Some Interesting Properties of a Novel Subclass of Multivalent Function with Positive Coefficients

Aqeel Ketab AL-khafaji
Faculty of Education for Pure Sciences
Ibn Al-Haytham
University of Baghdad
Baghdad - Iraq
aqeelketab@gmail.com

Waggas Galib Atshan
Faculty Of Computer Science \& Information Technology
University of Al-Qadisiyah
Diwaniyah - Iraq
waggas.galib@qu.edu.iq
waggashnd@gmail.com

Salwa Salman Abed
Faculty of Education for Pure Sciences Ibn Al-Haytham
University of Baghdad
Baghdad - Iraq
salwaalbundi@yahoo.com

Received Aug. 1, 2018. Accepted for publication Nov. 27, 2018

DOI : http://dx.doi.org/10.31642/JoKMC/2018/060103

Abstract

In this paper, we introduce a new class of multivalent functions defined by $A(p, \gamma, \omega)$ where $A(p)$ is a subclass of analytic and multivalent functions $W(p)$ in the open unit disc $U=\{z:|z|<1\}$. Moreover, we consider and prove theorems explain Some of the geometric properties for such new class was $A(p, \gamma, \omega)$, such as, coefficient estimates, growth and distortion, extreme points, radii of starlikeness, convexity and close-to-convexity as well as the convolution properties for the class $A(p, \gamma, \omega)$.

Keywords-Multivalent function; coefficient estimates; Hadamard product; growth theorem.

2018 Mathematics Subject Classification: 30C45, 30C50

1.Introducation

Let $W(p)$ be denote the class of functions of the form:
$f(z)=z^{p}+\sum_{k=p+1}^{\infty} a_{k} z^{k},(z \in U, p \in \mathbb{N}=\{1,2,3, \ldots\})$
which are analytic and multivalent in the open unit disc $U=\{z:|z|<1\}$.

Let $A(p)$ denotes a subclass of $W(p)$ of functions of the form:

$$
\begin{equation*}
f(z)=z^{p}+\sum_{k=p+1}^{\infty} a_{k} z^{k}\left(a_{k} \geq 0, z \in U, \quad p \in \mathbb{N},\right) . \tag{2}
\end{equation*}
$$

The convolution [6] (Hadamard) product of two power series for the function $f(z)$ given by (1) and $g(z)$ given by

$$
g(z)=z^{p}+\sum_{k=p+1}^{\infty} b_{k} z^{k}, \quad(z \in U, p \in \mathbb{N}=\{1,2,3, \ldots\})
$$

Can be defined by:
$(f * g)(z)=z^{p}+\sum_{k=p+1}^{\infty} a_{k} b_{k} z^{k} .(z \in U, p \in \mathbb{N})$
A function $f(z) \in A(p)$ is said to be multivalent starlike of order δ, multivalent convex of order δ and multivalent closed to -
convex of order $\delta,(0 \leq \delta<p, z \in$
U) [3], respectively if $\operatorname{Re}\left\{\frac{z f^{\prime}(z)}{f(z)}\right\}>\delta, \operatorname{Re}\left\{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\}>$ δ and $\operatorname{Re}\left\{\frac{f^{\prime}(z)}{z^{p-1}}\right\}>\delta$.

In the next definition, we given the condition for the function f belongs in the class $A(p, \gamma, \omega)$.

Definition: A function $f \in A(p)$ belongs in the class $A(p, \gamma, \omega)$, if it's satisfies the following condition:

$$
\begin{equation*}
\left|\frac{\frac{z[w(z)]^{\prime \prime}}{f^{\prime \prime}(z)}-p z}{\frac{\omega z[w(z)]^{\prime \prime}}{f^{\prime \prime}(z)}-(\gamma-\omega)}\right|<1, \quad\left(\frac{1}{2} \leq \omega<1,0<\gamma \leq \frac{1}{2}\right) \tag{4}
\end{equation*}
$$

where $w(z)=z f^{\prime}(z)$.
Such type of study was carried out by various authors for another classes, like, Khairnar and More [5], AL-khafaji et al. [1], Aouf and Mostafa [2], Raina and Srivastava [7] and Dziok and Srivastava [4].

In this paper we introduces a new class $A(p, \gamma, \omega)$, of multivalent functions in the open unit disc. Coefficient estimates, growth and distortion theorems, radii of close-toconvexity, starlikeness and convexity, extreme points and the Hadamard product for functions in the class $A(p, \gamma, \omega)$ are obtained.

2. Geometric properties for $\boldsymbol{A}(\boldsymbol{p}, \boldsymbol{\gamma}, \boldsymbol{\omega})$.

In this section, we introduce theorems with their proofs to discuss some of the geometric properties for such class $A(p, \gamma, \omega)$.

2.1. Coefficient estimates.

A sufficient and necessary condition to the function $f(z)$ to be in the class $A(p, \gamma, \omega)$ will discuss in the following theorem.

Theorem 2.1.1. A function f in (2) belongs to the class $A(p, \gamma, \omega)$ if and only if
$\sum_{k=p+1}^{\infty} k(k-1)[k-p-\omega(k+1)+\gamma] a_{k} \leq p(p-1)[\omega(p+1)-\gamma]$,
where $\left(p \geq 1, \frac{1}{2} \leq \omega<1,0<\gamma \leq \frac{1}{2}\right)$.
The result is sharp for the function
$f(z)=z^{p}+\frac{p(p-1)[\omega(p+1)-\gamma]}{k(k-1)[k-p-\omega(k+1)+\gamma]} z^{k}$.
Proof: Suppose that $f \in A(p, \gamma, \omega)$, then by (4), we have:
$\left|\frac{z\left[p z^{p}+\sum_{k=p+1}^{\infty} k a_{k} z^{k}\right]^{\prime \prime}-p z\left[z^{p}+\sum_{k=p+1}^{\infty} a_{k} z^{k}\right]^{\prime \prime}}{\omega z\left[p z^{p}+\sum_{k=p+1}^{\infty} k a_{k} z^{k}\right]^{\prime \prime}-(\gamma-\omega) z\left[z^{p}+\sum_{k=p+1}^{\infty} a_{k} z^{k}\right]^{\prime \prime}}\right|<1$
$=\left|\frac{p^{2}(p-1) z^{p-1}+\sum_{k=p+1}^{\infty} k^{2}(k-1) a_{k} z^{k-1}-p^{2}(p-1) z^{p-1}-\sum_{k=p+1}^{\infty} p k(k-1) a_{k} z^{k-1}}{\omega p^{2}(p-1) z^{p-1}+\sum_{k=p+1}^{\infty} \omega k^{2}(k-1) a_{k} z^{k-1}-(\gamma-\omega)\left[p(p-1) z^{p-1}-\sum_{k=p+1}^{\infty} k(k-1) a_{k} z^{k-1}\right]}\right|$
$=\left|\frac{\sum_{k=p+1}^{\infty} k(k-1)(k-p) a_{k} z^{k-1}}{p(p-1)[\omega(p+1)-\gamma] z^{p-1}+\sum_{k=p+1}^{\infty} k(k-1)[\omega(k+1)-\gamma] a_{k} z^{k-1}}\right|$
Since $|\operatorname{Re}(z)| \leq|z|$ for all z, we have
$\operatorname{Re}\left\{\frac{\sum_{k=p+1}^{\infty} k(k-1)(k-p) a_{k} z^{k-1}}{p(p-1)[\omega(p+1)-\gamma] z^{p-1}+\sum_{k=p+1}^{\infty} k(k-1)[\omega(k+1)-\gamma] a_{k} z^{k-1}}\right\}$ ≤ 1.

Choosing the value of z on the real axis and letting $z \rightarrow$
1^{-}through values, we get:

$$
\begin{aligned}
& \sum_{k=p+1}^{\infty} k(k-1)(k-p) a_{k} \leq p(p-1)[\omega(p+1)-\gamma] \\
&\left.+\sum_{k=p+1}^{\infty} k(k-1)[\omega(k+1)-\gamma] a_{k}\right]
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \sum_{k=p+1}^{\infty} k(k-1)[k-p-\omega(k+1)+\gamma] a_{k} \\
& \leq p(p-1)[\omega(p+1)-\gamma]
\end{aligned}
$$

Conversely, assume that (5) holds $|z|=r, r<1$, then
$\left|z[w(z)]^{\prime \prime}-p z f^{\prime \prime}(z)\right|-\left|\omega z[w(z)]^{\prime \prime}-(\gamma-\omega) f^{\prime \prime}(z)\right|$
$=\mid z\left[p z^{p}+\sum_{k=p+1}^{\infty} k a_{k} z^{k}\right]^{\prime \prime}$
$-p Z\left[z^{p}+\sum_{k=p+1}^{\infty} a_{k} z^{k}\right]^{\prime \prime} \mid$
$-\mid \omega z\left[p z^{p}+\sum_{k=p+1}^{\infty} k a_{k} z^{k}\right]^{\prime \prime}$
$-(\gamma-\omega) z\left[z^{p}+\sum_{k=p+1}^{\infty} a_{k} z^{k}\right]^{\prime \prime} \mid$
$=\mid p^{2}(p-1) z^{p-1}+\sum_{k=p+1}^{\infty} k^{2}(k-1) a_{k} z^{k-1}$
$-p^{2}(p-1) z^{p-1}$
$+\sum_{k=p+1}^{\infty} p k(k-1) a_{k} z^{k-1}$
$-\mid \omega p^{2}(p-1) z^{p-1}$
$+\sum_{k=p+1}^{\infty} \omega k^{2}(k-1) a_{k} z^{k-1}$
$-(\gamma-\omega)\left[p(p-1) z^{p-1}\right.$
$\left.-\sum_{k=p+1}^{\infty} k(k-1) a_{k} z^{k-1}\right]$
$=\left|\sum_{k=p+1}^{\infty} k(k-1)(k-p) a_{k} z^{k-1}\right|$
$-\mid p(p-1)[\omega(p+1)-\gamma] z^{p-1}$
$+\sum_{k=p+1}^{\infty} k(k-1)[\omega(k+1)-\gamma] a_{k} z^{k-1} \mid$

$$
\begin{aligned}
\leq \sum_{k=p+1}^{\infty} k(k-1) & (k-p) a_{k}|z|^{k-1} \\
& -p(p-1)[\omega(p+1)-\gamma]|z|^{p-1} \\
& -\sum_{k=p+1}^{\infty} k(k-1)[\omega(k+1)-\gamma] a_{k}|z|^{k-1}
\end{aligned}
$$

$=\sum_{k=p+1}^{\infty} k(k-1)(k-p) a_{k} r^{k-1}$

$$
-p(p-1)[\omega(p+1)-\gamma] r^{p-1}
$$

$$
-\sum_{k=p+1}^{\infty} k(k-1)[\omega(k+1)-\gamma] a_{k} r^{k-1}
$$

$$
<\sum_{k=p+1}^{\infty} k(k-1)(k-p) a_{k}-p(p-1)[\omega(p+1)-\gamma]
$$

$$
-\sum_{k=p+1}^{\infty} k(k-1)[\omega(k+1)-\gamma] a_{k}
$$

Since (5) holds. So we have:

$$
\begin{aligned}
& \sum_{k=p+1}^{\infty} k(k-1)[k-p-\omega(k+1)+\gamma] a_{k} \\
&-p(p-1)[\omega(p+1)-\gamma] \leq 0
\end{aligned}
$$

Thus, $f \in A(p, \gamma, \omega)$ and the theorem is established
Note that, the sharpness follows if we choose the function $f(z)$ as

$$
\begin{array}{r}
f(z)=z^{p}+\frac{p(p-1)[\omega(p+1)-\gamma]}{k(k-1)[k-p-\omega(k+1)+\gamma]} z^{k}, \\
\text { where }(k=p+1, p+2, \ldots) .
\end{array}
$$

Corollary 2.1,1. Let $f \in A(p, \gamma, \omega)$. Then

$$
\begin{align*}
a_{k} \leq & \frac{p(p-1)[\omega(p+1)-\gamma]}{k(k-1)[k-p-\omega(k+1)+\gamma]} \\
& w h e r e(k=p+1, p+2, \ldots) \tag{7}
\end{align*}
$$

2.2. Growth and Distortion.

A lower and upper bound of $|\mathrm{f}(\mathrm{z})|$ and $\left|f^{\prime}(z)\right|$ will be considered by the following theorems respectively, where the bounds for the function $f(z)$ of the form
$f(z)=z^{p}+\frac{(p-1)[\omega(p+1)-\gamma]}{(p+1)[1-\omega(p+2)+\gamma]} z^{p+1}$.
Theorem 2.2.1. If the function $f \in A(p, \gamma, \omega)$ that defined in (2), then

$$
\begin{aligned}
& r^{p}-r^{p+1} \frac{(p-1)[\omega(p+1)-\gamma]}{(p+1)[1-\omega(p+2)+\gamma]} \leq|f(z)| \\
& \quad \leq r^{p}+r^{p+1} \frac{(p-1)[\omega(p+1)-\gamma]}{(p+1)[1-\omega(p+2)+\gamma]}
\end{aligned}
$$

for $0<|z|=r, r<1$.
Proof: Since $f(z)=z^{p}+\sum_{k=p+1}^{\infty} a_{k} z^{k}$, then

$$
|f(z)|=\left|z^{p}+\sum_{k=p+1}^{\infty} a_{k} z^{k}\right| \leq|z|^{p}+|z|^{p+1} \sum_{k=p+1}^{\infty} a_{k}
$$

From Theorem (2.1.1), we get:

$$
\sum_{k=p+1}^{\infty} a_{k} \leq \frac{(p-1)[\omega(p+1)-\gamma]}{(p+1)[1-\omega(p+2)+\gamma]}
$$

Then

$$
|f(z)| \leq r^{p}+r^{p+1} \frac{(p-1)[\omega(p+1)-\gamma]}{(p+1)[1-\omega(p+2)+\gamma]}
$$

and

$$
|f(z)| \geq|z|^{p}-|z|^{p+1} \sum_{k=p+1}^{\infty} a_{k}=r^{p}-r^{p+1} \sum_{k=p+1}^{\infty} a_{k}
$$

Hence

$$
|f(z)| \geq r^{p}-r^{p+1} \frac{(p-1)[\omega(p+1)-\gamma]}{(p+1)[1-\omega(p+2)+\gamma]}
$$

So the proof is complete
Theorem 2.2.2. If the function $f \in A(p, \gamma, \omega)$ that defined in (2), then

$$
\begin{aligned}
& p r^{p-1}-r^{p} \frac{(p-1)[\omega(p+1)-\gamma]}{[1-\omega(p+2)+\gamma]} \leq\left|f^{\prime}(z)\right| \\
& \quad \leq p r^{p-1}+r^{p} \frac{(p-1)[\omega(p+1)-\gamma]}{[1-\omega(p+2)+\gamma]}
\end{aligned}
$$

for $0<|z|=r, r<1$.
Proof: since $f(z)=z^{p}+\sum_{k=p+1}^{\infty} a_{k} z^{k}$, then

$$
\begin{aligned}
\left|f^{\prime}(z)\right|=\mid p z^{p-1} & +\sum_{k=p+1}^{\infty} k a_{k} z^{k-1} \mid \\
& \leq p|z|^{p-1}+|z|^{p} \sum_{k=p+1}^{\infty} k a_{k} .
\end{aligned}
$$

From Theorem (2.1.1), we have

$$
\sum_{k=p+1}^{\infty} k a_{k} \leq \frac{(p-1)[\omega(p+1)-\gamma]}{[1-\omega(p+2)+\gamma]}
$$

Thus

$$
\left|f^{\prime}(z)\right| \leq p r^{p-1}+r^{p} \frac{(p-1)[\omega(p+1)-\gamma]}{[1-\omega(p+2)+\gamma]}
$$

and

$$
\begin{aligned}
& \left|f^{\prime}(z)\right| \geq p|z|^{p-1}-|z|^{p} \sum_{k=p+1}^{\infty} k a_{k} \\
& \qquad\left|f^{\prime}(z)\right| \geq p r^{p-1}-r^{p} \sum_{k=p+1}^{\infty} k a_{k}
\end{aligned}
$$

$$
\left|f^{\prime}(z)\right| \geq p r^{p-1}-r^{p} \frac{(p-1)[\omega(p+1)-\gamma]}{[1-\omega(p+2)+\gamma]}
$$

2.3 Radii of Starlikeness, Convexity and Close-toConvexity.

The following theorems explain the radii of starlikeness, convexity and close-to-convexity.

Theorem 2.3.1. If the function $f(z) \in A(p, \gamma, \omega)$ that defined in (2). Then it is multivalent starlike of order $\delta(0 \leq \delta<p)$ in the disc $|z|<r_{1}$, where

$$
\begin{gathered}
r_{1}(p, \gamma, \omega, \delta)=\inf _{k}\left[\frac{k(p-\delta)(k-1)[k-p-\omega(k+1)+\gamma]}{p(k-\delta)(p-1)[\omega(p+1)-\gamma]}\right]^{\frac{1}{k-p}}, \\
(k \geq p+1) .
\end{gathered}
$$

The result is sharp for the external function $f(z)$ given by (6).
Proof: It is sufficient to show that

$$
\left|\frac{z f^{\prime}(z)}{f(z)}-p\right| \leq p-\delta, \quad(0 \leq \delta<p)
$$

for $\quad|z|<r_{1}(p, \gamma, \omega, \delta)$.
We have

$$
\begin{aligned}
& \left|\frac{z f^{\prime}(z)}{f(z)}-p\right| \\
& =\left|\frac{z\left[p z^{p-1}+\sum_{k=p+1}^{\infty} k a_{k} z^{k-1}\right]-p\left[z^{p}+\sum_{k=p+1}^{\infty} a_{k} z^{k}\right]}{z^{p}+\sum_{k=p+1}^{\infty} a_{k} z^{k}}\right| \\
& \leq \frac{\left[\sum_{k=p+1}^{\infty}(k-p) a_{k}|z|^{k-p}\right]}{\left[1-\sum_{k=p+1}^{\infty} a_{k}|z|^{k-p}\right]}
\end{aligned}
$$

Thus
$\left|\frac{z f^{\prime}(z)}{f(z)}-p\right| \leq p-\delta$.
If $\sum_{k=p+1}^{\infty} \frac{(k-\delta) a_{k} \mid z^{k-p}}{(p-\delta)} \leq 1$.
Therefore by Corollary (2.1.1), inequality (8) is true if :

$$
\frac{(k-\delta)|z|^{k-p}}{(p-\delta)} \leq \frac{k(k-1)[k-p-\omega(k+1)+\gamma]}{p(p-1)[\omega(p+1)-\gamma]}
$$

equivalently if :
$|z| \leq\left[\frac{k(p-\delta)(k-1)[k-p-\omega(k+1)+\gamma]}{p(k-\delta)(p-1)[\omega(p+1)-\gamma]}\right]^{\frac{1}{k-p}}$
The theorem follows from (9)
Theorem 2.3.2. If the function $f(z) \in A(p, \gamma, \omega)$ that defined in (2). Then $f(z)$ is multivalent convex of order $\delta(0 \leq \delta<$ $p)$ in the disc $|z|<r_{2}$, where
$r_{2}(p, \gamma, \omega, \delta)=\inf _{k}\left[\frac{(p-\delta)(k-1)[k-p-\omega(k+1)+\gamma]}{p(k-\delta)(p-1)[\omega(p+1)-\gamma]}\right]^{\frac{1}{k-p}},(k \geq p+$ $1)$.

The result is sharp for the external function $f(z)$ given by (6).
Proof: It is sufficient to show that
$\left|1+\frac{z f^{\prime \prime}(z)}{f \prime(z)}-p\right| \leq p-\delta, \quad(0 \leq \delta<p), \quad$ for
$|z|<r_{2}(p, \gamma, \omega, \delta)$.
We have
$\left|1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-p\right| \leq \frac{\sum_{k=p+1}^{\infty} k(k-p) a_{k}|z|^{k-p}}{1-\sum_{k=p+1}^{\infty} k a_{k}|z|^{k-p}}$.
Thus $\left|1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-p\right| \leq p-\delta$,
if $\sum_{k=p+1}^{\infty} \frac{k(k-\delta) a_{k}|z|^{k-p}}{(p-\delta)} \leq 1$.
Therefore by Corollary (2.1.1), last inequality is true if :

$$
\frac{k(k-\delta)|z|^{k-p}}{(p-\delta)} \leq \frac{k(k-1)[k-p-\omega(k+1)+\gamma]}{p(p-1)[\omega(p+1)-\gamma]}
$$

equivalently if

$$
\begin{equation*}
|z| \leq\left[\frac{(p-\delta)(k-1)[k-p-\omega(k+1)+\gamma]}{p(k-\delta)(p-1)[\omega(p+1)-\gamma]}\right]^{\frac{1}{k-p}} \tag{10}
\end{equation*}
$$

The theorem follows from (10)
Theorem 2.3.3. Let the function $f(z)$ defined by (2) be in the class $A(p, \gamma, \omega)$. Then $f(z)$ is multivalent close-to-convex of order $\delta(0 \leq \delta<p)$ in the disc $|z|<r_{3}$, where

$$
r_{3}(p, \gamma, \omega, \delta)=\inf _{k}\left[\frac{(k-1)(p-\delta)[k-p-\omega(k+1)+\gamma]}{p(p-1)[\omega(p+1)-\gamma]}\right]^{\frac{1}{k-p}} .
$$

The result is sharp for the external function $f(z)$ given by (6).
Proof: We must show that:

$$
\left|\frac{f^{\prime}(z)}{z^{p-1}}-p\right| \leq p-\delta, \quad(0 \leq \delta<p)
$$

for $\quad|z|<r_{3}(p, \gamma, \omega, \delta)$.

We have: $\quad\left|\frac{f \prime(z)}{z^{p-1}}-p\right| \leq \sum_{k=p+1}^{\infty} a_{k}|z|^{k-p}$.
Thus

$$
\begin{aligned}
& \quad\left|\frac{f^{\prime}(z)}{z^{p-1}}-p\right| \leq p-\delta \\
& \text { If } \sum_{k=p+1}^{\infty} \frac{k a_{k}|z|^{k-p}}{(p-\delta)} \leq 1
\end{aligned}
$$

Hence by Corollary (2.1.1), the last statement will be true if:

$$
\frac{k|z|^{k-p}}{(p-\delta)} \leq \frac{k(k-1)[k-p-\omega(k+1)+\gamma]}{p(p-1)[\omega(p+1)-\gamma]}
$$

equivalently if
$|z| \leq\left[\frac{(k-1)(p-\delta)[k-p-\omega(k+1)+\gamma]}{p(p-1)[\omega(p+1)-\gamma]}\right]^{\frac{1}{k-p}}$.
The theorem follows easily from (11)

2.4. Extreme Points.

The following theorem discuss the extreme points of the class $A(p, \gamma, \omega)$.

Theorem 2.4.1. Let $f_{p}(z)=z^{p}$ and

$$
f_{k}(z)=z^{p}+\frac{p(p-1)[\omega(p+1)-\gamma]}{k(k-1)[k-p-\omega(k+1)+\gamma]} z^{k},
$$

where $\left(k \geq p+1, p \geq 1, \frac{1}{2} \leq \omega<1,0<\gamma \leq \frac{1}{2}\right)$.
Then the function f belongs to the class $A(p, \gamma, \omega)$ if and only if it can be written as:
$f(z)=\mathcal{L}_{p} z^{p}+\sum_{k=p+1}^{\infty} \mathcal{L}_{k} f_{k}(z)$,
such that

$$
\left(\mathcal{L}_{p} \geq 0, \mathcal{L}_{k} \geq 0, k \geq p+1\right) \text { and } \mathcal{L}_{p}+\sum_{k=p+1}^{\infty} \mathcal{L}_{k}=1
$$

Proof: Suppose that $f(z)$ that defined in (12). Then

$$
\begin{aligned}
& f(z)=\mathcal{L}_{p} z^{p}+\sum_{k=p+1}^{\infty} \mathcal{L}_{k}\left[z^{p}\right. \\
& \left.+\frac{p(p-1)[\omega(p+1)-\gamma]}{k(k-1)[k-p-\omega(k+1)+\gamma]} z^{k}\right] \\
& =z^{p}+\sum_{k=p+1}^{\infty} \frac{p(p-1)[\omega(p+1)-\gamma]}{k(k-1)[k-p-\omega(k+1)+\gamma]} \mathcal{L}_{k} z^{k} .
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \sum_{k=p+1}^{\infty} \frac{k(k-1)[k-p-\omega(k+1)+\gamma]}{p(p-1)[\omega(p+1)-\gamma]} \\
& \times \frac{p(p-1)[\omega(p+1)-\gamma]}{k(k-1)[k-p-\omega(k+1)+\gamma]} \mathcal{L}_{k} \\
= & \sum_{k=p+1}^{\infty} \mathcal{L}_{k}=1-\mathcal{L}_{p} \leq 1 .
\end{aligned}
$$

Thus $f \in A(p, \gamma, \omega)$.
Conversely, suppose that $f \in A(p, \gamma, \omega)$, we may set

$$
\mathcal{L}_{k}=\frac{k(k-1)[k-p-\omega(k+1)+\gamma]}{p(p-1)[\omega(p+1)-\gamma]} a_{k},
$$

where a_{k} is defined in (5). Then
$f(z)=z^{p}+\sum_{k=p+1}^{\infty} a_{k} z^{k}$

$$
\begin{aligned}
& =z^{p}+\sum_{k=p+1}^{\infty} \frac{p(p-1)[\omega(p+1)-\gamma]}{k(k-1)[k-p-\omega(k+1)+\gamma]} \mathcal{L}_{k} z^{k} \\
& =z^{p}+\sum_{k=p+1}^{\infty}\left[f_{k}(z)-z^{p}\right] \\
& =\sum_{k=p+1}^{\infty} \mathcal{L}_{k} f_{k}(z)+\left(1-\sum_{k=p+1}^{\infty} \mathcal{L}_{k}\right) z^{p}= \\
& =f(z)=\mathcal{L}_{p} z^{p}+\sum_{k=p+1}^{\infty} \mathcal{L}_{k} f_{k}(z)
\end{aligned}
$$

This complete the proof of Theorem (7)

3. Convolution Properties.

The following theorems shows the convolution properties for the functions in the class $A(p, \gamma, \omega)$.

Theorem 3.1 Let the functions $f_{r}(z) \in A(p, \gamma, \omega)$ such that

$$
\begin{equation*}
f_{r}(z)=z^{p}+\sum_{k=p+1}^{\infty} a_{k, r} z^{k}, \quad\left(a_{k, r} \geq 0, \quad r=1,2\right) \tag{13}
\end{equation*}
$$

Then $\left(f_{1} * f_{2}\right) \in A(p, \gamma, d)$, where
d
$\geq \frac{p(p-1)[(\omega p+1)-\gamma]^{2}(k-p+\gamma)+\gamma k(k-1)[k-p-(\omega k+1)+\gamma]^{2}}{k(p+1)(k-1)[k-p-(\omega k+1)+\gamma]^{2}+p(k+1)(p-1)[(\omega p+1)-\gamma]^{2}}$.
The result is sharp for the functions $f_{r} \quad(r=1,2)$ given by (6).

Proof: We will find the smallest d such that

$$
\sum_{k=p+1}^{\infty} \frac{k(k-1)[k-p-d(k+1)+\gamma]}{p(p-1)[d(p+1)-\gamma]} a_{k, 1} a_{k, 2} \leq 1
$$

Since $f_{r} \in A(p, \gamma, \omega),(r=1,2)$, then

$$
\sum_{k=p+1}^{\infty} \frac{k(k-1)[k-p-(\omega k+1)+\gamma]}{p(p-1)[(\omega p+1)-\gamma]} a_{k, r} \leq 1, \quad(r=1,2)
$$

By Cauchy-Schwarz inequality, we get

$$
\begin{equation*}
\sum_{k=p+1}^{\infty} \frac{k(k-1)[k-p-(\omega k+1)+\gamma]}{p(p-1)[(\omega p+1)-\gamma]} \sqrt{a_{k, 1} a_{k, 2}} \leq 1 \tag{14}
\end{equation*}
$$

Now, we need only to show that:
$\frac{k(k-1)[k-p-d(k+1)+\gamma]}{p(p-1)[d(p+1)-\gamma]} a_{k, 1} a_{k, 2}$
$\leq \frac{k(k-1)[k-p-(\omega k+1)+\gamma]}{p(p-1)[(\omega p+1)-\gamma]} \sqrt{a_{k, 1} a_{k, 2}}$,
and this equivalently to:
$\sqrt{a_{k, 1} a_{k, 2}} \leq \frac{[d(p+1)-\gamma][k-p-(\omega k+1)+\gamma]}{[k-p-d(k+1)+\gamma][(\omega p+1)-\gamma]}$.
From (14), we have

$$
\sqrt{a_{k, 1} a_{k, 2}} \leq \frac{p(p-1)[(\omega p+1)-\gamma]}{k(k-1)[k-p-(\omega k+1)+\gamma]}
$$

Thus, it is sufficient to show that

$$
\begin{aligned}
& \frac{p(p-1)[(\omega p+1)-\gamma]}{k(k-1)[k-p-(\omega k+1)+\gamma]} \\
& \leq \frac{[d(p+1)-\gamma][k-p-(\omega k+1)+\gamma]}{[k-p-d(k+1)+\gamma][(\omega p+1)-\gamma]}
\end{aligned}
$$

which implies to
Thus, the theorem is established
Theorem 3.2. Let the functions $f_{r}(z)$ in Theorem 3.1 belongs to the class $A(p, \gamma, \omega)$. Then the function $h(z)=$ $z^{p}+\sum_{k=p+1}^{\infty}\left(a_{k, 1}^{2}+a_{k, 2}^{2}\right) z^{k}$, belongs also to the class $A(p, \gamma, \omega)$
where

$$
\begin{gathered}
p(p+1)[1-(\omega(p+1)+1)+\gamma]-2 p(p-1)[(\omega p+1) \\
-\gamma] \geq 0 .
\end{gathered}
$$

Proof: Since $f_{1}(z) \in A(p, \gamma, \omega)$, we get

$$
\begin{align*}
& \sum_{k=p+1}^{\infty}\left[\frac{k(k-1)[k-p-(\omega k+1)+\gamma]}{p(p-1)[(\omega p+1)-\gamma]}\right]^{2} a_{k, 1}^{2} \\
& \leq\left(\sum_{k=p+1}^{\infty}\left[\frac{k(k-1)[k-p-(\omega k+1)+\gamma]}{p(p-1)[(\omega p+1)-\gamma]}\right] a_{k, 1}\right)^{2} \\
& \quad \leq 1 \tag{15}
\end{align*}
$$

$$
\begin{align*}
& \sum_{k=p+1}^{\infty}\left[\frac{k(k-1)[k-p-(\omega k+1)+\gamma]}{p(p-1)[(\omega p+1)-\gamma]}\right]^{2} a_{k, 2}^{2} \\
& \leq\left(\sum_{k=p+1}^{\infty}\left[\frac{k(k-1)[k-p-(\omega k+1)+\gamma]}{p(p-1)[(\omega p+1)-\gamma]}\right] a_{k, 2}\right)^{2} \\
& \quad \leq 1 \tag{16}
\end{align*}
$$

Combining the inequalities (15) and (16), gives

$$
\begin{gather*}
\sum_{k=p+1}^{\infty} \frac{1}{2}\left[\frac{k(k-1)[k-p-(\omega k+1)+\gamma]}{p(p-1)[(\omega p+1)-\gamma]}\right]^{2}\left(a_{k, 1}^{2}+a_{k, 2}^{2}\right) \\
\leq 1 \tag{17}
\end{gather*}
$$

According to Theorem (2.1), it is sufficient to show that:

$$
\sum_{k=p+1}^{\infty}\left[\frac{k(k-1)[k-p-(\omega k+1)+\gamma]}{p(p-1)[(\omega p+1)-\gamma]}\right]\left(a_{k, 1}^{2}+a_{k, 2}^{2}\right) \leq 1
$$

Thus the last inequality, will be satisfies if, for $k=p+$ $1, p+2, p+3, \ldots$

$$
\begin{aligned}
& {\left[\frac{k(k-1)[k-p-(\omega k+1)+\gamma]}{p(p-1)[(\omega p+1)-\gamma]}\right]} \\
& \quad \leq \frac{1}{2}\left[\frac{k(k-1)[k-p-(\omega k+1)+\gamma]}{p(p-1)[(\omega p+1)-\gamma]}\right]^{2}
\end{aligned}
$$

Or if

$$
\begin{align*}
& k(k-1)[k-p-(\omega k+1)+\gamma] \\
& -2 p(p-1)[(\omega p+1)-\gamma] \geq 0 \tag{18}
\end{align*}
$$

For $(k=p+1, p+2, p+3, \ldots)$ the left hand side of (18) is increasing function of k , hence it is satisfied for all k if:

$$
\begin{aligned}
& p(p+1)[1-(\omega(p+1)+1)+\gamma] \\
& \quad-2 p(p-1)[(\omega p+1)-\gamma] \geq 0
\end{aligned}
$$

which is true by our assumption. Therefor the prove is complete

Acknowledgement

The authors are thankful to the referee for his valuable comments and observations which helped develop the paper.
and

REFERENCES

[1] AL-khafaji A. K., Abed S. S. and Atshan W. G., On differential subordination of a certain subclass of univalent functions, (Accepted for published) journal of kufa for mathematics and computer, 5(3) (2018).
[2] Aouf M. K. and Mostafa A. O., Certain Class of pvalent Function Defined by Convolution, General mathematics, 20(1)(2012),85-98.
[3] Duren P.L., Univalent Functions, in: Grundelehren der Mathematischen Wissenachften Band 254, Springer-Verlarg, New York, Berlin, Heidleberg, Tokyo, (1983).
[4] Dziok J. and Srivastava H. M., Classes of analytic functions associated with the generalized hypergeometric function, Applied Mathematics and Conmputation, 103(1)(1999), 1-13.
[5] Khairnar S. M. and More M., On a Subclass of Multivalent $\quad \beta$-uniformly Starlike and Convex Functions Defined by a Linear Operator, IAENG Int. J. App. Math. , 39:3, IJAM-39-06(2009).
[6] Schild A. and Silverman H., Convolutions of univalent functions with negative coefficient, Ann. Uni. Mariae-Curie-sklodowska Sect. A. 1975.
[7] Raina R. K. and Srivastava H. M., Inclusion and neighborhood properties of some analytic and multivalent functions, J. Inequat, Pure \& Appl. Math. 7(1)(2006),1-6.

