BANACH ALGEBRA VALUED – MEASURE

Noori F. Al- Mayahi
Dept. of Math.\ College of Computer Science and Mathematics\ University of Al-Qadisiya

ABSTRACT
In this paper, we introduce the concept of Banach Algebra valued measure, several properties of this measure are proved.

1. Preliminaries

Definition (1.1)
Let X be a real vector space. A partial order relation \leq on X is called vector order, if the following axioms are satisfied

1. $x \leq y \Rightarrow x + z \leq y + z \quad \forall x, y, z \in X$
2. $x \leq y \Rightarrow \lambda x \leq \lambda y \quad \forall x, y \in X \quad \text{and} \quad \lambda \geq 0$

A real vector space endowed with a vector order is called an ordered vector space.

An element x of an ordered vector space X is said to be positive if $x \geq 0$, and negative if $x \leq 0$. The set of all positive elements of an ordered vector space X with be denoted by X_+, i.e. $X_+ = \{x \in X : x \geq 0\}$, X_+ is called the positive cone of X. It is easy to show that

1. X_+ is a convex cone of X, i.e. $X_+ + X_+ \subseteq X_+$ and $\lambda X_+ \subseteq X_+$
2. $X_+ \cap (-X_+) = \{0\}$.

Definition (1.2)
Let X be a real vector space. A function $\| \cdot \| : X \to R$ is said to be norm on X if the following axioms are satisfied

1. $\|x\| \geq 0 \quad \forall x \in X$
2. $\|x\| = 0 \iff x = 0$
3. $\|\lambda x\| = |\lambda| \|x\| \quad \forall x \in X, \quad \lambda \in R$
4. $\|x + y\| \leq \|x\| + \|y\| \quad \forall x, y \in X$

A normed space is the pair $(X, \| \cdot \|)$ where X is a real vector space and $\| \cdot \|$. A Banach space is a normed space which is complete in the metric defined by its norm.

Definition (1.3)
An algebra is a vector space in which a multiplication is defined that satisfies

1. $x(yz) = (xy)z \quad \forall x, y, z \in X$
2. $x(y + z) = xy + xz \quad (x + y)z = xz + yz \quad \forall x, y, z \in X$
3. $\lambda(xy) = (\lambda x)y = x(\lambda y) \quad \forall x, y, z \in X, \quad \lambda \in R$

Definition (1.4)
A real vector space X is called Banach algebra if the following axioms are satisfied

1. X is a Banach space
2. X is algebra
3. $\exists e \in X$ s.t $ex = xe = x \quad \forall x \in X$ and $\|e\| = 1$
A commutative algebra is an algebra where the multiplication satisfies the condition: \(xy = yx \), \(\forall x, y \in X \).

An algebra with identity is an algebra with the following property. There exists a non-zero element in the algebra, denoted by \(1 \) and called the multiplication identity element, such that \(|x = 1| = x \), for all \(x \).

A normed algebra \(X \), is a normed space and also an algebra over \(F \), and \(\|xy\| \leq \|x\|\|y\| \quad \forall x, y \in X \).

Example (1.5)

Let \(X \) be a Banach space, and let \(B(X) \) denote the set of all bounded (or continuous) linear function of \(X \) into itself, then \(B(X) \) is a Banach algebra with the algebra operation:

1. \((f + g)(x) = f(x) + g(x) \)
2. \((fg)(x) = f(g(x)) \)
3. \((\lambda f)(x) = \lambda f(x) \)

And the operator norm \(\|f\| = \sup\{\|f(x)\|: x \in X, \|x\| \leq 1\} \)

Remark

If \(X \neq \{0\} \), then the identity linear function \(I \) is the identity element of \(B(X) \) such that \(\|I\| = 1 \).

2. The main results

Definition (2.1)

Let \((\Omega, F) \) be a measurable space, and let \(X = (x,\leq) \) be an ordered Banach algebra. A set function \(\mu : F \longrightarrow X \) is said to be

1. **BA-finitely additive** if \(\mu(\bigcup_{k=1}^{n} A_k) = \sum_{k=1}^{n} \mu(A_k) \), whenever \(A_1, A_2, \ldots, A_n \) disjoint sets in \(F \).
2. **BA-countably additive** if \(\mu(\bigcup_{n=1}^{\infty} A_n) = \sum_{n=1}^{\infty} \mu(A_n) \), whenever \(\{A_n\} \) is a sequence of disjoint sets in \(F \).
3. **BA-measure** if \(\mu \) is BA-countably additive and \(\mu(A) \geq 0 \quad \forall A \in F \), where \(0 \) is the identity element for the operation.

Remark

Every BA-countably additive is BA-finitely additive but converse is not true.

Example (2.2)

Let \(\Omega = (0,1) \), \(F \) the class of half-open intervals \((a,b] \) where \(0 \leq a \leq b \leq 1 \). Define \(\mu : F \longrightarrow \mathbb{R} \) by
\[\mu(a,b) = \begin{cases} b-a & , \ a \neq 0 \\ 0 & , \ a = 0 \end{cases} \]

It is clear to show that \(\mu \) is BA-finitely additive.

Let \(A_n = (\frac{1}{n+1}, \frac{1}{n}] \), \(n = 1,2,3, \ldots \)

Then \(\{A_n\} \) is disjoint sequence in \(F \) and \(\bigcup_{n=1}^{\infty} A_n = (0,1] \)

\[\mu\left(\bigcup_{n=1}^{\infty} A_n\right) = \mu(0,1] = 0 \]

\[\sum_{n=1}^{\infty} \mu(A_n) = \sum_{n=1}^{\infty} \mu\left(\frac{1}{n+1}, \frac{1}{n}\right] = \sum_{n=1}^{\infty} \left(\frac{1}{n} - \frac{1}{n+1}\right) = 1 \]

\[\Rightarrow \mu\left(\bigcup_{n=1}^{\infty} A_n\right) \neq \sum_{n=1}^{\infty} \mu(A_n) \]

\[\Rightarrow \mu \text{ is not BA-countably additive} \]

The following theorem is the main result

Theorem (2.3)

Let \(\mu \) be an BA-finitely additive set function on measurable space \((\Omega, F) \), and let \(A,B \in F \)

(1) \(\mu(A) = \mu(A \cap B) + \mu(A \mid B) \)

(2) \(\mu(A \cup B) = \mu(A \cap B) + \mu(A \mid B) + \mu(B \mid A) \)

(3) \(\mu(A \cup B) + \mu(A \cap B) = \mu(A) + \mu(B) \)

(4) \(\mu(A \Delta B) = \mu(A \mid B) + \mu(B \mid A) \)

(5) If \(A \subseteq B \), then \(\mu(A) = \mu(A \cap B) + \mu(A \mid B) \).

Proof

(1) Let \(A,B \in F \) then \(A \cap B \in F \) and \(A \mid B \in F \)

Since \(A \cap B \) and \(A \mid B \) are disjoint set, \((A \cap B) \cup (A \mid B) = A \)

\(\mu(A) = \mu((A \cap B) \cup (A \mid B)) = \mu(A \cap B) + \mu(A \mid B) \)

(2) \(A,B \in F \Rightarrow A \cap B \in F \) , \(A \mid B \in F \) and \(B \mid A \in F \)

Since \(A \cap B \), \(A \mid B \) and \(B \mid A \) are disjoint set, and \((A \cap B) \cup (A \mid B) \cup (B \mid A) = A \cup B \)

\(\mu(A \cup B) = \mu((A \cap B) \cup (A \mid B) \cup (B \mid A)) = \mu(A \cap B) + \mu(A \mid B) + \mu(B \mid A) \)

(3) \(\mu(A) = \mu(A \cap B) + \mu(A \mid B) \), \(\mu(B) = \mu(A \cap B) + \mu(B \mid A) \)

\(\mu(A) + \mu(B) = \mu(A \cap B) + \mu(A \mid B) + \mu(A \cap B) + \mu(A \mid B) + \mu(B \mid A) \)

\(= (\mu(A \cap B) + \mu(A \mid B) + \mu(B \mid A)) + \mu(A \cap B) \)

\(= \mu(A \cup B) + \mu(A \cap B) \)

(4) \(A,B \in F \Rightarrow A \mid B \), \(B \mid A \in F \)

\(A \mid B \) and \(B \mid A \) are disjoint sets, and \(A \Delta B = (A \mid B) \cup (B \mid A) \)

\(\mu(A \Delta B) = \mu((A \mid B) \cup (B \mid A)) = \mu(A \mid B) + (B \mid A) \)
(5) \(B = (A \cap B) \cup (B \mid A) \)

\[A \subset B \Rightarrow A \cap B = A \Rightarrow B = A \cup (B \mid A) \Rightarrow \mu(B) = \mu(A \cup (B \mid A)) \]

Since \(A, B \mid A \in F \) and \(A, B \mid A \) are disjoint set

\[\mu(A \cup (B \mid A)) = \mu(A) + \mu(B \mid A) \Rightarrow \mu(B) = \mu(A) + \mu(B \mid A) \]

References

القياس ذات القيم في جبر بناخ

نوري فرحان المياح
قسم الرياضيات/كلية الرياضيات وعلوم الحاسبات/جامعة القادسية

الخلاصة

في هذا البحث نقدم القياس ذات القيم في جبر بناخ ثم برهنة العديد من الخواص لهذا القياس.