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Abstract: The aim of this paper is to introduce new types of separation axioms which are Z75
space and semi-Z 715 space, with examples and theorems. The relationships between them and with each
of T, and semi-75 spaces have been given. The product of two ZT5 (semi-ZT5) spaces is ZT5 (semi-

ZT5») space.
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1 Introduction

The concept of the semi-open set defined by Levine
in 1963 [7], is as a follows: in a space X, A is a
semi-open set if there exists an open set U such
that U € A C U. In 1971 S. Gene Crossley
and S. K. Hildebrand [9], defined the semi-closed
set, semi-interior, and semi-closure as the comple-
ment of semi-open set, the union of all semi-open
sets of X contained in A and the intersection of
all semi-closed sets containing A, respectively. In
1973 P.Das [9], defined semi-boundary of A as
A — A°5. We shall use A¢, A°5, A°, Abs, A°,
A, A¢, A®, (X X Y, Tpro), R, Z to the complement
of A, semi-interior, semi-closure, semi-boundary,
interior of A, closure of A, exterior of A, bound-
ary of A, the product space, real number, integer
number, respectively.

2 Fundamental Concepts

Definition 2.1[5] A space (X,T) is called Tb
space iff for any x,y € X, x # y there exist open

sets U,V suchthat UNV =¢,x € Uandy € V.

Definition 2.2[6] A space (X, 7)) is called a semi-
Ts space iff for any x,y € X, x # y there exist
semi-open sets U, V suchthat U NV = ¢,z € U
andy € V.

Theorem 2.3[4] Let (X, 7) and (Y, 7") be spaces,
A C Xand B C Y, then (A x B)? =
(Ab x B) U (A x BY).

Theorem 2.4[2] If f : X — Y is a homomor-
phism, then f(A%) = (f(A))’, forall A C X

Theorem 2.5[3] Let (X, 7) and (Y, 7*) be spaces,
ACXandBCY,thenAx B°C A’ x B".

Remark 2.6[1] In a space X, A* = A° N A",
Remark 2.7[9] In a space X, A°% = A — A,

Theorem 2.8 [10] The product of semi-open sets
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is a semi-open set.

Theorem 2.9[8] If f :
homomorphism then:

i f7UB) =/f(B
i (B =1
FA) = (A
iv. (f(B))* = f(B°®),forall AC X

Remark 2.10 [5] In any space, Ab =
clopen set.

X — Y is a semi-

*),forall BCY
L(B°®),forall BCY
iii. ®),forall A C X

¢ iff Ais a

Theorem 2.11[8] Let X be a space and A be a
subset of X, then:

i. Ais semi-open setiff A = A°®
ii. Ais semi-closed setiff A = A°

Theorem 2.121f AC X, BCYand f: X —
Y be a semi-homomorphism, then:

Lo f(AY) = [f(A)"s
i, fH(BY) = [fH(B))’

Proof: i. Since f is a semi-homomorphism, then
F(A%) = (f(A))" and f(A°) = (f(4)), for all
AcCX, [Theorem 2.9 (iii, iv)].

Abs = A% — A°% implies f(AbS) = f(A° — A°%) =
FOA) = F(A%)=(F(A)) = (F(A))* = (F(A))".

ii. Since f is a semi-homomorphism, then
FUB) = GUB) and fU(BY) =
(f~Y(B))°%, for all B C Y, [Theorem 2.9 (i, ii)].

BY = B° — B° implies f~1(B*) = f(B° -
B®) = f7Y(B’) — f~4(B*)=(f"(B))
(fH(B))* = (F7H(B)™.

O
Theorem 2.13 In a space X, A is a semi-clopen
(semi-open and semi-closed) set iff Abs = ¢,

proof: =) Since A is semi-clopen, then A° = A
and A° = A, [Theorem 2.11 (i, ii)], so A% =
A — A =A—-A=¢

<) Since A°® = A — A", [Remark 2.7], and
A¥ = ¢, then A°° = A, so A is a semi-open set,
[Theorem 2.11 (i)].

Abs = A% — A° = ¢ implies A° C A°. Since
A% C A C A° then A = A = A" and A is
semi-closed, [Theorem 2.11 (ii)].

Remark 2.14 In a space X, A% c A?

3 Main Results

Definition 3.1 A space (X, 7) is called ZT3 space
iff for any z,y € X, x # y there exist two open
sets U,V suchthat UNV = ¢,z € Uy eV,
and UP N VP = ¢.

Example 3.2 The space (R,7;) where 7; is the
lower limit topology is a ZT5 space :

letz,y € R, :c<yandletd:d(m y) =z —yl.
putU=[z—12+9%),V=[y—2%y+1). Note
that

UVen zelU,yeVadUNV =¢
[z—1l,z+%)°=z-La+%), [z—1,z+%)°

R\[z—1l,z4+ %) = (00,2 — 1)U [z + %, 00)
,([m—l,x—i—%)c)o = R\[z - lLz+ 2% =
[z — Lo+ $)¢sofz—Laz+ %) = ¢ simi-
larity V' = qbthen U'NV® = ¢andso (R,7) is
Z'T» space.

Example 3.3 The discrete space of more than
one point, (X, 74), is a ZT» space:

For any a,b € X,a # b, U = {a}, V = {b} are
opensetssuchthata € U, be VandU NV = ¢.
Since U = ¢ and V? = ¢ then U’ N VP = ¢.
Hence (X, 74) is ZT5 space.

Example 3.4 The Cofinite space (X,7.), X is
an infinite set, is not a ZT5 space.

Example 3.5 The indiscrete space (X, 7;,q) is not
a ZT5 space.

Example 3.6 Let X =
(X, 6. {1} {2}, {1.2}}

(X, 7)isnota ZT, space for 1,4 € X,1 # 4 but
can not find disjoint open sets containing 1 and 4.

{1,2,3,4}, 7 =
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Theorem 3.7 ZT) property is a topological prop-
erty.

proof: Let (X,7),(Y,7*) be spaces such that
X is homomorphic to Y and X is ZT5 space.
Since X = Y, then there exist a homomorphism
f:X = Y.Forany y1,y2 € Y,y1 # y2 we have
FH ), fH(ye) € X and fH(y1) # f ' (y2)
for f is one to one.

Since X is a ZT5 space then there exist U,V € 1
suchthat f~1(y1) € U, f1(yo) €V, UNV = ¢,
and UP N VP = ¢. Now,

y1 € f(U) and y2 € f(V). Since f is open
function then f(U), f(V') are open sets in Y and
fO)NfV)=fUNV) = f(¢) = o.

Now, (f(U))" 1 (F(V))? = F(U) N F(V?), [The-
orem 2.4], = f(U*NV®) = f(¢) = 6. Hence
(Y, 7*) is a ZT» space.

O

Theorem 3.8 If each of (X, 7) and (Y,7") is a
ZT5 space, then the product space X x Y is Z7T5
space.

proof: Let (X, 7) and (Y, 7*) be ZT, spaces. To
prove (X XY, 7o) is also ZT5 space, let (x1,y1),

(z2,92) € X XY, (x1,41) # (x2,y2). Sup-
pose that x1 # xo. Since X is a ZT5 space,

xr1 # xo then there exist U;,Us € 7 such
that x1 € Uj,x0 € Uy, Uy NUs = ¢ and
Ul N0 = 6.

Uy x Y,Uy x Y are open sets in X X Y and
(l‘l,yl)EUlXY:G,(xQ,yg)GUQXY:H
andGNH = (U xY)N (U2 xY) = (U NUz) x
YNY)=¢xY =¢.

Now, (U1 x V)N (U x Y)? = ¢

(U x YN (U xY)? = (UPxY)U (T x YY)
N ((U2* x Y) U (U3 x Y?)), [Theorem 2.3]

= (U X Y)U(Tr x9)) N (V2" x VYU (T2 % 6),
[Remark 2.10]

= (" xY)Ud) N ((Us" xY)U )

= (Ulb X Y) N (Uzb X Y)

= (PN x (Y NY)=¢pxY =¢

Hence X x Y isa ZTj space.

O

Remark 3.9 The continuous image of Z75 needs
not be a ZT5 space :

f:(Z,13) = (R, Ting), f(x) = x is continuous
function and, (Z, 74) is ZT5 space but f(Z) = Z
with the relative indiscrete topology is not a Z75
space.

Definition 3.10 A space (X, 7) is called semi-ZT5
space iff for any z,y € X, z # y there exist dis-
joint semi-open sets U, V such thatx € U,y € V,
and U NV = ¢,

Example 3.11 The real number with the usual
topology (R, 7,,), is semi-Z T, space:

let z,y € Rwithx < yandletd = d(z,y) =
lz—y|.PutU = (z—1L,2+%),V = (y—4,y+1)
which are disjoint semi-open sets such that x € U,
yeV.

Since U is semi-clopen, then U =
2.13].

similarity, V% = ¢, so U» N V% = ¢. Then
(R, 7,) is a semi-ZT} space.

¢, [Theorem

Example 3.12 The discrete space of more than
one point, (X, 74), is a semi-ZT» space.

Example 3.13 The Cofinite space (X,7.), X is
an infinite set, is not a semi-Z7» space.

Example 3.14 The indiscrete space (X, 7jnq), is
not a semi-Z 15 space.

Example 3.15let X = {a,b},7 = {X, ¢,{a}}
(X, 7) is not semi-Z Ty space for a,d € X,a # d
but can not find disjoint semi-open sets containing
a and d.

Example 3.16 Let X = {a,b,c,d},7 =
{X,0,{a},{b},{a,b}}. (X,7) is semi-ZT5
space:

a,b € X,a # b, {a} and {b} are disjoint semi-
open sets containing a and b respectively with

{a}* 0 {B} = .
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a,c € X,a # ¢, {a} and {b, c} are disjoint semi-
open sets containing a and c respectively with
{a}?* A {b,c} = ¢

a,d € X,a # d, {a} and {b, d} are disjoint semi-
open sets containing a and d respectively with
{a}t* N {b,d}>* = ¢

b,c € X,b # ¢, {b} and {a, c} are disjoint semi-
open sets containing b and c respectively with
{0} 1 {a, ) = 6.

b,d € X,b+# d, {b} and {a,d} are disjoint semi-
open sets containing b and a, d respectively with
{6} N {a,d}’ = ¢.

c,d € X,¢c # d, {c,b} and {a,d} are disjoint
semi-open sets containing ¢ and d respectively with
{67 b}bs N {a7 d}bs =¢

Theorem 3.17 Semi-ZT» property is a semi-
topological property, and then it is a topological

property.

proof: Let (X,7),(Y,7*) be spaces such that X
is semi-homomorphic to Y and X is semi-Z 715
space. Then there exists a semi-homomorphism
f:X = Y.Forany yi,y2 € Y,y1 # y2 we have
F7H ), ) € X and f7Hy) # F7 ()
for f is one to one. Since X is semi-ZT5 space
then there exist U, V' semi-open sets such that
fYn) € U f ' (y2) € VUNV = ¢ and
Ub NV = ¢. Now,

yi € f(U) g2 € f(V)and f(U) N f(V) =
fUNV) = f(¢) = ¢. Since f pre-semi-
open then f(U) and f(V') are semi-open in Y.
Now, (f(U))** N (f(V))*, [Theorem 2.12 (i)],
= f(U)Nf(VP) = fU* V) = f(¢) = ¢.

Hence (Y, 7%) is semi-ZT% space.

O

Theorem 3.18 Every ZT15 space is a semi-Z1»
space.

Proof: Let (X,7) be a ZTb space and z,y €
X, x # y, then there exist disjoint open sets U and
V suchthatz € U,y € V,and U’NV? = ¢. Since
every open set is semi-open set and U% < U?,
Vbs © Vb [Remark 2.14], and U N Vb = ¢, then
U NVb = ¢. Hence (X, 7) is a semi-Z T} space.

Remark 3.19 Every ZT5 space is a T space and
every semi-ZT5 space is a semi-75 space.

Remark 3.20 The converse of Theorem 3.18 is
not true for the space in the Example 3.6 is semi-
ZT5 space but not ZT5 space.

Theorem 3.21 The product space of two semi-
ZT5» spaces is a semi-Z15 space.

proof: Let (X, 7) and (Y, 7*) be semi-ZT5 spaces.
To prove (X x Y, 7p,) is also semi-ZT5 space, let
(@1,91), (w2, 92) € X XY, (z1,41) # (22,92).
Suppose x1 # 9. Since X is semi-Z7T5 space,
r1 # xo then there exist Uy, Us semi-open sets
such that 1 € Uy,x0 € Us, Uy NUy = ¢ and
Ulbs N UQbS — ¢

Uiy x Y,Uy x Y are semi-open sets in X X Y,
[Theorem 2.8], such that (z1,y1) € U3 x Y = G,
(z2,y2) € Ua x Y = H and,

GNH= (Ul XY)Q(UQXY) = (UlﬂUz) X
(YNY)=¢xY = ¢. Now,
(U xY)¥ = (U, x Y)N((Uy x Y)¢), [Remark
2.6]
o UERA (eSS 00T
T OO x )
= (U1 x Y)° N (U° )
c (U xY")n Ulcs x Y),[Theorem
2.5]

— (T x Y) N (T x Y)

= (U1 ﬂUCS) x (Y NY)
= NT")xY =U" x Y.

Similarity, (U X Y)bS cUs? xY.

So (U x V)5 N (U x V) c (U xY)N

(U xY)= (U NUY¥) xY =g x Y = ¢.

Hence the product space of two semi-Z7T5 spaces

is a semi-ZT5 space.

O

Remark 3.22 The semi continuous image of
the semi-Z7> needs not be a semi-Z7T, space.
f:(Z,19) = (R, Ting), f(z) = x is semi contin-
uous function and, (Z, 74) is semi-ZT5 space but
f(Z) = Z with the relative indiscrete topology is
not a semi-Z 715 space.
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4 Conclusion

The two separation axioms have the following re-
lationships in diagram.

Z'T, space = semi-ZT, space

I ¢

T2 space = semi-T; space
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