On a Differential Subordination of a Certain Subclass of Univalent Functions

Aqeel Ketab AL-khafaji
Department of Mathematics
Faculty of Education for Pure Sciences
Ibn Al-Haytham
University of Baghdad
Baghdad - Iraq
aqeelketab@gmail.com

Waggas Galib Atshan
Department of Mathematics
Faculty Of Computer Science \& Information Technology
University of Al-Qadisiyah
Diwaniyah - Iraq
waggas.galib@qu.edu.iq
waggashnd@gmail.com

Salwa Salman Abed
Department of Mathematics, College of Education for Pure Sciences - Ibn Al-Haytham,
University of Baghdad
salwaalbundi@yahoo.com

DOI : http://dx.doi.org/10.31642/JoKMC/2018/050302

Abstract

In this paper, we introduce and discuss a certain subclass $\boldsymbol{A}(\boldsymbol{\alpha}, \boldsymbol{\beta})$ of univalent functions in the open unit disc, we obtain some properties like coefficient estimates and results of integral means by using differential subordination.

Keywords: Univalent Function; Coefficient Estimates; Integral Means; Differential Subordination; Convolution.

I. Introduction

Let W be the class of functions of the form:

$$
\begin{gather*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}, \\
(z \in U, \mathbb{N}=\{1,2,3, \ldots\}) \tag{1}
\end{gather*}
$$

which are analytic and univalent in open unit disc $U=$ $\{z:|z|<1\}$.
The Hadamard product or (convolution) of function $f(z)$ given by (1) and function $g(z)$ is defined by:

$$
\begin{align*}
& g(z)= \\
& \quad z+\sum_{n=2}^{\infty} b_{n} z^{n}, \tag{2}\\
& \\
& (z \in U, \mathbb{N}=\{1,2,3, \ldots\})
\end{align*}
$$

in the class W is

$$
\begin{align*}
& (f * g)(z)=z+\sum_{n=2}^{\infty} a_{n} b_{n} z^{n} \\
& (z \in U, n \in \mathbb{N}=\{1,2,3, \ldots\}) \tag{3}
\end{align*}
$$

Let A denotes the subclass of W of functions of the form :

$$
\begin{gather*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}, \\
\left(a_{n} \geq 0, n \in \mathbb{N} \stackrel{=}{=}\{1,2,3, \ldots\}\right) . \tag{4}
\end{gather*}
$$

A function f in the class W is said to be univalent convex
function [2] of order δ if: $\operatorname{Re}\left\{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\}>\delta$

$$
\begin{equation*}
\left(0 \leq \delta<1, z \in U, f^{\prime}(z) \neq 0\right) \tag{5}
\end{equation*}
$$

In the following definition, we give the condition for the function f which is defined in (4) and belongs to the class $A(\alpha, \beta)$.
Definition 1.1: A function $f \in A$ is in the class $A(\alpha, \beta)$ if it satisfies the following condition:

$$
\begin{align*}
& \left|\frac{\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)+1}{2\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)+2 \alpha}\right|<\beta \\
& \text { where }\left(\frac{1}{2}<\beta \leq 1, \quad \alpha>1\right) \text {. } \tag{6}
\end{align*}
$$

Many different authors studied classes of univalent functions for other classes like, Darus [1], Goodman [3], Gupta and Jain [4], Owa [8], Schild and Silvermen [9], Swag [10] and others.

In this paper, we obtain coefficient estimates and proof of several theorems by using the definition of subordination of function which was introduced by (Miller and Mocanu [7])
and Littlewood theorem of subordination [5], (see also Duren [2]).

Definition 1.2_[6]. If f and g be two analytic functions in the open unit disc U. Then g is said to be subordinate to f, written $g<f$ or $g(z)<f(z)$, if there exists a Schwarz function w, which is analytic in U, with $w(0)=0$ and $|w(z)|=1$, $(z \in U)$, such that $g(z)=f(w(z)),(z \in U)$. Indeed it is known that $\quad g(z)<f(z), \quad(z \in U) \Rightarrow g(0)=$ $f(0)$ and $g(U) \subset f(U)$. In particular, if f is univalent in U, we have the following equivalence:

$$
g(z)<f(z), \quad(z \in U) \Leftrightarrow g(0)=f(0) \text { and } g(U) \subset f(U)
$$

Theorem 1.1 [5] (Littlewood Theorem)

If the functions f and g are analytic in U such that $g<f$,

$$
\text { then, for } \tau>0 \text { and } z=r e^{i \theta}(0<r<1)
$$

$$
\begin{equation*}
\int_{0}^{2 \pi}\left|f\left(r e^{i \theta}\right)\right|^{\tau} d \theta \leq \int_{0}^{2 \pi}\left|g\left(r e^{i \theta}\right)\right|^{\tau} d \theta \tag{7}
\end{equation*}
$$

Theorem 1.2 [2] (Maximum Modulus Theorem)

Suppose that a function f is continuous on a boundary of $D(D$ any disk or region). Then, the maximum value of $|f(z)|$, which is always reached, occurs somewhere on the boundary of D and never in the interior.

2. Cofficient Estimates.

Here, we give necessary and sufficient condition for the function f to be in the class $A(\alpha, \beta)$, as follows :

Theorem 2.1 The function f be in the class $A(\alpha, \beta)$ of the form (4) if and only if

$$
\begin{align*}
& \sum_{n=2}^{\infty} n[(n+1)-2 \beta(\alpha+n)] a_{n} \\
& \leq 2 \tag{8}
\end{align*}
$$

where $\left(\frac{1}{2}<\beta \leq 1, \alpha>1, \quad n \in \mathbb{N}=\{1,2,3, \ldots\}\right)$,
and the result is a sharp for the function

$$
\begin{equation*}
f(z)=z+\frac{2[\beta(\alpha+1)-1]}{n[(n+1)-2 \beta(\alpha+n)]} z^{n}, \quad(n \geq 2) \tag{9}
\end{equation*}
$$

Proof: Let f in the class $A(\alpha, \beta)$, then f satisfies the inequality (6) which is equivalent to :

$$
\left|\frac{2 f^{\prime}(z)+z f^{\prime \prime}(z)}{2(1+\alpha) f^{\prime}(z)+2 z f^{\prime \prime}(z)}\right|<\beta
$$

$$
\begin{aligned}
& =\left|\frac{2\left[1+\sum_{n=2}^{\infty} n a_{n} z^{n-1}\right]+z\left[\sum_{n=2}^{\infty} n(n-1) a_{n} z^{n-2}\right]}{2(1+\alpha)\left[1+\sum_{n=2}^{\infty} n a_{n} z^{n-1}\right]+2 z\left[\sum_{n=2}^{\infty} n(n-1) a_{n} z^{n-2}\right]}\right| \\
& <\beta
\end{aligned}
$$

$=\left|\frac{2+\sum_{n=2}^{\infty} 2 n a_{n} z^{n-1}+\sum_{n=2}^{\infty} n(n-1) a_{n} z^{n-1}}{\left.2(1+\alpha)+\sum_{n=2}^{\infty} 2 n(1+\alpha) a_{n} z^{n-1}\right]+\sum_{n=2}^{\infty} 2 n(n-1) a_{n} z^{n-1}}\right|$
$<\beta$
$=\left|\frac{2+\sum_{n=2}^{\infty} n(n+1) a_{n} z^{n-1}}{\left.2(1+\alpha)+\sum_{n=2}^{\infty} 2 n(n+\alpha) a_{n} z^{n-1}\right]}\right|<\beta$.
Since $|\operatorname{Re}(z)| \leq|z|$ for all z, we have
$\operatorname{Re}\left\{\frac{2+\sum_{n=2}^{\infty} n(n+1) a_{n} z^{n-1}}{\left.2(1+\alpha)+\sum_{n=2}^{\infty} 2 n(n+\alpha) a_{n} z^{n-1}\right]}\right\}<\beta$.
Then by choosing the value of z on the real axis and letting $z \rightarrow 1^{-}$through values, we get:

$$
2+\sum_{n=2}^{\infty} n(n+1) a_{n}<2 \beta(1+\alpha)+\sum_{n=2}^{\infty} 2 n \beta(n+\alpha) a_{n}
$$

Hence

$$
\sum_{n=2}^{\infty} n[(n+1)-2 \beta(n+\alpha)] a_{n}<2[\beta(1+\alpha)-1]
$$

Conversely, we assume that (8) satisfies and $|z|=1$, then :

$$
\left.\begin{aligned}
& \left|2 f^{\prime}(z)+z f^{\prime \prime}(z)\right|-\beta\left|2(1+\alpha) f^{\prime}(z)+2 z f^{\prime \prime}(z)\right| \\
& =\left|2\left[1+\sum_{n=2}^{\infty} n a_{n} z^{n-1}\right]+z\left[\sum_{n=2}^{\infty} n(n-1) a_{n} z^{n-2}\right]\right| \\
& -\beta \mid 2(1+\alpha)\left[1+\sum_{n=2}^{\infty} n a_{n} z^{n-1}\right] \\
& \quad+2 z\left[\sum_{n=2}^{\infty} n(n-1) a_{n} z^{n-2}\right] \mid
\end{aligned} \right\rvert\, \begin{aligned}
& =\left|2+\sum_{n=2}^{\infty} n(n+1) a_{n} z^{n-1}\right| \\
& \left.\quad-\beta \mid 2(1+\alpha)+\sum_{n=2}^{\infty} 2 n(n+\alpha) a_{n} z^{n-1}\right] \mid
\end{aligned}
$$

$\leq 2+\sum_{n=2}^{\infty} n(n+1) a_{n}-\beta\left(2(1+\alpha)+\sum_{n=2}^{\infty} 2 n(n+\alpha) a_{n}\right)$
$=\sum_{n=2}^{\infty} n[(n+1)-2 \beta(\alpha+n)] a_{n}-2[\beta(\alpha+1)-1] \leq 0$,
by hypothesis.
Then by Maximum Modulus Theorem, we have $f \in A(\alpha, \beta)$

Corollary 2.1. Let the function
$f(z)$ of the class $A(\alpha, \beta)$. Then
$a_{n} \leq \frac{2[\beta(\alpha+1)-1]}{n[(n+1)-2 \beta(\alpha+n)]}, \quad(n \geq 2)$.

Theorem 2.2. Let $f \in A(\alpha, \beta)$ and f_{i} is defined by

$$
f_{i}(z)=z+\frac{2[\beta(\alpha+1)-1]}{i[(i+1)-2 \beta(\alpha+i)]} z^{i}
$$

If there exists an analytic function w defined by :
$[w(z)]^{i-1}=\frac{i[(i+1)-2 \beta(\alpha+i)]}{2[\beta(\alpha+1)-1]} \sum_{n=2}^{\infty} n a_{n} z^{n-1}$
Then, for $z=r e^{i \theta}$ and $(0<r<1)$
$\int_{0}^{2 \pi}\left|f\left(r e^{i \theta}\right)\right|^{\tau} d \theta \leq \int_{0}^{2 \pi}\left|f_{i}\left(r e^{i \theta}\right)\right|^{\tau} d \theta, \quad$ where $(\tau>0)$
Proof. Since $f \in A(\alpha, \beta)$, then

$$
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n},(n \in \mathbb{N})
$$

and

$$
\begin{equation*}
f_{i}(z)=z+\frac{2[\beta(\alpha+1)-1]}{i[(i+1)-2 \beta(\alpha+i)]} z^{i} . \tag{13}
\end{equation*}
$$

Then, we must show that:

$$
\begin{aligned}
\int_{0}^{2 \pi} \mid 1+\sum_{n=2}^{\infty} a_{n} z^{n-1} & \left.\right|^{\tau} \\
& \leq \int_{0}^{2 \pi} \mid 1 \\
& +\left.\frac{2[\beta(\alpha+1)-1]}{i[(i+1)-2 \beta(\alpha+i)]} z^{i-1}\right|^{\tau} d \theta
\end{aligned}
$$

By Theorem 1.1, it is sufficient to show that:

$$
\begin{aligned}
& 1+\sum_{n=2}^{\infty} a_{n} z^{n-1} \\
& <1+\frac{2[\beta(\alpha+1)-1]}{i[(i+1)-2 \beta(\alpha+i)]} z^{i-1}
\end{aligned}
$$

Set
$1+\sum_{n=2}^{\infty} a_{n} z^{n-1}=1+\frac{2[\beta(\alpha+1)-1]}{i[(i+1)-2 \beta(\alpha+i)]}[w(z)]^{i-1}$
From (14) and (8), we obtain

$$
\begin{gathered}
|w(z)|^{i-1}=\left|\frac{i[(i+1)-2 \beta(\alpha+i)]}{2[\beta(\alpha+1)-1]}\right|\left|\sum_{n=2}^{\infty} a_{n} z^{n-1}\right| \\
\leq|z| \frac{i[(i+1)-2 \beta(\alpha+i)]}{2[\beta(\alpha+1)-1]} \sum_{n=2}^{\infty} a_{n} \\
\leq|z|
\end{gathered}
$$

Theorem 2.3. If $f \in A(\alpha, \beta)$ and

$$
f_{i}(z)=z+\frac{2[\beta(\alpha+1)-1]}{i[(i+1)-2 \beta(\alpha+i)]} z^{i}
$$

Then

$$
\int_{0}^{2 \pi}\left|f^{\prime}\left(r e^{i \theta}\right)\right|^{\tau} d \theta \leq \int_{0}^{2 \pi}\left|f_{i}^{\prime}\left(r e^{i \theta}\right)\right|^{\tau} d \theta
$$

$$
\text { where }\left(z=r e^{i \theta}, \tau>0 \text { and } 0<r<1\right) .
$$

Proof: Since

$$
f^{\prime}(z)=1+\sum_{n=2}^{\infty} n a_{n} z^{n-1} \text { and }
$$

$$
f_{i}^{\prime}(z)=1+\frac{2[\beta(\alpha+1)-1]}{[(i+1)-2 \beta(\alpha+i)]} z^{i-1}
$$

It is sufficient to show that:

$$
1+\sum_{n=2}^{\infty} n a_{n} z^{n-1}<1+\frac{2[\beta(\alpha+1)-1]}{[(i+1)-2 \beta(\alpha+i)]} z^{i-1}
$$

Set

$$
\begin{align*}
1+\sum_{n=2}^{\infty} n a_{n} z^{n-1} & =1 \\
& +\frac{2[\beta(\alpha+1)-1]}{[(i+1)-2 \beta(\alpha+i)]}[w(z)]^{i-1} \tag{15}
\end{align*}
$$

From (14) and (8), we have:

$$
\begin{gathered}
|w(z)|^{i-1}=\left|\frac{[(i+1)-2 \beta(\alpha+i)]}{2[\beta(\alpha+1)-1]}\right|\left|\sum_{n=2}^{\infty} n a_{n} z^{n-1}\right| \\
\leq|z| \frac{[(i+1)-2 \beta(\alpha+i)]}{2[\beta(\alpha+1)-1]} \sum_{n=2}^{\infty} n a_{n} \\
\leq|z|
\end{gathered}
$$

Theorem 2.4. Let $f \in A(\alpha, \beta)$ be of the form (4) and g is given by

$$
\begin{gathered}
g(z)=z+\sum_{n=2}^{\infty} b_{n} z^{n}\left(b_{n} \geq 0, \quad z \in U,\right. \\
n \in \mathbb{N}=\{1,2,3, \ldots\})
\end{gathered}
$$

and let:

$$
\begin{array}{r}
\frac{R_{i}}{b_{i}}=\min _{n \geq 2} \frac{R_{n}}{b_{n}}(\text { for some } i \in \mathbb{N}) \text { where } R_{n} \\
=\frac{n[(n+1)-2 \beta(\alpha+n)]}{2[\beta(\alpha+1)-1]}
\end{array}
$$

Also for some $i \in \mathbb{N}$, the functions f_{i} and g_{i} be defined respectively by:

$$
\begin{gather*}
f_{i}(z)=z+\frac{2[\beta(\alpha+1)-1]}{i[(i+1)-2 \beta(\alpha+i)]} z^{i} \\
g_{i}(z)=z+b_{i} z^{i} \tag{16}
\end{gather*}
$$

Then:

$$
\begin{aligned}
& \int_{0}^{2 \pi}|(f * g)(z)|^{\tau} d \theta \leq \int_{0}^{2 \pi}\left|\left(f_{i} * g_{i}\right)(z)\right|^{\tau} d \theta \\
& \quad \text { where }\left(z=r e^{i \theta}, \tau>0,0<r<1\right)
\end{aligned}
$$

Proof. The Hadamard product of f and g is given by :

$$
(f * g)(z)=z+\sum_{n=2}^{\infty} a_{n} b_{n} z^{n}
$$

and from (16), we have :

$$
\left(f_{i} * g_{i}\right)(z)=z+\frac{2[\beta(\alpha+1)-1] b_{i}}{i[(i+1)-2 \beta(\alpha+i)]} z^{i}
$$

Now, we must show that for $z=r e^{i \theta}, \tau>0$ and $0<r<1$

$$
\begin{aligned}
& \int_{0}^{2 \pi}\left|1+\sum_{n=2}^{\infty} a_{n} b_{n} z^{n-1}\right|^{\tau} d \theta \\
& \quad \leq \int_{0}^{2 \pi} \mid 1 \\
& \quad+\left.\frac{2[\beta(\alpha+1)-1]}{i[(i+1)-2 \beta(\alpha+i)]} z^{i-1}\right|^{\tau} d \theta
\end{aligned}
$$

By applying Theorem (1.1), it would be sufficient to show that

$$
\begin{equation*}
1+\sum_{n=2}^{\infty} a_{n} b_{n} z^{n-1}<1+\frac{2[\beta(\alpha+1)-1]}{i[(i+1)-2 \beta(\alpha+i)]} z^{i-1} \tag{17}
\end{equation*}
$$

If the subordination (17) holds true, then there exists an analytic function w with $w(0)=0$ and $|w(1)|<1$ such that:

$$
\begin{aligned}
1+\sum_{n=2}^{\infty} a_{n} b_{n} z^{n-1} & \\
& =1+\frac{2[\beta(\alpha+1)-1] b_{i}}{i[(i+1)-2 \beta(\alpha+i)]}[w(z)]^{i-1}
\end{aligned}
$$

From the hypothesis of the Theorem (2.2), there exists an analytic function w given by:

$$
[w(z)]^{i-1}=\frac{i[(i+1)-2 \beta(\alpha+i)]}{2[\beta(\alpha+1)-1]} \sum_{n=2}^{\infty} a_{n} b_{n} z^{n-1}
$$

which readily yields $w(0)=0$. Thus for such function w, using the hypothesis in the coefficient inequality for the class $A(\alpha, \beta)$, we have:

$$
\begin{aligned}
& |w(z)|^{i-1}=\left|\frac{[(i+1)-2 \beta(\alpha+i)]}{2[\beta(\alpha+1)-1]}\right|\left|\sum_{n=2}^{\infty} a_{n} b_{n} z^{n-1}\right| \\
& \leq|z| \frac{[(i+1)-2 \beta(\alpha+i)]}{2[\beta(\alpha+1)-1]} \sum_{n=2}^{\infty} a_{n} b_{n} \\
& \leq|z| .
\end{aligned}
$$

Therefore the subordination (17) holds true
In the next theorem, we discuss the integral means inequalities for $f \in A(\alpha, \beta)$ and h defined by :

$$
\begin{equation*}
h(z)=z+b_{i} z^{i}+b_{2 i-1} z^{2 i-1}\left(b_{i} \geq 0, i \geq n\right) \tag{18}
\end{equation*}
$$

Theorem 2.5. Let $h(z)$ given by (18) and let $\in A(\alpha, \beta)$, if f satisfies :
$\sum_{n=2}^{\infty} a_{n} \leq \frac{b_{2 i-1}}{2(i-1)}-\frac{b_{i}}{(i-1)}$,

$$
\begin{equation*}
\text { where } \frac{b_{i}}{(i-1)}<\frac{b_{2 i-1}}{2(i-1)} \tag{19}
\end{equation*}
$$

and there exists an analytic function w such that:

$$
b_{2 i-1}(w(z))^{2(i-1)}+b_{i}(w(z))^{(i-1)}-\sum_{n=2}^{\infty} a_{n} z^{n-1}=0 .
$$

Then, for $z=r e^{i \theta}, \tau>0$ and $0<r<1$

$$
\int_{0}^{2 \pi}|f(z)|^{\tau} d \theta \leq \int_{0}^{2 \pi}|h(z)|^{\tau} d \theta
$$

Proof. By $z=r e^{i \theta}$ and $0<r<1$, we see that

$$
\begin{aligned}
& \int_{0}^{2 \pi}|f(z)|^{\tau} d \theta=\int_{0}^{2 \pi}\left|z+\sum_{n=2}^{\infty} a_{n} z^{n}\right|^{\tau} d \theta \\
&=(r)^{\tau} \int_{0}^{2 \pi}\left|1+\sum_{n=2}^{\infty} a_{n} z^{n-1}\right|^{\tau} d \theta
\end{aligned}
$$

and

$$
\begin{aligned}
\int_{0}^{2 \pi}|h(z)|^{\tau} d \theta= & \int_{0}^{2 \pi}\left|z+b_{i} z^{i}+b_{2 i-1} z^{2 i-1}\right|^{\tau} d \theta \\
& =(r)^{\tau}\left|1+b_{i} z^{i-1}+b_{2 i-1} z^{2(i-1)}\right|^{r} d \theta
\end{aligned}
$$

By using Theorem (1.1), we have to show that:

$$
1+\sum_{n=2}^{\infty} a_{n} z^{n-1} \prec 1+b_{i} z^{i-1}+b_{2 i-1} z^{2(i-1)}
$$

We define the function w by:
$1+\sum_{n=2}^{\infty} a_{n} z^{n-1}=1+b_{i}(w(z))^{i-1}+b_{2 i-1}(w(z))^{2(i-1)}$,
or equivalent to:

$$
b_{2 i-1}(w(z))^{2(i-1)}+b_{i}(w(z))^{i-1}-\sum_{n=2}^{\infty} a_{n} z^{n-1}=0
$$

Now if $z=0$, then $(w(0))^{i-1}\left\{b_{2 i-1}(w(0))^{(i-1)}+b_{i}\right\}=0$.

So there exists an analytic function w in U such that $w(0)=$ 0 .

Next, we prove the function w which is analytic in U and satisfies $|w(z)|=1,(z \in U)$, for the condition (19). From (20), we have that:

$$
\left|b_{2 i-1}(w(z))^{2(i-1)}+b_{i}(w(z))^{i-1}\right|=\left|\sum_{n=2}^{\infty} a_{n} z^{n-1}\right|<\sum_{n=2}^{\infty} a_{n}
$$

For $z \in U$, hence

$$
\begin{equation*}
b_{2 i-1}|(w(z))|^{2(i-1)}+b_{i}|(w(z))|^{(i-1)}-\sum_{n=2}^{\infty} a_{n}<0 \tag{21}
\end{equation*}
$$

Letting $c=|(w(z))|^{(i-1)} \quad(c \geq 0)$ in (21) and we define Q (c) by:

$$
Q(c)=b_{2 i-1} c^{2}+b_{i} c-\sum_{n=2}^{\infty} a_{n}
$$

If $Q(c) \geq 0$, where $c<1$ for $Q(c)<0$, we obtain

$$
Q(1)=b_{2 i-1}-b_{i}-\sum_{n=2}^{\infty} a_{n} \geq 0
$$

That is

$$
\sum_{n=2}^{\infty} a_{n} \leq b_{2 i-1}-b_{i} ■
$$

Theorem 2.6. Let $f_{i} \in A(\alpha, \beta)$ where $(i=1,2, \ldots, m)$ and

$$
\begin{equation*}
h(z)=z+\sum_{n=2}^{\infty}\left(\sum_{i=1}^{m} a_{n, i}^{2}\right) z^{n} \tag{22}
\end{equation*}
$$

Then, $h(z) \in A(\alpha, l)$, where
l

$$
\begin{gathered}
\leq \frac{m n(n+1)\left[2\left(\beta_{0}(\alpha+1)-1\right)^{2}-2 n\left((n+1)-2 \beta_{0}(\alpha+n)\right)^{2}\right]}{2(\alpha+1)\left[n\left((n+1)-2 \beta_{o}(\alpha+n)\right]^{2}-2 n m(\alpha+n)\left[2\left(\beta_{0}(\alpha+1)-1\right)\right]^{2}\right.}, \\
\text { where, }\left[\beta_{0}=\min \left(\beta_{1}, \ldots, \beta_{m}\right)\right] .
\end{gathered}
$$

The result is a sharp for the function f_{i} which is given by

$$
\begin{equation*}
f_{i}(z)=z+\frac{\left[\beta_{i}(\alpha+1)-1\right]}{\left[3-2 \beta_{i}(\alpha+2)\right]} z^{2},(i=1, \ldots, m) \tag{23}
\end{equation*}
$$

Proof. From Theorem (2.1), we have:

$$
\begin{aligned}
& \sum_{n=2}^{\infty}\left\{\frac{n\left[(n+1)-2 \beta_{i}(\alpha+n)\right]}{2\left[\beta_{i}(\alpha+1)-1\right]}\right\}^{2} a_{n, i}^{2} \\
& \qquad \leq \sum_{n=2}^{\infty}\left\{\frac{n\left[(n+1)-2 \beta_{i}(\alpha+n)\right]}{2\left[\beta_{i}(\alpha+1)-1\right]} a_{n, i}\right\}^{2} \leq 1 .
\end{aligned}
$$

For $(i=1, \ldots, m)$, we have

$$
\sum_{n=2}^{\infty} \frac{1}{m}\left\{\frac{n\left[(n+1)-2 \beta_{i}(\alpha+n)\right]}{2\left[\beta_{i}(\alpha+1)-1\right]}\right\}^{2}\left(\sum_{i=1}^{m} a_{n, i}^{2}\right) \leq 1
$$

Now, we try to find the largest l such that:

$$
\sum_{n=2}^{\infty}\left\{\frac{n[(n+1)-2 l(\alpha+n)}{2[l(\alpha+1)-1]}\right\}\left(\sum_{i=1}^{m} a_{n, i}^{2}\right) \leq 1
$$

and the last inequality is true if

$$
\left\{\frac{n[(n+1)-2 l(\alpha+n)}{2[l(\alpha+1)-1]}\right\} \leq \frac{1}{m}\left\{\frac{n\left[(n+1)-2 \beta_{i}(\alpha+n)\right]}{2\left[\beta_{i}(\alpha+1)-1\right]}\right\}^{2} .
$$

From the last expression, we get:

$$
l \leq \frac{m n(n+1)\left[2\left(\beta_{i}(\alpha+1)-1\right)^{2}-2 n\left((n+1)-2 \beta_{i}(\alpha+n)\right)^{2}\right]}{2(\alpha+1)\left[n\left((n+1)-2 \beta_{i}(\alpha+n)\right]^{2}-2 n m(\alpha+n)\left[2\left(\beta_{i}(\alpha+1)-1\right)\right]^{2}\right.}
$$

where, $\left[\beta_{0}=\min \left(\beta_{1}, \ldots, \beta_{m}\right)\right]$

References

[1] M. Darus, Some Subclasses of Analytic Function, Jour. of Math. And Comp. Sci, (Math. Ser.) 16(3), (2003), 121126..
[2] P. L. Duren, Univalent Functions, in: Grundelehren der Mathematischen Wissenachften Band 254, SpringerVerlarg, New York, Berlin, Heidleberg, Tokyo, (1983).
[3] A. W. Goodman, Univalent Functions, Vol. III, Polygonl publishing House, Washington, New Jersey, (1983).
[4] V. P. Gupta and P. K. Jain, Certain Classes of Univalent Function, Math. Soc, 14(1976), 409- 416.
[5] L. E. Littlewood, On Inequalities in the Theory of Functions, Proc, London. Math. Soc. 23(1925). 481-519.
[6] S. S. Miller and P. T. Mocanu, Differential subordinations, Theory and applications series on monographs and textbook in pure and applied Mthematics, No.225, Marcel Dekker Incorporated, New York AND Basel ,(2000).
[7] S. S. Miller and P. T. MocAnu, subordinats of Differential Superordinations, Complex Var. Theory Appl., 48(2003), No. 10, 815-826.
[8] S. Owa, On The Distortion Theorem, I, kyang pook, Math. 18(1978), 55-59.
[9] A. Schild and H. Silverman, Convolutions Of Univalent Function With Negative Coefficient, Ann. Vanv.Mavi. Curie Sklodowska Sect. 29 (1975) 109-116.
[10] S. R. Sway, Inclusion Properties Of Certain Subclasses Of Analytic Functions, Int. Math. Fonum, 7(36)(2012) 17511760.

That is: $l \leq \frac{m n(n+1)\left[2\left(\beta_{0}(\alpha+1)-1\right)^{2}-2 n\left((n+1)-2 \beta_{0}(\alpha+n)\right)^{2}\right]}{2(\alpha+1)\left[n\left((n+1)-2 \beta_{o}(\alpha+n)\right]^{2}-2 n m(\alpha+n)\left[2\left(\beta_{0}(\alpha+1)-1\right)\right]^{2}\right.}$,

