Certain properties of contra-T^{*}₁₂**-continuous functions**

Hadi J. Mustafa	Layth M. H. Alabdulsada
Dept. of Math., F. of Math. & Comp. Sci.	Dept. of Math., F. of Math. & Comp. Sci.
University of Kufa	University of Kufa
Najaf, Iraq	Najaf, Iraq
drhadi mustafa@email.com	lolo muhsin@vahoo.com

Received July. 28, 2019. Accepted for publication Sep. 2, 2019

Abstract—The concept of contra function was introduced by Dontchev [2], in this work, we use the notion of T^*_{12} -open to study a new class of function called a contra- T^*_{12} -continuous function as generalization of contra- continuous.

Keywords: T^*_{12} -open sets; contra- T^*_{12} -continuous function; operator topological space; contra- T^*_{12} -closed graph.

I. INTRODUCTION

In 1996, Dontchev [2] introduced contracontinuous functions. In [10], the authors introduced the concept of almost contra-T*continuous function. In this paper, we introduce a new class of function called contra-T*₁₂continuous function where T_1 , T_2 are operators associated with the topology τ on X. Throughout the paper, the space X and Y or (X, Y) and (Y, δ) stand for topological space, let A be a subset of X. the closure of A and the interior of A will be denoted by Cl(A) and Int(A), respectively.

II. PRELIMINARIES

In this section, we recall the basic facts and definitions needed in this work.

<u>2.1 Definition</u>: A subset A of a space X is said to be:

i) Semi-open [6] if $A \subseteq Cl$ (Int(A)),

ii) Pre-open [7] if $A \subseteq Int (Cl (A))$,

iii) b-open [1] if $A \subseteq Cl$ (Int (A) \bigcup Int (Cl(A)).

The complement of semi-open (pre-open, bopen) is said to be semi-closed (pre-closed, bclosed). The family of all semi-open (pre-open, b-open, semi-closed, pre-closed, b-closed) subset of a space X is denoted by SO(X)(PO(X),BO(X), SC(X), PC(X), BC(X), respectively). **2.2 Definition [4]:** A function $f : X \rightarrow Y$ is called semi-continuous (pre-continuous, b-continuous) if for each $x \in X$ and each open set V of Y containing f(x), there exists $U \in SO(X)$ ($U \in PO(X), U \in BO(X)$) such that $f(U) \subseteq V$.

<u>2.3Definition</u>: A function $f : X \to Y$ is called contra-continuous [2] (contra-semi continuous [4], contra-pre-continuous [3], contra-b-continuous [5]) if $f^{-1}(V)$ is closed (semi-closed, pre-closed, b-closed, resp.) in X for each open set V of Y.

III. OPERATOR TOPOLOGICAL SPACES

<u>3.1 Definition [8]</u>: Let (X, τ) be a topological space and let T: $p(X) \rightarrow p(X)$ be a function (where p(X) is the power set of X) we say that T is an operator associated with the topology τ on X if $W \subseteq T(W)$ ($W \in \tau$) and the triple (X, τ , T) is called an operator topological space.

<u>3.2 Definition [9]</u>: Let (X, τ, T) be an operator topological space, let $A \subseteq X$

i) A is called T-open if given $x \in A$, then there exists $V \in \tau$ there exists $x \in V \subseteq T$ (V) $\subseteq A$.

ii) A is called T*-open if $A \subseteq T(A)$ (A is not necessarily open).

3.3 Remarks:

i) Every T-open set is open.

ii) Every open set is T*-open, so we have the following implications:

T-open \rightarrow open \rightarrow T*-open

iii) Let (X, τ) be a topological space define T: $p(X) \rightarrow p(X)$ as follows: T (A) = Int Cl(A) then T is an operator associated with the topology τ on X and the triple (X, τ, T) is an operator topological space.

As an example, we can suppose X = R, $\tau = t_u =$ the usual topology on R, if

T(A) = Int Cl(A),

then the triple (R, t_u, T) is an operator topological space,

notice that $Q \subset R$ satisfies $Q \subseteq$ Int (Cl (Q)), so Q is a T*-open (pre-open) which is not open.

<u>3.3 Definition</u>: Let (X, τ) be a topological space and let T_1 , T_2 be two operators associated with the topology τ on X then (X, τ, T_1, T_2) is called a bi operator topological space.

<u>3.4 Definition</u>: Let (X, τ, T_1, T_2) be an operator topological space and let $A \subseteq X$, we say that A is a T^*_{12} -open if $A \subseteq T_1(A) \cup T_2(A)$, the complement of T^*_{12} -open is called T^*_{12} -closed for example if:

 $T_1(A) = Cl (Int(A)),$

 $T_2(A) = Int (Cl (A)), Then$

 $A \subseteq Cl (Int (A)) U Int (A),$

this is the definition of b-open set.

Notice that every T^*_1 -open (T^*_2 -open) is T^*_{12} open because if A is T^*_1 -open then $A \subseteq T_1(A) \subseteq T_1(A) \cup T_2(A)$, so A will be T^*_{12} -open.

IV. CONTRA-T^{*}₁₂-CONTINUOUS FUNCTIONS

In this section, we obtain some properties of $contra-T^*_{12}$ -continuous functions.

<u>4.1 Lemma [1]</u>: Let (X, τ) be a topological space then:

1) The intersection of an open set and a b-open set is a b-open set.

2) The union of any family of b-open sets is a b-open set.

Now, we generalize Lemma 4.1 as follows:

<u>4.2 Lemma</u>: Let (X, τ, T_1, T_2) be a bi operator topological space assume that

$$T_1(W \cap B) = T_1(W) \cap T_1(B), W \in \tau, B \subseteq X,$$

 $T_2(W \cap B) = T_2(W) \cap T_2(B), W \in \tau, B \subseteq X$, therefore:

- 1) The intersection of an open set and a T^*_{12} -open set is T^*_{12} -open.
- 2) The union of any family T^*_{12} -open sets is a T^*_{12} -open set.

Proof:

1) Let $W \in X$ be an open set and let V be a T^*_{12} -open set we have to prove that $W \cap V$ is also a T^*_{12} -open set. Since W is open then:

$$W \subseteq T_1(W) \qquad \dots (1)$$
$$W \subseteq T_2(W) \qquad \dots (2)$$

Since V is a T^*_{12} -open then

$$V \subseteq T_1(V) \cap T_2(V) \dots (3)$$

$$W \cap V \subseteq W \cap (T_1(V) \cap T_2(V))$$

$$= (W \cap T_1(V)) \cup (W \cap T_2(V))$$
$$\subseteq (T_1(W) \cap T_1(V)) \cup (T_2(W) \cap T_2(V))$$
$$= (T_1(W \cap V)) \cup (T_2(W \cap V))$$

Then $W \cap V$ is T^*_{12} -open set.

2) Let $\mathcal{L} = \{ w_{\alpha} \mid \alpha \in I \}$ be any family of T^*_{12} open sets we must prove that $\bigcup_{\alpha} w\alpha$ is also a T^*_{12} -open

$$w_{\alpha} \subseteq T_1(w_{\alpha}) \cup T_2(w_{\alpha})$$
 for each $\alpha \in I$

 $\bigcup_{\alpha} w\alpha \subseteq \bigcup_{\alpha} (T_1(w_{\alpha}) \cup T_2(w_{\alpha}))$

$$= \bigcup_{\alpha} \quad T_1(w_{\alpha}) \cup \bigcup_{\alpha} \quad T_2(w_{\alpha})$$

Now $\bigcup_{\alpha} T_1(w_{\alpha}) = T_1(\bigcup_{\alpha} w_{\alpha})$

Also U_{α} $T_2(w_{\alpha}) = T_2(U_{\alpha} w_{\alpha})$

Then $\bigcup_{\alpha} w_{\alpha} \subseteq T_1(\bigcup_{\alpha} w_{\alpha})$ U $T_2(\bigcup_{\alpha} w_{\alpha})$ and $\bigcup_{\alpha} w_{\alpha}$ is a T^*_{12} -open.

4.3 Remarks:

i) The intersection of two T^*_{12} -open is not necessarily T^*_{12} -open, so the collection of all

 T^*_{12} -open sets is not necessarily a topology on X.

Let $\tau^*_{(12)}$ be the topology generated by the collection of all T^*_{12} -open sets.

ii) The intersection of any collection of T^*_{12} closed sets is T^*_{12} -closed. Let T^*_{12} -Cl(B)intersection of all T^*_{12} -closed sets containing B.

Recall that for a function f: $X \to Y$, the subset $\{(x, f(x)) \mid x \in X\} \subseteq X \times Y$ is called the graph of f and denoted by G (f).

<u>4.4 Definition</u>: Let $f:(X, \tau, T_1, T_2) \rightarrow (Y, \delta)$ be a function the graph G(f) of f is said to be contra-T*₁₂-closed graph if for each $(x, y) \in (X \times Y)$ -G(f) there exists U which is T*₁₂-open containing x and a closed set V of Y containing y such that $(U \times V) \cap G(f) = \emptyset$. The implies that $f(U) \cap V = \emptyset$.

<u>4.5 Definition</u>: A space X is said to be contracompact if every closed cover of X has a finite sub cover.

<u>4.6 Theorem :</u> Let (X, τ, T_1, T_2) be a bi operator topological space and suppose $f : (X, \tau, T_1, T_2) \rightarrow (Y, \delta)$ has a contra-T*₁₂-closed graph, then the inverse image of a contra –compact set A of Y is T*₁₂–closed in X.

<u>Proof:</u> Assume that A is contra-compact set of A and $x \notin f^{-1}(A)$ for each $a \in A$, $(x, a) \notin G$ (f). Then there exists U_a which is T^*_{12} -closed containing x and V_a which is closed in Y containing a such that

 $f(U_a) \cap V_a = \emptyset.$

Consider $\mathcal{L} = \{A \cap V_a \mid a \in A\}$ and \mathcal{L} is a closed cover of the subspace A, but A is contra-compact then there exists $a_1, a_2, a_3...a_n$ such that

$$A \subseteq \bigcup_{i=1}^{n} V_{ai}.$$

Let U = $\bigcap_{i=1}^{n} U_{ai}$,

then U is T^*_{12} -closed containing x and f (U) \cap A= Ø, therefore

 $U \cap f^{1}(A) = \emptyset$ and hence $x \notin T^{*}_{12}$ -Cl ($f^{1}(A)$), this show that $f^{1}(A)$ is T^{*}_{12} -closed.

<u>4.7 Theorem :</u> Let Y be contra –compact space and let $(X, \tau^*_{(12)}, T_1, T_2)$ be operator topological space ,suppose $f : (X, \tau^*_{(12)}, T_1, T_2) \rightarrow (Y, \delta)$ has a contra-T*₁₂-closed graph then f is contra T*₁₂continuous.

<u>Proof:</u> First we show that an open set U of Y is contra –compact and let $\mathcal{L} = \{ V_{\alpha} \mid \alpha \in \Lambda \}$ be a cover of U by closed sets V_{α} of U for each $\alpha \in \Lambda$, then there exists a closed set K_{α} of Y such that $V_{\alpha} = K_{\alpha} \cap U$, then the family $\{ K_{\alpha} \mid \alpha \in \Lambda \} U \{ U^{c} \}$ is closed cover of Y. But Y is contracompact then there exists $\alpha_{1}, \alpha_{2}... \alpha_{n}$ such that

 $Y = (\bigcup_{i=1}^{n} K_{\alpha i}) U (U^{c}), \text{ hence}$

 $U = \bigcup_{i=1}^{n} V_{\alpha i}.$

This show that U is contra-compact by (theorem 4.6) $f^{1}(U)$ is a T^{*}_{12} -closed in X then for f is contra T^{*}_{12} -continuous.

<u>4.8 Theorem</u>: Let $f : (X, \tau, T_1, T_2) \rightarrow (Y, \delta)$ be a function and $g : X \rightarrow X \times Y$ the graph function of f defined by g(x) = (x, f(x)) for every $x \in X$, if g is contra-T*₁₂-continuous then f is contra-T*₁₂-continuous.

<u>Proof:</u> Since g is contra- T^*_{12} -continuous then $f^{-1}(U) = g^{-1}(X \times U)$ is a T^*_{12} -closed in X. Then f is contra- T^*_{12} -continuous.

<u>4.9 Theorem</u>: If $f : (X, \tau, T_1, T_2) \rightarrow (Y, \delta)$ is contra-T*₁₂-continuous and $g : (X, \tau, T_1, T_2) \rightarrow (Y, \delta)$ is contra-continuous and Y is Urysohn space then E={ $x \in X \mid f(x) = g(x)$ } is T*₁₂-closed in X.

<u>Proof</u>: Let $x \in E^c$, then $f(x)\neq g(x)$, since Y is a Urysohn then there exists open sets V and W such that $f(x) \in V$, $g(x) \in W$, and

 $Cl(V) \cap Cl(W) = \emptyset.$

Since f is contra- T^*_{12} -continuous then f¹(Cl(V)) is T^*_{12} -open in X and g is contra-continuous

then $g^{-1}(Cl(W))$ is open in X, let $U = f^{-1}(Cl(V))$, $G = g^{-1}(Cl(W))$.

Then $x \in U \cap G = A$, where A is T^*_{12} -open in X and

 $f(A) \cap g(A) \subseteq f(U) \cap g(G) \subseteq Cl(V) \cap Cl(W)$ = Ø, hence

 $f(A) \cap g(A) = \emptyset$ and $A \cap E = \emptyset$, $A \subseteq E^c$,

where A is T^*_{12} -open there for $x \notin T^*_{12}$ -Cl(E), then E is T^*_{12} -closed in X.

<u>4.10</u> Definition: A subset A of operator topological space (X, τ , T₁, T₂) is said to be T*₁₂-dense in X if T*₁₂-Cl (A) = X.

<u>4.11 Remarks</u>: Let (X, τ) be a topological space define:

 $T_1: p(X) \rightarrow p(X)$

 $T_2: p(X) \rightarrow p(X)$ as follows

 $T_{1}(A) = Int (Cl (A))$

 $T_2(A) = Cl$ (Int(A)), then T^*_{12} -dense subset will be b-dense and T^*_{12} -Cl(A) will be b-Cl(A) so bdense in X mean that b-Cl(A) = X.

<u>4.12 Corollary</u>: Let f: $(X, \tau, T_1, T_2) \rightarrow (Y, \delta)$ is contra-T*₁₂-continuous and g : $(X, \tau, T_1, T_2) \rightarrow (Y, \delta)$ is contra continuous if Y is Urysohn and f = g on T*₁₂-dense set A \subseteq X then f = g on X.

<u>Proof:</u> since f is contra $-T^*_{12}$ -continuous and is contra continuous and Y is Urysohn by previous Theorem E = {x \in X: f (x) = g(x)} is a T^*_{12} -closed in X. We have f = g on T^*_{12} -dense set A \subseteq E, then X = T^*_{12} -Cl (A) $\subseteq T^*_{12}$ -Cl (E) = E. Hence f = g on X.

<u>4.13 Definition:</u> A bi operator topological space (X, τ, T_1, T_2) is called T^*_{12} -connected if X is not the Union of two non-empty T^*_{12} -open sets.

<u>4.14 Theorem</u>: If f: $(X, \tau, T_1, T_2) \rightarrow (Y, \delta)$ is contra-T*₁₂-continuous from a T*₁₂-connected space onto Y, then Y is not a discrete space.

<u>Proof:</u> Suppose that *Y* is discrete. Let $\emptyset \neq A \subset Y$ then A is proper nonempty open and closed subset of Y. Then $f^{-1}(A)$ is a proper nonempty T^*_{12} -clopen $(T^*_{12}$ -open and T^*_{12} -closed) subset of X such that $X = f^{-1}(A) \cup (f^{-1}(A))^c$ which means that X is T^*_{12} -disconnected which is a contradiction. Hence Y is not discrete.

REFERENCES

[1] D. Andrijevi'c, "On b-open sets". Mat. Vesnik 48, 1996, 59-64.

[2] J. Dontchev, "Contra-continuous functions and strongly S-closed spaces". Internat.J. Math. Math. Sci. 19, 1996, 303-310.

[3] S. Jafari and T. Noiri, "*On contraprecontinuous functions*". Bull. Malaysian Math. Sc.Soc. 25 (2002), 115-128.

[4] E. Ekici and M. Caldas, "Slightly -continuous functions", Bol. Soc. Paran. Mat. 22(2) (2004), 63-74.

[5] A.A. Nasef, "Some properties of contracontinuous functions". Chaos Solitons Fractals 24 (2005), 471-477.

[6] N. Levine, "Semi-open sets and semicontinuity in topological spaces". Amer. Math. Monthly 70 (1963), 36-41.

[7] A. S. Mashhour, M. E. Abd El-Monsef and S. N. El-Deeb, "*On precontinuous and weak precontinuous functions*". Proc. Math. Phys. Soc. Egypt 51 (1982), 47-53.

[8] Hadi J. Mustafa, A. Lafta. "*Operator topological space*". Journal the college of Education, Al-Mustansiriya University. (2009)

[9] Hadi J. Mustafa, and A. Abdul Hassan, *T*open sets. M.Sc thesis. Mu'ta University Jordan. (2004)

[10] Hadi J. Mustafa, and Layth M. Habeeb. "*On Almost contra T*-continuous functions*". Journal the college Mathematics and computer Sciences, University of Kufa. (2012)