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Abstract : In this paper, we introduce and discuss a certain subclass A(ea, 8) of univalent functions in the open
unit disc, we obtain some properties like coefficient estimates and results of integral means by using differential

subordination.
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I. INTRODUCTION
Let W be the class of functions of the form:

f@)=z+ i a,z",

n=2
(zeUN={1,23,..))
which are analytic and univalent in open unit disc U =
{z:z| < 1}.
The Hadamard product or (convolution) of function f(z)
given by (1) and function g(z) is defined by:

gz)=z+ z b,z",
n=2
(zeUN={1,23,..})

€y

(2)

inthe class W is

(F 9@ =2+ ) apbs
n=2
(zeUmne N={1,23,..}).
Let A denotes the subclass of W of functions of the form :

f@)=z+ i a,z",

n=2
(a, =z0,neN={1,23,..}).

3)

4

Integral Means; Differential Subordination; Convolution.

A function f in the class W is said to be univalent convex

function [2] of order & if: Re {1 +;T(>)} > 5
(0<6<1,z€eUf'(z) #0). 5

In the following definition, we give the condition for the

function f which is defined in (4) and belongs to the class

Aa, ).

Definition 1.1: A function f € A isin the class A(a, B) if it

satisfies the following condition:

zf ”(Z))
1+—5 +1
( f'(z)

2 (1 + Z}:(g) ) + 2a <F
where (% <p <1, a > 1). (6)

Many different authors studied classes of univalent functions
for other classes like, Darus [1], Goodman [3], Gupta and Jain
[4], Owa [8], Schild and Silvermen [9], Swag [10] and others.

In this paper, we obtain coefficient estimates and proof of
several theorems by using the definition of subordination of
function which was introduced by ( Miller and Mocanu [7])
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and Littlewood theorem of subordination [5], (see also Duren

(2.

Definition 1.2_[6]. If f and g be two analytic functions in the
open unit disc U. Then g is said to be subordinate to f, written
g < f org(z) < f(z), if there exists a Schwarz function w,
which is analytic inU, with w(0) =0and |lw(z)| =1,
(z € U),such that g(z) = f(w(2)), (z € U). Indeed it is
known that g2)<f(2), (zelU) = g(0) =
f(0) and g(U) c f(U). In particular, if f is univalent in
U, we have the following equivalence:

9@) < f(2), (zeU) < g(0)=f(0)and gU) c f(U).

Theorem 1.1 [5] (Littlewood Theorem)
If the functions f and g are analytic in U such that g < f,
then, fort > 0and z =re®® (0 <r < 1)

f If(re®®)["a6 < j lg(re®)[do. ()
0 0

Theorem 1.2 [2] (Maximum Modulus Theorem)

Suppose that a function f is continuous on a boundary of D (D
any disk or region). Then, the maximum value of |f(2)],
which is always reached, occurs somewhere on the boundary
of D and never in the interior.

2. Cofficient Estimates.

Here, we give necessary and sufficient condition for the
function f to be in the class A(e, ), as follows :

Theorem 2.1 The function f be in the class A(a, ) of the
form (4) if and only if

Z n[(n+1) — 2B(a + n)]a,

n=2
<2[Bla+ 1) —1], ®
1
where (E <f<1l,a>1 neN={123, })
and the result is a sharp for the function
2 +1)-1
f@)=z+ e+l — 1] n=2). (9

n[(n+1) - 28(a + n)]Z ’

Proof: Let f in the class A(a, B), then f satisfies the
inequality (6) which is equivalent to :

2f"(z) + zf" (2)
20+ a)f'(2) + 2zf"(2)

<B

12
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- 20+ )1+ X7, na,z 1 + 2z )0, n(n — 1)a,z"?]
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2[1+ X nanz" '] + z[Xn, n(n — Da,z" ™’

<B

B

2+ ¥, 2na, 2"t + Y, n(n — Da,z™ !
20+ )+ Yy, 2n(l+ a)ayz™ ) + Yo, 2n(n — 1a,z™ !

24+ Y% ,n(n+ Dayz"?!

<B.

20+ )+ X7, 2n(n+ a)a,z™ 1]

Since |Re(2)| < |z| forall z, we have

2430 s n(n+1)apz™ L

Re {2(1+a)+2f=2 2n(n+a)anz"_1]} < ’B '

Then by choosing the value of z on the real axis and letting
z — 17 through values, we get:

24+ ) n(n+ Da, <280 +a)+ 2nf(n + a)a,

Hence

[oe)

Z n[n+1)-28(n+ a)la, <2[f(1+ a) —1].

n=2

Conversely, we assume that (8) satisfiesand |z| = 1, then:

12f"(2) + zf" (D] = BI12(A + &) (2) + 22f" (2)]

[ee]

2[1+ Z na,z" '] + Z[Z n(n — 1)a,z"?]

n=2

-B

21+ )1+ Z na,z"
n=2

+ Zz[z n(n— 1a,z"?]

[oe]

2+ Z n(n+ Da,z"?!

n=2

-B121+a)+ Z 2n(n + a)a,z" 1]

n=2
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<2+ Z nn+ Da, — B (2(1 +a)+ Z 2n(n + a)an>
n=2 n=2

= Z n[(n+1) —2B(a +n)]a, —2[fla +1) —1] <0,

n=2
by hypothesis.

Then by Maximum Modulus Theorem, we have f € A(a, B)
[

Corollary 2.1. Let the function
f(z) of the class A(a,B). Then

2[Ba+ 1) —1]

=0+ D - 28(a+ )]’ (n = 2).

(10)

Theorem 2.2. Let f € A(a, ) and f; is defined by

2B+ D-1]
G+ D-28@+0]” "

fi@)=z+

If there exists an analytic function w defined by :

G+ D —2B(@+ DI,
w(2)] "t = 2Fa@t D) —1] Enanz L (11)

n=2

Then, for z=re® and (0 <7 < 1)

21 21

f |f (re®®)|"d6 Sf |fi(re®)|"d6, where (x >0) (12)
0 0

Proof. Since f € A(a, ), then

f(z)=z+2anz”,(nEN)

and
2[Bla +1) —1]
i[G+1)—28(a +1)]

fiz)=z+ z% (13)

Then, we must show that:

13
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1+ Z apz" !

n=2

2

J

0

T

27

g

2@+ -1
i[G+D-28@@+0]"

1

T

deo.

By Theorem 1.1, it is sufficient to show that:

1+ Z a,z" !
n=2

20p@+1)—1]
ifG+D-28@+0]”

1 1

<1+

Set

S 2[f(a + 1) — 1] .
1+;anz = 1+i[(i+1)—2ﬂ(a+i)][w(z)] (14)

From (14) and (8), we obtain

i +1) —28(a + )] i“ it
2@+ -1 [|&"

i[(i+1)—2ﬁ(a+i)]i
2B+ -1 4™

w@)| = |

< |z|

=2
<|z|] m

Theorem 2.3. If f € A(a,p) and
B 2[B(a+1)—1]
i@ =2+ e 2@+

]zi.

Then

2 2w

[ Ire)ao < [ 1 (re) a0

0 0
where (z=re?,7>0and0<r<1).
Proof: Since
f'(2) =1+ Y5 ,na,z"* and

2[8(a + 1) — 1]
[+ D —-28@@+0]”

i-1

fi@m=1+

It is sufficient to show that:
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2[B(a + 1) — 1]
[(+D-28@+0]"

na,z" ! < 1+ i-1

i

Set
1+ nanzn—l =1
2 o
2[Bla+1) -1 .
[ +1)—2B8(a+1)] w@)]".  (15)
From (14) and (8), we have:
c G+ D=28@+DINC .
w2 = 2[B(a+ 1) — 1] nZznanZ
<D =26+ 0]y
S TBa@rn -1 L
<|z| m

Theorem 2.4. Let f € A(a, ) be of the form (4) and g is
given by

g(Z)=Z+zan” (b, =20, zE€U,
n=2
neN={123,..}),

and let:
B =min— (for some i € N) where R,
b; n=2 b,

_nl(n+1) -2p(a+n)]

- 2B+ 1) —1]
Also for some i € N, the functions f; and g; be defined
respectively by:

fi@)=z+

20+ 1) —1]
G+ -28a+0]”’
9i(2) = z + b;Z".

(16)
Then:

f I(f * ) (@)[Fd0 < f I, * g0 (@)[7d8

where (z=1e",7>0,0<r <1).

Proof. The Hadamard product of f and g is given by :

Waggas Galib Atshan
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(F @ =2+ ) apbys™

n=2

and from (16), we have :
2[B(a + 1) — 1]b;

Ui 9@ =2+ 5 =2 + 0

Now, we must show that for z = re®, 1> 0 and 0<r <1

]Zi.

21 o) T
f 1+ Z a,b,z"t| do
0 n=2
27
Sf 1

0
T

2@+ -1

i[G+1)-28+0]”

By applying Theorem (1.1), it would be sufficient to show that

2[8(a + 1) — 1]
i[G+D—-28+0]”

i-1

1+ Z apb,z" 1 < 1+ 17
n=2

If the subordination (17) holds true, then there exists an
analytic function w with w(0) = 0 and |w(1)| < 1 such that:

1+ Z apb,z" 1
n=2

_ oy, 2Bt —1lp,

i-1
TG+ D —28@r o] V@A
From the hypothesis of the Theorem (2.2), there exists an
analytic function w given by:
i[G+1) = 26(a + )] <
2[f(a+1) —1]

n-1
a,b,z ,

w@)]™ =

which readily yields w(0) = 0. Thus for such function w,
using the hypothesis in the coefficient inequality for the class
A(a, B), we have:

[ee]

[(G+1)—2B(a+1)]
2[B(a+ 1) — 1]
[G+1)—28(a+i)]
2[8(a + 1) — 1]

w(z)|"~* =

apb,z" 1
n=2

[oe]

> aub,
n

< |z|
< |z|.

Therefore the subordination (17) holds true m

In the next theorem, we discuss the integral means inequalities
for f € A(a,B) and h defined by :

h(Z) =z+ biZi + bzi_lzZi_l (bl. = 0,l > n) (18)
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Theorem 2.5. Let h(z) given by (18) and let € A(a,B) ,if f
satisfies :

[ee]

S

n=2

byi—1 b;
20—1) (-1 °

b;
Q-1

b2i—1

h )
where 2G-1D

(19)

and there exists an analytic function w such that :

(oo}

byio1(W(2)2ED + by (w(2))Y — Z a,z"1=0.

n=2

Then,forz=re®,1>0and 0<r<1

flf(Z)Ifde sf |h(2)|7d6 .
0 0

Proof .By z=re® and 0 <r <1, we see that

21 o)
2T
f If (2)|7d6 = f z+ Z a,z"
0 0 n=2
1+ z a,z" !

. J;)211 _

T

do

T

do

and

2w 21

f |h(2)|°do = f |z + biz' + by_y 2% d6

0 0

= ()71 + bz + by, 220V d6.

By using Theorem (1.1), we have to show that:

o0}

1+ Z a,z" ' < 1+ bzt + by 220D,

n=2

We define the function w by:

)

n=2

1+ ) a,z" = 1+ b;w(2))™! + by, (W(2)?¢D, (20)

or equivalent to:

[ee]

by (wW(2))? Y + by(w(2))"t — Z a,z" 1 =0.

n=2

Now if z = 0, then (w(0))""*{by;_; (W (0))“™V + b;} = 0.

15
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So there exists an analytic function w in U such that w(0) =
0.

Next , we prove the function w which is analytic in U and
satisfies |[w(z)| = 1, (z € U), for the condition (19). From
(20), we have that:

2(i-1) < Z

n=2

|b2i—1(W(Z)) + bi(w(z))i_1| =

ay,.

(oo}
} anzn—l
n=2

For z € U, hence

2(i-1) @i-1)

baia|(W@)|™ 7+ bi| (W(@))|

- 27010=2 a, <0

(2D

Letting ¢ = |(w(z))|(i_1) (c = 0) in (21) and we define
Q(c) by:

Q(c) = byi_1c* + bic — Z ap.

n=2

If Q(c) = 0,wherec <1 for Q(c) <0, we obtain

[ee]

QD) = byy = b= ) ay =0

n=2

That is

[oo]
an S b2i—1 - bl.
2

n=

Theorem 2.6. Let f; € A(a, B) where (i =1,2,...,m) and

h(z) =z + i (i az) z"

Then, h(z) € A(a,l), where

(22)

l
mn(n+ 1) [2(Bo(a + 1) = 1)? = 2n((n + 1) = 285 (a + )’
= 2(a + D[n((n+ 1) — 2B, (a + n)])? — 2nm(a + n)[2(By(a + 1) — 1)]2’

where, [B; = min(B, ..., Bm)]-

The result is a sharp for the function f; which is given by

[Bila+1) —1]

—[B—Zﬁi(a+2)]zz'(i =1,..,m).

fi(z) =z+ (23)

Proof. From Theorem (2.1), we have:
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i n[(n+ 1) - 2B;(a + n)])° 5
2[pia+1) — 1] m

n=2

2[Bi(a +1) — 1]

n=2

For (i =1, ...,m), we have

o n[(n+ 1) — 2B,(a + ])* m
Z { 2[Bi(a +1) — 1] } (Z ai,i) <1

n=2 i=1

3|

Now, we try to find the largest [ such that:

C (nln+ D) = 2U@+m)) (X
Z{ 2[l(a + 1) — 1] }(Za{i,i>s1,

n=2 i=1

and the last inequality is true if

nl(n+1) - 2@ +m) _ 1 (n[(n+1) = 2B(a+n) 2
{ 2[l(@+1) — 1] }—E{ 2[Bi(a+ 1) —1] }

From the last expression, we get:

< Z {n[(n +1) - 2B;(a + n)] an’i} <1

| mn+ DR+ 1) -1 - n((n+1) - 28.(a +m)*]
T 2(a+ D[n((n+1) - 28;(a +n))? - 2nm(a + n)[2(Bi(a + 1) — D]?

mn(n+1)[2(Bo (a+1)-1)?~2n((n+1)-20(a+n))’]
2(a+1D)[n((n+1)-2B,(a+n)]2-2nm(a+n)[2(Bo(a+1)-1)]2’

Thatis: | <

16

where, [B, = min(fy, ..., Bp)] B
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