \leq 4^{p-1}E \left(\sup_{0 \leq t \leq T} |X(t)|^p \right) + 4^{p-1}E \left(\sup_{0 \leq t \leq T} |\Psi(s, X(s), \Gamma(s))|d\Gamma(s)\right) + 4^{p-1}E \left(\sup_{0 \leq t \leq T} |\Phi(s, X(s), \Gamma(s))|dW(s)\right) + 4^{p-1}E \left(\sup_{0 \leq t \leq T} |\Gamma(s)|dB(s)\right).
\]
Using theorem (2.1), we have that
\[
E \left[\sup_{0 \leq t \leq T} |X(t)|^p \right] \leq 4^{p-1}E \left(\sup_{0 \leq t \leq T} |X(t)|^p \right) + 4^{p-1}E \left(\sup_{0 \leq t \leq T} |\Psi(s, X(s), \Gamma(s))|d\Gamma(s)\right) + 4^{p-1}E \left(\sup_{0 \leq t \leq T} |\Phi(s, X(s), \Gamma(s))|dW(s)\right) + 4^{p-1}E \left(\sup_{0 \leq t \leq T} |\Gamma(s)|dB(s)\right).
\]
By using the Lipschitz condition \(H_2 \), we get that
\[
E \left[\sup_{0 \leq t \leq T} |X(t)|^p \right] \leq 4^{p-1}E \left(\sup_{0 \leq t \leq T} |X(t)|^p \right) + 4^{p-1}E \left(\sup_{0 \leq t \leq T} |\Psi(s, X(s), \Gamma(s))|d\Gamma(s)\right) + 4^{p-1}E \left(\sup_{0 \leq t \leq T} |\Phi(s, X(s), \Gamma(s))|dW(s)\right) + 4^{p-1}E \left(\sup_{0 \leq t \leq T} |\Gamma(s)|dB(s)\right).
\]
Then
\[
E \left[\sup_{0 \leq t \leq T} |X(t)|^p \right] \leq 4^{p-1}E \left(\sup_{0 \leq t \leq T} |X(t)|^p \right) + 4^{p-1}E \left(\sup_{0 \leq t \leq T} |\Psi(s, X(s), \Gamma(s))|d\Gamma(s)\right) + 4^{p-1}E \left(\sup_{0 \leq t \leq T} |\Phi(s, X(s), \Gamma(s))|dW(s)\right) + 4^{p-1}E \left(\sup_{0 \leq t \leq T} |\Gamma(s)|dB(s)\right).
\]
Let \(C_1 = 4^{p-1}E \left(\sup_{0 \leq t \leq T} |X(t)|^p \right) \), we have that
\[
E \left[\sup_{0 \leq t \leq T} |X(t)|^p \right] \leq C_1 + 4^{p-1}K \left((T)^{p-1+\frac{p}{2}(2p-1)} \right)
\]
\[
\int_0^T E(1+|X|^p+E|\Gamma|^p)ds + 4^{p-1}E \left(\sup_{0 \leq t \leq T} |\Psi(s, X(s), \Gamma(s))|d\Gamma(s)\right) + 4^{p-1}E \left(\sup_{0 \leq t \leq T} |\Phi(s, X(s), \Gamma(s))|dW(s)\right) + 4^{p-1}E \left(\sup_{0 \leq t \leq T} |\Gamma(s)|dB(s)\right).
\]
Let \(C_2 = 4^{p-1}K \left((T)^{p-1+\frac{p}{2}(2p-1)} \right) + E|X|^p + E|\Gamma|^p(T) \), we have that
\[
E \left[\sup_{0 \leq t \leq T} |X(t)|^p \right] \leq C_1 + C_2 + C_3.
\]
Choosing \(M_1 = C_1 + C_2 + C_3 \), we obtain that
The purpose of this section is to discuss approximation solutions to the backward fuzzy doubly stochastic differential equations.

Theorem (5.1): Assume that the conditions \((H_1 - H_3)\) are fulfilled. Let \(\pi = 0 = t_0 < \cdots < t_n = T\) be any partition of \([0, T]\) with \(|\pi| = \max |t_i - t_{i-1}|\), then there exists a constant \(A\) depending only on \(T\) and \(K\), such that

\[
E \left[\max_{0 \leq t \leq T} |X(t)|^2 \right] \leq M_1.
\]

And consequently, we have that

\[
E \left(\sup_{0 \leq t \leq T} |\Gamma(t)|^2 \right) \leq M_2
\]

5-Main Result

Proof. For all \(t \in [0, T]\), from the first part of inequality (10), we obtain that

\[
|X(t)|^2 = |X(t) - X^n(t)|^2 + 4 \int_{t_i}^{t_{i+1}} |\Psi(s, X^n(s)) - \Psi(s, X^n(s))| ds + 4 \int_{t_i}^{t_{i+1}} |\Phi(s, X^n(s), \Gamma(s)) - \Phi(s, X^n(s), \Gamma^n(s))| ds + 4 \int_{t_i}^{t_{i+1}} |\Gamma(s) - \Gamma^n(s)| dB(s)^2.
\]

By using elementary inequality \(|a + b + c + d| \leq 4(|a|^2 + |b|^2 + |c|^2 + |d|^2)|, we have that

\[
|X(t)|^2 \leq 4|X(t) - X^n(t)|^2 + 4 \int_{t_i}^{t_{i+1}} |\Psi(s, X^n(s)) - \Psi(s, X^n(s))| ds + 4 \int_{t_i}^{t_{i+1}} |\Phi(s, X^n(s), \Gamma(s)) - \Phi(s, X^n(s), \Gamma^n(s))| ds + 4 \int_{t_i}^{t_{i+1}} |\Gamma(s) - \Gamma^n(s)| dB(s)^2.
\]

Using Lipschitz condition \(H_1\), we have that

\[
|X(t)|^2 \leq 4|X(t) - X^n(t)|^2 + 4(t_i - t_{i-1})
\]

\[
\int_{t_i}^{t_{i+1}} K |X(s) - X^n(s)|^2 + |\Gamma(s) - \Gamma^n(s)|^2 ds + 4 \int_{t_i}^{t_{i+1}} |\Gamma(s) - \Gamma^n(s)| dB(s)^2.
\]

Taking the expectation and maximum inequality above, we obtain that

\[
E \left(\sup_{0 \leq t \leq T} |X(t)|^2 \right) \leq 4M_1, E \left(\sup_{0 \leq t \leq T} |\Gamma(t)|^2 \right) \leq 4M_2.
\]

And consequently, we have that

\[
E \left(\sup_{0 \leq t \leq T} |\Gamma(t)|^2 \right) \leq M_2
\]

Using Lipschitz condition \(H_3\), we have

\[
E \left[\max_{0 \leq t \leq T} |X(t) - X^n(t)|^2 \right] \leq 4K(T + 4K(T + 1)) \int_0^T \int_{t_i}^{t_{i+1}} E \left[\left| X(s) - X^n(s) \right|^2 + \left| \Gamma(s) - \Gamma^n(s) \right|^2 \right] ds + 4 \int_0^T E \left[\left| \Gamma(s) - \Gamma^n(s) \right|^2 \right] ds,
\]

then

\[
E \left[\max_{0 \leq t \leq T} |X(t) - X^n(t)|^2 \right] \leq 4K(T + 4K(T + 1)) \int_0^T \left| X(s) - X^n(s) \right|^2 + \left| \Gamma(s) - \Gamma^n(s) \right|^2 ds + 4 \int_0^T \left| \Gamma(s) - \Gamma^n(s) \right|^2 ds.
\]

Now, we prove the second part of the inequality (10), and we get that

\[
\sum_{i=1}^n \int_{t_i}^{t_{i+1}} |\Gamma_i(s) - \Gamma^n_i(s)|^2 ds = \int_0^T |\Gamma(s) - \Gamma^n(s)|^2 ds
\]

Taking expectations, we have that

\[
E \left[\sum_{i=1}^n \int_{t_i}^{t_{i+1}} |\Gamma_i(s) - \Gamma^n_i(s)|^2 ds \right] = \int_0^T E \left| \Gamma(s) - \Gamma^n(s) \right|^2 ds.
\]

Then

\[
E \left[\sum_{i=1}^n \int_{t_i}^{t_{i+1}} |\Gamma_i(s) - \Gamma^n_i(s)|^2 ds \right] = E \left[\left| \Gamma(s) - \Gamma^n(s) \right|^2 \right] (T),
\]

Where \(K_4 = E \left| \Gamma_i(s) - \Gamma^n_i(s) \right|^2 \) And \(|\pi| = \max |t_i - t_{i-1}| = T\), we obtain that

\[
E \left[\sum_{i=1}^n \int_{t_i}^{t_{i+1}} |\Gamma_i(s) - \Gamma^n_i(s)|^2 ds \right] = K_4 |\pi|.
\]
Let constant $\Lambda=K_1+K_2+K_3+K_4$, we have that
\[
\max_{t\in[0,T]} \left| X^n(t) - X(t) \right|^2 \leq \Lambda |\pi^n|.
\]

Theorem (5.2): consider that $\{X(t), \Gamma(t)\}$ be a solution of equation (1) then the approximated solution $\{X^n(t), \Gamma^n(t)\}$ converges to $\{X(t), \Gamma(t)\}$ in the sense that for all $t\in [0,T]$
\[
\lim_{n \to \infty} \mathbb{E} \left| X(t) - X^n(t) \right|^2 = 0
\]

And
\[
\lim_{n \to \infty} \mathbb{E} \int_0^T |\Gamma(s) - \Gamma^n(s)|^2 ds = 0
\]

Proof. First, we prove that
\[
\lim_{n \to \infty} \mathbb{E} \left| X(t) - X^n(t) \right|^2 = 0
\]
\[
\left| X(t) - X^n(t) \right|^2 = \left| \xi - \xi^n \right|^2 + \int_0^T \left[\Psi(s, X(s), \Gamma(s)) - \Psi(s, X^n(s), \Gamma^n(s)) \right] ds + \int_0^T \left[\Phi(s, X(s), \Gamma(s)) - \Phi(s, X^n(s), \Gamma^n(s)) \right] dW(s) - \int_0^T \left[\Gamma(s) \right] dB(s) \right|^2.
\]
By using elementary inequality $|a + b + c + d|^2 \leq 4(|a|^2 + |b|^2 + |c|^2 + |d|^2)$, we have that
\[
\left| X(t) - X^n(t) \right|^2 \leq 4 \left| \xi - \xi^n \right|^2 + 4 \int_0^T \left[\Psi(s, X(s), \Gamma(s)) - \Psi(s, X^n(s), \Gamma^n(s)) \right] ds + 4 \int_0^T \left[\Phi(s, X(s), \Gamma(s)) - \Phi(s, X^n(s), \Gamma^n(s)) \right] dW(s) - \int_0^T \left[\Gamma(s) \right] dB(s) \right|^2.
\]
Then
\[
\left| X(t) - X^n(t) \right|^2 \leq 4 \left| X(T) - X^n(T) \right|^2 + 4 \int_0^T \left[\Psi(s, X(s), \Gamma(s)) - \Psi(s, X^n(s), \Gamma^n(s)) \right] ds + 4 \int_0^T \left[\Phi(s, X(s), \Gamma(s)) - \Phi(s, X^n(s), \Gamma^n(s)) \right] dW(s) - \int_0^T \left[\Gamma(s) \right] dB(s) \right|^2.
\]
Taking expectations and using Lipschitz condition H_1, we have that
\[
\mathbb{E} \left| X(t) - X^n(t) \right|^2 \leq \mathbb{E} \left| X(T) - X^n(T) \right|^2 + 4 \int_0^T \left| \Gamma(s) \right|^2 ds.
\]

Let $C_1 = 4K(T)$, and $C_2 = 4K(T + 1)$, we obtain that
\[
\mathbb{E} \left| X(t) - X^n(t) \right|^2 \leq C_1 + C_2 \int_0^T \mathbb{E} \left| X(s) - X^n(s) \right|^2 ds + 4 \int_0^T \left| \Gamma(s) \right|^2 ds.
\]
And then
\[
\mathbb{E} \left| X(t) - X^n(t) \right|^2 \leq C_1 + C_2 \int_0^T \mathbb{E} \left| X(s) - X^n(s) \right|^2 ds,
\]
for all $t \in [0,T]$ using theorem (2.2), we get that
\[
\lim_{n \to \infty} \mathbb{E} \left| X(t) - X^n(t) \right|^2 = 0.
\]
And so, we obtain the following
\[
\lim_{n \to \infty} \int_0^T \left| \Gamma(s) \right|^2 ds = 0
\]

Theorem (5.3): Suppose that the assumptions $(H_3 - H_5)$ are fulfilled, then there exists a unique solution of the following equation
\[
X(t) = \zeta t + \int_0^T \Psi(s, X(s), \Gamma(s))ds + \int_0^T \Phi(s, X(s), \Gamma(s))dW(s) - \int_0^T \Gamma(s)dB(s)
\]

Proof. Existence.

By using theorem (5.1), then there exist

\[
X \in L^2_t(H^1) \quad \text{and} \quad \Gamma \in S^2_t(L^{1/2} \times \mathbb{R})
\]

Such that

\[
\lim_{n \to \infty} (X^n, \Gamma^n) = (X, \Gamma).
\]

Then the (lemma (4.2)) and (theorem (5.2)) shows that

\[
\lim_{n \to \infty} E[X^n(t) - X(t)]^2 = 0, \quad 0 \leq t \leq T
\]

Then by using a lemma (4.1), a lemma (4.2), and a theorem (5.1), we have the result.

Uniqueness.

Let pair \((X_i, \Gamma_i)\), where \(i = 1, 2\) is the solution of BFDSDEs by theorem (5.2), we obtain that

\[
\lim_{n \to \infty} E[X^n(t) - X^n(t)]^2 = 0
\]

And

\[
\lim_{n \to \infty} E[X^n(t) - X^n(t)]^2 = 0
\]

Now, we prove that

\[
\lim_{n \to \infty} E[X^n(t) - X^n(t)]^2 = 0
\]

\[
|X^n(t) - X^n(t)|^2 = |X^n(t) - X^n(t)|^2 + 4|\int_0^T \Psi(s, X^n(s), \Gamma^n(s))ds|
\]

By elementary inequality \(|a + b + c + d| \leq 4(|a| + |b| + |c| + |d|)|, we have that

\[
|X^n(t) - X^n(t)|^2 \leq 4|\int_0^T \Psi(s, X^n(s), \Gamma^n(s))ds|
\]

\[
- \Psi(s, X^n(s), \Gamma^n(s))ds| + 4|\int_0^T \Phi(s, X^n(s), \Gamma^n(s))ds|
\]

\[
\Phi(s, X^n(s), \Gamma^n(s))ds| + 4|\int_0^T \Gamma^n(s)dB(s)|^2.
\]

Taking the expectation and using the condition \(H_1, \xi = X(T)\), we have that

\[
E[X^n(t) - X^n(t)]^2 \leq 4E[X^n(T) - X^n(T)]^2 + 4E(T)
\]

Using condition \(H_3\), we have that

\[
E[X^n(t) - X^n(t)]^2 \leq 4K(T) + 4K(T) \int_0^T E[|X^n(s) - X^n(s)]^2
\]

\[
+ |\Gamma^n(s) - \Gamma^n(s)|^2]ds
\]

\[
+ 4K \int_0^T E[|X^n(s) - X^n(s)]^2 + |\Gamma^n(s) - \Gamma^n(s)|^2]ds
\]

\[
4 \int_0^T E[|\Gamma^n(s) - \Gamma^n(s)|^2]ds,
\]

then

\[
E[X^n(t) - X^n(t)]^2 \leq 4K(T) + 4K(T + 1) \int_0^T E[|X^n(s) - X^n(s)]^2
\]

\[
+ |\Gamma^n(s) - \Gamma^n(s)|^2]ds
\]

\[
+ 4 \int_0^T E[|\Gamma^n(s) - \Gamma^n(s)|^2)ds.
\]

Let \(C_1 = 4K(T)\) and \(C_2 = 4K(T + 1)\), we get that

\[
E[X^n(t) - X^n(t)]^2 \leq C_1 + C_2 \int_0^T E[|X^n(s) - X^n(s)]^2 + |\Gamma^n(s) - \Gamma^n(s)|^2]ds
\]

\[
+ 4 \int_0^T E[|\Gamma^n(s) - \Gamma^n(s)|^2)ds.
\]

Then \(E[X^n(t) - X^n(t)]^2 \leq C_1 + C_2 \int_0^T E[X^n(s) - X^n(s)]^2 ds, \) for all \(t \in [0, T]\). Using theorem (2.2), we obtain that

\[
\lim_{n \to \infty} E[X^n(t) - X^n(t)]^2 = 0.
\]

Hence, we get that \(X^n(t) = X^n(t)\)

And consequently, we obtain that

\[
\lim_{n \to \infty} E[|\Gamma^n(t) - \Gamma^n(t)|^2] = 0
\]
CONCLUSION

In this work, we have introduced the BDFSDEs and studied that the approximate solution of backward double fuzzy stochastic differential equations converges to the exact solution under Lipschitz conditions using mean squared error. We also discuss the existence and uniqueness of the approximate solution of the BDFSDE.

ACKNOWLEDGMENT

We appreciate the referee’s very constructive and detailed comments to improve the presentation of this paper.

REFERENCES