ZT₂ space and semi-ZT₂ space

Abed Al-Hamza M.Hamza

Department of Mathematics Faculty of Computer Science and Mathematics University of Kufa, Najaf,Iraq

Zainab Naji Hameed

Department of Mathematics Faculty of Computer Science and Mathematics University of Kufa, Najaf,Iraq

DOI : http://dx.doi.org/10.31642/JoKMC/2018/050305

Abstract: The aim of this paper is to introduce new types of separation axioms which are ZT_2 space and semi- ZT_2 space, with examples and theorems. The relationships between them and with each of T_2 and semi- T_2 spaces have been given. The product of two ZT_2 (semi- ZT_2) spaces is ZT_2 (semi- ZT_2) space.

Keywords: T_2 space, semi- T_2 space, ZT_2 space, semi ZT_2 space.

1 Introduction

The concept of the semi-open set defined by Levine in 1963 [7], is as a follows: in a space X, A is a semi-open set if there exists an open set U such that $U \subseteq A \subseteq \overline{U}$. In 1971 S. Gene Crossley and S. K. Hildebrand [9], defined the semi-closed set, semi-interior, and semi-closure as the complement of semi-open set, the union of all semi-open sets of X contained in A and the intersection of all semi-closed sets containing A, respectively. In 1973 P.Das [9], defined semi-boundary of A as $\overline{A}^{s} - A^{\circ s}$. We shall use A^{c} , $A^{\circ s}$, \overline{A}^{s} , A^{bs} , A° , $\overline{A}, A^e, A^b, (X \times Y, \tau_{pro}), \mathbb{R}, \mathbb{Z}$ to the complement of A, semi-interior, semi-closure, semi-boundary, interior of A, closure of A, exterior of A, boundary of A, the product space, real number, integer number, respectively.

2 Fundamental Concepts

Definition 2.1[5] A space (X,T) is called T_2 space iff for any $x, y \in X, x \neq y$ there exist open

sets U, V such that $U \cap V = \phi$, $x \in U$ and $y \in V$.

Definition 2.2[6] A space (X, T) is called a semi- T_2 space iff for any $x, y \in X, x \neq y$ there exist semi-open sets U, V such that $U \cap V = \phi$, $x \in U$ and $y \in V$.

Theorem 2.3[4] Let (X, τ) and (Y, τ^*) be spaces, $A \subset X$ and $B \subset Y$, then $(A \times B)^b = (A^b \times \overline{B}) \cup (\overline{A} \times B^b)$.

Theorem 2.4[2] If $f : X \to Y$ is a homomorphism, then $f(A^b) = (f(A))^b$, for all $A \subset X$

Theorem 2.5[3] Let (X, τ) and (Y, τ^*) be spaces, $A \subset X$ and $B \subset Y$, then $\overline{A \times B}^s \subset \overline{A}^s \times \overline{B}^s$.

Remark 2.6[1] In a space $X, A^{bs} = \overline{A}^s \cap \overline{A^c}^s$.

Remark 2.7[9] In a space $X, A^{\circ s} = A - A^{bs}$.

Theorem 2.8 [10] The product of semi-open sets

is a semi-open set.

Theorem 2.9[8] If $f : X \longrightarrow Y$ is a semi- semi-closed, [Theorem 2.11 (ii)]. homomorphism then:

i.
$$\overline{f^{-1}(B)}^s = f^{-1}(\overline{B}^s)$$
, for all $B \subseteq Y$

ii.
$$(f^{-1}(B))^{\circ s} = f^{-1}(B^{\circ s})$$
, for all $B \subseteq Y$

iii. $\overline{f(A)}^s = f(\overline{A}^s)$, for all $A \subset X$

iv. $(f(B))^{\circ s} = f(B^{\circ s})$, for all $A \subset X$

Remark 2.10 [5] In any space, $A^b = \phi$ iff A is a clopen set.

Theorem 2.11[8] Let X be a space and A be a **Example 3.2** The space (\mathbb{R}, τ_l) where τ_l is the subset of X, then:

- i. A is semi-open set iff $A = A^{\circ s}$
- ii. A is semi-closed set iff $A = \overline{A}^s$

Theorem 2.12 If $A \subset X$, $B \subset Y$ and $f : X \longrightarrow$ Y be a semi-homomorphism, then:

i.
$$f(A^{bs}) = [f(A)]^{bs}$$

ii. $f^{-1}(B^{bs}) = [f^{-1}(B)]^{bs}$

Proof: i. Since f is a semi-homomorphism, then $f(\overline{A}^s) = \overline{(f(A))}^s$ and $f(A^{\circ s}) = (f(A))^{\circ s}$, for all $A \subset X$, [Theorem 2.9 (iii, iv)]. $A^{bs} = \overline{A}^s - A^{\circ s}$ implies $f(A^{bs}) = f(\overline{A}^s - A^{\circ s}) =$ $f(\overline{A}^s) - f(A^{\circ s}) = \overline{(f(A))}^s - (f(A))^{\circ s} = (f(A))^{bs}.$

Since f is a semi-homomorphism, then ii. $f^{-1}(\overline{B}^s) = \overline{(f^{-1}(B))}^s$ and $f^{-1}(B^{\circ s})$ $(f^{-1}(B))^{\circ s}$, for all $B \subset Y$, [Theorem 2.9 (i, ii)]. $B^{bs} = \overline{B}^s - B^{\circ s}$ implies $f^{-1}(B^{bs}) = f^{-1}(\overline{B}^s - B^{\circ s})$ $B^{\circ s}) = f^{-1}(\overline{B}^s) - f^{-1}(B^{\circ s}) = \overline{(f^{-1}(B))}^s -$ $(f^{-1}(B))^{\circ s} = (f^{-1}(B))^{bs}.$

Theorem 2.13 In a space X, A is a semi-clopen (semi-open and semi-closed) set iff $A^{bs} = \phi$.

proof: \Rightarrow) Since A is semi-clopen, then $\overline{A}^s = A$ and $A^{\circ s} = A$, [Theorem 2.11 (i, ii)], so $A^{bs} =$ $\overline{A}^s - A^{\circ s} = \overline{A} - A = \phi$ \Leftarrow) Since $A^{\circ s} = A - A^{bs}$, [Remark 2.7], and (X, τ) is not a ZT_2 space for $1, 4 \in X, 1 \neq 4$ but $A^{bs} = \phi$, then $A^{\circ s} = A$, so A is a semi-open set, can not find disjoint open sets containing 1 and 4. [Theorem 2.11 (i)].

 $A^{bs} = \overline{A}^s - A^{\circ s} = \phi$ implies $\overline{A}^s \subseteq A^{\circ s}$. Since $A^{\circ s} \subset A \subset \overline{A}^{s}$, then $A^{\circ s} = A = \overline{A}^{s}$ and A is

Remark 2.14 In a space $X, A^{bs} \subset A^{b}$

3 Main Results

Definition 3.1 A space (X, τ) is called ZT_2 space iff for any $x, y \in X$, $x \neq y$ there exist two open sets U, V such that $U \cap V = \phi$, $x \in U, y \in V$, and $U^b \cap V^b = \phi$.

lower limit topology is a ZT_2 space :

let $x, y \in \mathbb{R}$, x < y and let d = d(x, y) = |x - y|. put $U = [x - 1, x + \frac{d}{4}), V = [y - \frac{d}{2}, y + 1)$. Note that

 $U, V \in \tau_l, x \in U, y \in V \text{ and } U \cap V = \phi$ $[x-1,x+rac{d}{4})^\circ=[x-1,x+rac{d}{4})$, $[x-1,x+rac{d}{4})^c=$ $\mathbb{R} \setminus [x-1, x+\frac{d}{4}) = (-\infty, x-1) \cup [x+\frac{d}{4}, \infty)$ $([x-1,x+\frac{d}{4})^c)^\circ = \mathbb{R} \setminus [x-1,x+\frac{d}{4}) =$ $[x - 1, x + \frac{d}{4})^e$ so $[x - 1, x + \frac{d}{4})^b = \phi$, similarity $V^b = \phi$ then $U^b \cap V^b = \phi$ and so (\mathbb{R}, τ_l) is ZT_2 space.

Example 3.3 The discrete space of more than one point, (X, τ_d) , is a ZT_2 space:

For any $a, b \in X, a \neq b, U = \{a\}, V = \{b\}$ are open sets such that $a \in U$, $b \in V$ and $U \cap V = \phi$. Since $U^b = \phi$ and $V^b = \phi$ then $U^b \cap V^b = \phi$. Hence (X, τ_d) is ZT_2 space.

Example 3.4 The Cofinite space (X, τ_c) , X is an infinite set, is not a ZT_2 space.

Example 3.5 The indiscrete space (X, τ_{ind}) is not a ZT_2 space.

Example 3.6 Let $X = \{1, 2, 3, 4\}, \tau =$ $\{X, \phi, \{1\}, \{2\}, \{1, 2\}\}$

Theorem 3.7 ZT_2 property is a topological property.

proof: Let $(X, \tau), (Y, \tau^*)$ be spaces such that X is homomorphic to Y and X is ZT_2 space. Since $X \cong Y$, then there exist a homomorphism $f: X \to Y$. For any $y_1, y_2 \in Y, y_1 \neq y_2$ we have $f^{-1}(y_1), f^{-1}(y_2) \in X$ and $f^{-1}(y_1) \neq f^{-1}(y_2)$ for f is one to one.

Since X is a ZT_2 space then there exist $U, V \in \tau$ such that $f^{-1}(y_1) \in U, f^{-1}(y_2) \in V$, $U \cap V = \phi$, and $U^b \cap V^b = \phi$. Now,

 $y_1 \in f(U)$ and $y_2 \in f(V)$. Since f is open function then f(U), f(V) are open sets in Y and $f(U) \cap f(V) = f(U \cap V) = f(\phi) = \phi$.

Now, $(f(U))^b \cap (f(V))^b = f(U^b) \cap f(V^b)$, [Theorem 2.4], $= f(U^b \cap V^b) = f(\phi) = \phi$. Hence (Y, τ^*) is a ZT_2 space.

Theorem 3.8 If each of (X, τ) and (Y, τ^*) is a ZT_2 space, then the product space $X \times Y$ is ZT_2 space.

proof: Let (X, τ) and (Y, τ^*) be ZT_2 spaces. To prove $(X \times Y, \tau_{pro})$ is also ZT_2 space, let (x_1, y_1) , $(x_2, y_2) \in X \times Y$, $(x_1, y_1) \neq (x_2, y_2)$. Suppose that $x_1 \neq x_2$. Since X is a ZT_2 space, $x_1 \neq x_2$ then there exist $U_1, U_2 \in \tau$ such that $x_1 \in U_1, x_2 \in U_2, U_1 \cap U_2 = \phi$ and $U_1^{\ b} \cap U_2^{\ b} = \phi$.

 $U_1 \times Y, U_2 \times Y$ are open sets in $X \times Y$ and $(x_1, y_1) \in U_1 \times Y = G, (x_2, y_2) \in U_2 \times Y = H$ and $G \cap H = (U_1 \times Y) \cap (U_2 \times Y) = (U_1 \cap U_2) \times (Y \cap Y) = \phi \times Y = \phi$.

Now, $(U_1 \times Y)^b \cap (U_2 \times Y)^b = \phi$ $(U_1 \times Y)^b \cap (U_2 \times Y)^b = ((U_1^b \times \overline{Y}) \cup (\overline{U_1} \times Y^b))$ $\cap ((U_2^b \times \overline{Y}) \cup (\overline{U_2} \times Y^b))$, [Theorem 2.3] $= ((U_1^b \times \overline{Y}) \cup (\overline{U_1} \times \phi)) \cap ((U_2^b \times \overline{Y}) \cup (\overline{U_2} \times \phi))$, [Remark 2.10] $= ((U_1^b \times Y) \cup \phi) \cap ((U_2^b \times Y) \cup \phi)$ $= (U_1^b \times Y) \cap (U_2^b \times Y)$ $= (U_1^b \cap (U_2^b) \times (Y \cap Y) = \phi \times Y = \phi$ Hence $X \times Y$ is a ZT_1 space.

Remark 3.9 The continuous image of ZT_2 needs not be a ZT_2 space :

 $f: (\mathbb{Z}, \tau_d) \to (\mathbb{R}, \tau_{ind}), f(x) = x$ is continuous function and, (\mathbb{Z}, τ_d) is ZT_2 space but $f(\mathbb{Z}) = \mathbb{Z}$ with the relative indiscrete topology is not a ZT_2 space.

Definition 3.10 A space (X, τ) is called semi- ZT_2 space iff for any $x, y \in X$, $x \neq y$ there exist disjoint semi-open sets U, V such that $x \in U, y \in V$, and $U^{bs} \cap V^{bs} = \phi$.

Example 3.11 The real number with the usual topology (\mathbb{R}, τ_u) , is semi- ZT_2 space:

let $x, y \in \mathbb{R}$ with x < y and let d = d(x, y) = |x-y|. Put $U = (x-1, x + \frac{d}{4}), V = (y - \frac{d}{2}, y + 1)$ which are disjoint semi-open sets such that $x \in U$, $y \in V$.

Since U is semi-clopen, then $U^{bs} = \phi$, [Theorem 2.13].

similarity, $V^{bs} = \phi$, so $U^{bs} \cap V^{bs} = \phi$. Then (\mathbb{R}, τ_u) is a semi- ZT_1 space.

Example 3.12 The discrete space of more than one point, (X, τ_d) , is a semi- ZT_2 space.

Example 3.13 The Cofinite space (X, τ_c) , X is an infinite set, is not a semi- ZT_2 space.

Example 3.14 The indiscrete space (X, τ_{ind}) , is not a semi- ZT_2 space.

Example 3.15 let $X = \{a, b\}, \tau = \{X, \phi, \{a\}\}$ (X, τ) is not semi- ZT_2 space for $a, d \in X, a \neq d$ but can not find disjoint semi-open sets containing a and d.

Example 3.16 Let $X = \{a, b, c, d\}, \tau = \{X, \phi, \{a\}, \{b\}, \{a, b\}\}$. (X, τ) is semi-ZT₂ space:

 $a, b \in X, a \neq b, \{a\}$ and $\{b\}$ are disjoint semiopen sets containing a and b respectively with $\{a\}^{bs} \cap \{b\}^{bs} = \phi.$

 $a, c \in X, a \neq c, \{a\}$ and $\{b, c\}$ are disjoint semiopen sets containing a and c respectively with $\{a\}^{bs} \cap \{b, c\}^{bs} = \phi.$

 $a, d \in X, a \neq d, \{a\}$ and $\{b, d\}$ are disjoint semiopen sets containing a and d respectively with $\{a\}^{bs} \cap \{b, d\}^{bs} = \phi.$

 $b, c \in X, b \neq c, \{b\}$ and $\{a, c\}$ are disjoint semiopen sets containing b and c respectively with $\{b\}^{bs} \cap \{a, c\}^{bs} = \phi.$

 $b, d \in X, b \neq d, \{b\}$ and $\{a, d\}$ are disjoint semiopen sets containing b and a, d respectively with $\{b\}^{bs} \cap \{a, d\}^{bs} = \phi.$

 $c, d \in X, c \neq d, \{c, b\}$ and $\{a, d\}$ are disjoint semi-open sets containing c and d respectively with $\{c, b\}^{bs} \cap \{a, d\}^{bs} = \phi$.

Theorem 3.17 Semi- ZT_2 property is a semi-topological property, and then it is a topological property.

proof: Let $(X, \tau), (Y, \tau^*)$ be spaces such that Xis semi-homomorphic to Y and X is semi- ZT_2 space. Then there exists a semi-homomorphism $f: X \to Y$. For any $y_1, y_2 \in Y, y_1 \neq y_2$ we have $f^{-1}(y_1), f^{-1}(y_1) \in X$ and $f^{-1}(y_1) \neq f^{-1}(y_2)$ for f is one to one. Since X is semi- ZT_2 space then there exist U, V semi-open sets such that $f^{-1}(y_1) \in U, f^{-1}(y_2) \in V, U \cap V = \phi$ and $U^{bs} \cap V^{bs} = \phi$. Now, $y_1 \in f(U) \ y_2 \in f(V)$ and $f(U) \cap f(V) =$

 $f(U \cap V) = f(\phi) = \phi$. Since f pre-semiopen then f(U) and f(V) are semi-open in Y. Now, $(f(U))^{bs} \cap (f(V))^{bs}$, [Theorem 2.12 (i)], $= f(U^{bs}) \cap f(V^{bs}) = f(U^{bs} \cap V^{bs}) = f(\phi) = \phi$. Hence (Y, τ^*) is semi- ZT_2 space.

Theorem 3.18 Every ZT_2 space is a semi- ZT_2 space.

Proof: Let (X, τ) be a ZT_2 space and $x, y \in X, x \neq y$, then there exist disjoint open sets U and V such that $x \in U, y \in V$, and $U^b \cap V^b = \phi$. Since every open set is semi-open set and $U^{bs} \subset U^b$, $V^{bs} \subset V^b$, [Remark 2.14], and $U^b \cap V^b = \phi$, then $U^{bs} \cap V^{bs} = \phi$. Hence (X, τ) is a semi- ZT_2 space.

Remark 3.19 Every ZT_2 space is a T_2 space and every semi- ZT_2 space is a semi- T_2 space.

Remark 3.20 The converse of **Theorem 3.18** is not true for the space in the **Example 3.6** is semi- ZT_2 space but not ZT_2 space.

Theorem 3.21 The product space of two semi- ZT_2 spaces is a semi- ZT_2 space.

proof: Let (X, τ) and (Y, τ^*) be semi- ZT_2 spaces. To prove $(X \times Y, \tau_{pro})$ is also semi- ZT_2 space, let $(x_1, y_1), (x_2, y_2) \in X \times Y, (x_1, y_1) \neq (x_2, y_2)$. Suppose $x_1 \neq x_2$. Since X is semi- ZT_2 space, $x_1 \neq x_2$ then there exist U_1, U_2 semi-open sets such that $x_1 \in U_1, x_2 \in U_2, U_1 \cap U_2 = \phi$ and $U_1^{bs} \cap U_2^{bs} = \phi$.

 $U_1 \times Y, U_2 \times Y$ are semi-open sets in $X \times Y$, [Theorem 2.8], such that $(x_1, y_1) \in U_1 \times Y = G$, $(x_2, y_2) \in U_2 \times Y = H$ and,

$$G \cap H = (U_1 \times Y) \cap (U_2 \times Y) = (U_1 \cap U_2) \times (Y \cap Y) = \phi \times Y = \phi. \text{ Now,}$$
$$(U_1 \times Y)^{bs} = (\overline{U_1 \times Y}^s) \cap (\overline{(U_1 \times Y)^c}^s), \text{ [Remark]}$$

2.6]

$$= (\overline{U_1 \times Y}^s) \cap (\overline{(U_1^c \times Y) \cup (X \times Y^c)}^s)$$

$$= (\overline{U_1 \times Y}^s) \cap ((U_1^c \times Y) \cup (X \times \phi)^s)$$

$$= \overline{(U_1 \times Y)}^s \cap (\overline{U_1^c} \times Y)^s$$

$$\subset (\overline{U_1}^s \times \overline{Y}^s) \cap (\overline{U_1^c}^s \times \overline{Y}^s), [\text{Theorem}$$
2.5]

$$= (\overline{U_1}^s \times Y) \cap (\overline{U_1^c}^s \times Y)$$

$$= (\overline{U_1}^s \cap \overline{U_1^c}^s) \times (Y \cap Y)$$

$$= (\overline{U_1}^s \cap \overline{U_1^c}^s) \times Y = U_1^{bs} \times Y.$$
Similarity, $(U_2 \times Y)^{bs} \subset U_2^{bs} \times Y.$

So $(U_1 \times Y)^{bs} \cap (U_2 \times Y)^{bs} \subset (U_1^{bs} \times Y) \cap (U_2^{bs} \times Y) = (U_1^{bs} \cap U_2^{bs}) \times Y = \phi \times Y = \phi$. Hence the product space of two semi- ZT_2 spaces is a semi- ZT_2 space.

Remark 3.22 The semi continuous image of the semi- ZT_2 needs not be a semi- ZT_2 space. $f: (\mathbb{Z}, \tau_d) \to (\mathbb{R}, \tau_{ind}), f(x) = x$ is semi continuous function and, (\mathbb{Z}, τ_d) is semi- ZT_2 space but $f(\mathbb{Z}) = \mathbb{Z}$ with the relative indiscrete topology is not a semi- ZT_2 space.

 \Box

4 Conclusion

The two separation axioms have the following relationships in diagram.

References

- B. Ahmad , M. Khan , T. Noiri. A note on semi-frontier, *Indian J. pure appl. Math.* 22(1), 61-62 (1991)
- [2] C. C. Adams and R. D. Franzosa. Introduction to Topology Pure and Applied, *Pearson Prentice Hall Upper Saddle River*. (2008)
- [3] C. Dorsett. Product spaces and semiseparation axioms, *Periodica Mathematica Hungarica* **13**(1), 39-45 (1982)

- [4] J. Dugundji. Topology Allyn and Bacon, *Inc. Boston.* (1966)
- [5] J. N. Sharma. General topology, *Krishan Prakashan Meerut UP* (1977)
- [6] M. Caldas. A Separation Axioms Between Semi-T0 and Semi-T1, *Pro Mathematica* 11, 21-22, (1997)
- [7] N. Levine. Semi-open sets and semicontinuity in topological space, *The American Mathematical Monthly.* **70**(1), 36-41 (1963)
- [8] S. G. Crossley and S. K. Hildebrand. Semitopological properties, *Fundamenta Mathematicae*. 74(3), 233-254(1972)
- [9] T. M. Nour. A note on semi-application of semi-open sets, *Internat. J. Math. and Math. Sci.* 21(1), 205-207 (1998)
- [10] W. J. M. Thomas. Semi-open sets, *PhD The-sis.* (1965)