ZT_{2} space and semi- ZT_{2} space

Abed Al-Hamza M.Hamza
Department of Mathematics Faculty of Computer Science and Mathematics
University of Kufa, Najaf,Iraq
Zainab Naji Hameed
Department of Mathematics
Faculty of Computer Science and Mathematics
University of Kufa, Najaf,Iraq
DOI : http://dx.doi.org/10.31642/JoKMC/2018/050305

Abstract

The aim of this paper is to introduce new types of separation axioms which are $Z T_{2}$ space and semi- $Z T_{2}$ space, with examples and theorems. The relationships between them and with each of T_{2} and semi- T_{2} spaces have been given. The product of two $Z T_{2}$ (semi- $Z T_{2}$) spaces is $Z T_{2}$ (semi$Z T_{2}$) space.

Keywords: T_{2} space, semi- T_{2} space, $Z T_{2}$ space, semi $Z T_{2}$ space.

1 Introduction

The concept of the semi-open set defined by Levine in 1963 [7], is as a follows: in a space X, A is a semi-open set if there exists an open set U such that $U \subseteq A \subseteq \bar{U}$. In 1971 S . Gene Crossley and S. K. Hildebrand [9], defined the semi-closed set, semi-interior, and semi-closure as the complement of semi-open set, the union of all semi-open sets of X contained in A and the intersection of all semi-closed sets containing A, respectively. In 1973 P.Das [9], defined semi-boundary of A as $\bar{A}^{s}-A^{o s}$. We shall use $A^{c}, A^{o s}, \bar{A}^{s}, A^{b s}, A^{\circ}$, $\bar{A}, A^{e}, A^{b},\left(X \times Y, \tau_{\text {pro }}\right), \mathbb{R}, \mathbb{Z}$ to the complement of A, semi-interior, semi-closure, semi-boundary, interior of A, closure of A, exterior of A, boundary of A, the product space, real number, integer number, respectively.

2 Fundamental Concepts

Definition 2.1[5] A space (X, T) is called T_{2} space iff for any $x, y \in X, x \neq y$ there exist open
sets U, V such that $U \cap V=\phi, x \in U$ and $y \in V$.
Definition 2.2[6] A space (X, T) is called a semiT_{2} space iff for any $x, y \in X, x \neq y$ there exist semi-open sets U, V such that $U \cap V=\phi, x \in U$ and $y \in V$.

Theorem 2.3[4] Let (X, τ) and $\left(Y, \tau^{*}\right)$ be spaces, $A \subset X$ and $B \subset Y$, then $(A \times B)^{b}=$ $\left(A^{b} \times \bar{B}\right) \cup\left(\bar{A} \times B^{b}\right)$.

Theorem 2.4[2] If $f: X \rightarrow Y$ is a homomorphism, then $f\left(A^{b}\right)=(f(A))^{b}$, for all $A \subset X$

Theorem 2.5[3] Let (X, τ) and $\left(Y, \tau^{*}\right)$ be spaces, $A \subset X$ and $B \subset Y$, then $\overline{A \times B^{s}} \subset \bar{A}^{s} \times \bar{B}^{s}$.

Remark 2.6[1] In a space $X, A^{b s}=\bar{A}^{s} \cap \overline{A c}^{s}$.
Remark 2.7[9] In a space $X, A^{o s}=A-A^{b s}$.
Theorem 2.8 [10] The product of semi-open sets
is a semi-open set.
Theorem 2.9[8] If $f: X \longrightarrow Y$ is a semihomomorphism then:
i. ${\overline{f^{-1}(B)}}^{s}=f^{-1}\left(\bar{B}^{s}\right)$, for all $B \subseteq Y$
ii. $\left(f^{-1}(B)\right)^{\circ s}=f^{-1}\left(B^{\circ s}\right)$, for all $B \subseteq Y$
iii. $\overline{f(A)}^{s}=f\left(\bar{A}^{s}\right)$, for all $A \subset X$
iv. $(f(B))^{o s}=f\left(B^{\circ s}\right)$, for all $A \subset X$

Remark 2.10 [5] In any space, $A^{b}=\phi$ iff A is a clopen set.

Theorem 2.11[8] Let X be a space and A be a subset of X, then:
i. A is semi-open set iff $A=A^{\text {os }}$
ii. A is semi-closed set iff $A=\bar{A}^{S}$

Theorem 2.12 If $A \subset X, B \subset Y$ and $f: X \longrightarrow$ Y be a semi-homomorphism, then:
i. $\quad f\left(A^{b s}\right)=[f(A)]^{b s}$
ii. $\quad f^{-1}\left(B^{b s}\right)=\left[f^{-1}(B)\right]^{b s}$

Proof: i. Since f is a semi-homomorphism, then $f\left(\bar{A}^{s}\right)=\overline{(f(A))^{s}}$ and $f\left(A^{\circ s}\right)=(f(A))^{\circ s}$, for all $A \subset X$, [Theorem 2.9 (iii, iv)].
$A^{b s}=\bar{A}^{s}-A^{o s}$ implies $f\left(A^{b s}\right)=f\left(\bar{A}^{s}-A^{\circ s}\right)=$ $f\left(\bar{A}^{s}\right)-f\left(A^{\circ s}\right)=\overline{(f(A))^{s}}-(f(A))^{\circ s}=(f(A))^{b s}$.
ii. Since f is a semi-homomorphism, then $f^{-1}\left(\bar{B}^{s}\right)={\overline{\left(f^{-1}(B)\right)}}^{s}$ and $f^{-1}\left(B^{\circ s}\right)=$ $\left(f^{-1}(B)\right)^{\circ s}$, for all $B \subset Y$, [Theorem 2.9 (i, ii)]. $B^{b s}=\bar{B}^{s}-B^{o s}$ implies $f^{-1}\left(B^{b s}\right)=f^{-1}\left(\bar{B}^{s}-\right.$ $\left.B^{\circ s}\right)=f^{-1}\left(\bar{B}^{s}\right)-f^{-1}\left(B^{\circ s}\right)={\overline{\left(f^{-1}(B)\right)}}^{s}-$ $\left(f^{-1}(B)\right)^{o s}=\left(f^{-1}(B)\right)^{b s}$.

Theorem 2.13 In a space X, A is a semi-clopen (semi-open and semi-closed) set iff $A^{b s}=\phi$.
proof: $\Rightarrow)$ Since A is semi-clopen, then $\bar{A}^{s}=A$ and $A^{\circ s}=A$, [Theorem 2.11 (i, ii)], so $A^{b s}=$ $\bar{A}^{s}-A^{\circ s}=A-A=\phi$
$\Leftrightarrow)$ Since $A^{\circ s}=A-A^{b s}$, [Remark 2.7], and $A^{b s}=\phi$, then $A^{\circ s}=A$, so A is a semi-open set, [Theorem 2.11 (i)].
$A^{b s}=\bar{A}^{s}-A^{\circ s}=\phi$ implies $\bar{A}^{s} \subseteq A^{\circ s}$. Since $A^{\circ s} \subseteq A \subseteq \bar{A}^{s}$, then $A^{\circ s}=A=\bar{A}^{s}$ and A is semi-closed, [Theorem 2.11 (ii)].

Remark 2.14 In a space $X, A^{b s} \subset A^{b}$

3 Main Results

Definition 3.1 A space (X, τ) is called $Z T_{2}$ space iff for any $x, y \in X, x \neq y$ there exist two open sets U, V such that $U \cap V=\phi, x \in U, y \in V$, and $U^{b} \cap V^{b}=\phi$.

Example 3.2 The space $\left(\mathbb{R}, \tau_{l}\right)$ where τ_{l} is the lower limit topology is a $Z T_{2}$ space :
let $x, y \in \mathbb{R}, x<y$ and let $d=d(x, y)=|x-y|$. put $U=\left[x-1, x+\frac{d}{4}\right), V=\left[y-\frac{d}{2}, y+1\right)$. Note that
$U, V \in \tau_{l}, x \in U, y \in V$ and $U \cap V=\phi$
$\left[x-1, x+\frac{d}{4}\right)^{\circ}=\left[x-1, x+\frac{d}{4}\right),\left[x-1, x+\frac{d}{4}\right)^{c}=$ $\mathbb{R} \backslash\left[x-1, x+\frac{d}{4}\right)=(-\infty, x-1) \cup\left[x+\frac{d}{4}, \infty\right)$,$\left(\left[x-1, x+\frac{d}{4}\right)^{c}\right)^{\circ}=\mathbb{R} \backslash\left[x-1, x+\frac{d}{4}\right)=$ $\left[x-1, x+\frac{d}{4}\right)^{e}$ so $\left[x-1, x+\frac{d}{4}\right)^{b}=\phi$, similarity $V^{b}=\phi$ then $U^{b} \cap V^{b}=\phi$ and so $\left(\mathbb{R}, \tau_{l}\right)$ is $Z T_{2}$ space.

Example 3.3 The discrete space of more than one point, $\left(X, \tau_{d}\right)$, is a $Z T_{2}$ space:

For any $a, b \in X, a \neq b, U=\{a\}, V=\{b\}$ are open sets such that $a \in U, b \in V$ and $U \cap V=\phi$. Since $U^{b}=\phi$ and $V^{b}=\phi$ then $U^{b} \cap V^{b}=\phi$. Hence $\left(X, \tau_{d}\right)$ is $Z T_{2}$ space.

Example 3.4 The Cofinite space $\left(X, \tau_{c}\right), X$ is an infinite set, is not a $Z T_{2}$ space.

Example 3.5 The indiscrete space ($X, \tau_{\text {ind }}$) is not a $Z T_{2}$ space.

Example 3.6 Let $X=\{1,2,3,4\}, \tau=$ $\{X, \phi,\{1\},\{2\},\{1,2\}\}$
(X, τ) is not a $Z T_{2}$ space for $1,4 \in X, 1 \neq 4$ but can not find disjoint open sets containing 1 and 4 .

Theorem 3.7 $Z T_{2}$ property is a topological property.
proof: Let $(X, \tau),\left(Y, \tau^{*}\right)$ be spaces such that X is homomorphic to Y and X is $Z T_{2}$ space. Since $X \cong Y$, then there exist a homomorphism $f: X \rightarrow Y$. For any $y_{1}, y_{2} \in Y, y_{1} \neq y_{2}$ we have $f^{-1}\left(y_{1}\right), f^{-1}\left(y_{2}\right) \in X$ and $f^{-1}\left(y_{1}\right) \neq f^{-1}\left(y_{2}\right)$ for f is one to one.
Since X is a $Z T_{2}$ space then there exist $U, V \in \tau$ such that $f^{-1}\left(y_{1}\right) \in U, f^{-1}\left(y_{2}\right) \in V, U \cap V=\phi$, and $U^{b} \cap V^{b}=\phi$. Now,
$y_{1} \in f(U)$ and $y_{2} \in f(V)$. Since f is open function then $f(U), f(V)$ are open sets in Y and $f(U) \cap f(V)=f(U \cap V)=f(\phi)=\phi$.
Now, $(f(U))^{b} \cap(f(V))^{b}=f\left(U^{b}\right) \cap f\left(V^{b}\right)$, [Theorem 2.4], $=f\left(U^{b} \cap V^{b}\right)=f(\phi)=\phi$. Hence $\left(Y, \tau^{*}\right)$ is a $Z T_{2}$ space.

Theorem 3.8 If each of (X, τ) and $\left(Y, \tau^{*}\right)$ is a $Z T_{2}$ space, then the product space $X \times Y$ is $Z T_{2}$ space.
proof: Let (X, τ) and $\left(Y, \tau^{*}\right)$ be $Z T_{2}$ spaces. To prove $\left(X \times Y, \tau_{\text {pro }}\right)$ is also $Z T_{2}$ space, let $\left(x_{1}, y_{1}\right)$, $\left(x_{2}, y_{2}\right) \in X \times Y,\left(x_{1}, y_{1}\right) \neq\left(x_{2}, y_{2}\right)$. Suppose that $x_{1} \neq x_{2}$. Since X is a $Z T_{2}$ space, $x_{1} \neq x_{2}$ then there exist $U_{1}, U_{2} \in \tau$ such that $x_{1} \in U_{1}, x_{2} \in U_{2}, U_{1} \cap U_{2}=\phi$ and $U_{1}{ }^{b} \cap U_{2}{ }^{b}=\phi$.
$U_{1} \times Y, U_{2} \times Y$ are open sets in $X \times Y$ and $\left(x_{1}, y_{1}\right) \in U_{1} \times Y=G,\left(x_{2}, y_{2}\right) \in U_{2} \times Y=H$ and $G \cap H=\left(U_{1} \times Y\right) \cap\left(U_{2} \times Y\right)=\left(U_{1} \cap U_{2}\right) \times$ $(Y \cap Y)=\phi \times Y=\phi$.

Now, $\left(U_{1} \times Y\right)^{b} \cap\left(U_{2} \times Y\right)^{b}=\phi$
$\left(U_{1} \times Y\right)^{b} \cap\left(U_{2} \times Y\right)^{b}=\left(\left(U_{1}^{b} \times \bar{Y}\right) \cup\left(\overline{U_{1}} \times Y^{b}\right)\right)$
$\cap\left(\left(U_{2}{ }^{b} \times \bar{Y}\right) \cup\left(\overline{U_{2}} \times Y^{b}\right)\right)$, [Theorem 2.3]
$=\left(\left(U_{1}{ }^{b} \times \bar{Y}\right) \cup\left(\overline{U_{1}} \times \phi\right)\right) \cap\left(\left(U_{2}{ }^{b} \times \bar{Y}\right) \cup\left(\overline{U_{2}} \times \phi\right)\right)$,
[Remark 2.10]
$=\left(\left(U_{1}{ }^{b} \times Y\right) \cup \phi\right) \cap\left(\left(U_{2}{ }^{b} \times Y\right) \cup \phi\right)$
$=\left(U_{1}{ }^{b} \times Y\right) \cap\left(U_{2}{ }^{b} \times Y\right)$
$=\left(U_{1}{ }^{b} \cap\left(U_{2}{ }^{b}\right) \times(Y \cap Y)=\phi \times Y=\phi\right.$
Hence $X \times Y$ is a $Z T_{1}$ space.

Remark 3.9 The continuous image of $Z T_{2}$ needs not be a $Z T_{2}$ space :
$f:\left(\mathbb{Z}, \tau_{d}\right) \rightarrow\left(\mathbb{R}, \tau_{\text {ind }}\right), f(x)=x$ is continuous function and, $\left(\mathbb{Z}, \tau_{d}\right)$ is $Z T_{2}$ space but $f(\mathbb{Z})=\mathbb{Z}$ with the relative indiscrete topology is not a $Z T_{2}$ space.

Definition 3.10 A space (X, τ) is called semi- $Z T_{2}$ space iff for any $x, y \in X, x \neq y$ there exist disjoint semi-open sets U, V such that $x \in U, y \in V$, and $U^{b s} \cap V^{b s}=\phi$.

Example 3.11 The real number with the usual topology $\left(\mathbb{R}, \tau_{u}\right)$, is semi- $Z T_{2}$ space:
let $x, y \in \mathbb{R}$ with $x<y$ and let $d=d(x, y)=$ $|x-y|$. Put $U=\left(x-1, x+\frac{d}{4}\right), V=\left(y-\frac{d}{2}, y+1\right)$ which are disjoint semi-open sets such that $x \in U$, $y \in V$.
Since U is semi-clopen, then $U^{b s}=\phi$, [Theorem 2.13].
similarity, $V^{b s}=\phi$, so $U^{b s} \cap V^{b s}=\phi$. Then $\left(\mathbb{R}, \tau_{u}\right)$ is a semi- $Z T_{1}$ space.

Example 3.12 The discrete space of more than one point, $\left(X, \tau_{d}\right)$, is a semi- $Z T_{2}$ space.

Example 3.13 The Cofinite space $\left(X, \tau_{c}\right), X$ is an infinite set, is not a semi- $Z T_{2}$ space.

Example 3.14 The indiscrete space $\left(X, \tau_{i n d}\right)$, is not a semi- $Z T_{2}$ space.

Example 3.15 let $X=\{a, b\}, \tau=\{X, \phi,\{a\}\}$ (X, τ) is not semi- $Z T_{2}$ space for $a, d \in X, a \neq d$ but can not find disjoint semi-open sets containing a and d.

Example 3.16 Let $X=\{a, b, c, d\}, \tau=$ $\{X, \phi,\{a\},\{b\},\{a, b\}\} . \quad(X, \tau)$ is semi- $Z T_{2}$ space:
$a, b \in X, a \neq b,\{a\}$ and $\{b\}$ are disjoint semiopen sets containing a and b respectively with $\{a\}^{b s} \cap\{b\}^{b s}=\phi$.
$a, c \in X, a \neq c,\{a\}$ and $\{b, c\}$ are disjoint semiopen sets containing a and c respectively with $\{a\}^{b s} \cap\{b, c\}^{b s}=\phi$.
$a, d \in X, a \neq d,\{a\}$ and $\{b, d\}$ are disjoint semiopen sets containing a and d respectively with $\{a\}^{b s} \cap\{b, d\}^{b s}=\phi$.
$b, c \in X, b \neq c,\{b\}$ and $\{a, c\}$ are disjoint semiopen sets containing b and c respectively with $\{b\}^{b s} \cap\{a, c\}^{b s}=\phi$.
$b, d \in X, b \neq d,\{b\}$ and $\{a, d\}$ are disjoint semiopen sets containing b and a, d respectively with $\{b\}^{b s} \cap\{a, d\}^{b s}=\phi$.
$c, d \in X, c \neq d,\{c, b\}$ and $\{a, d\}$ are disjoint semi-open sets containing c and d respectively with $\{c, b\}^{b s} \cap\{a, d\}^{b s}=\phi$.

Theorem 3.17 Semi- $Z T_{2}$ property is a semitopological property, and then it is a topological property.
proof: Let $(X, \tau),\left(Y, \tau^{*}\right)$ be spaces such that X is semi-homomorphic to Y and X is semi- $Z T_{2}$ space. Then there exists a semi-homomorphism $f: X \rightarrow Y$. For any $y_{1}, y_{2} \in Y, y_{1} \neq y_{2}$ we have $f^{-1}\left(y_{1}\right), f^{-1}\left(y_{1}\right) \in X$ and $f^{-1}\left(y_{1}\right) \neq f^{-1}\left(y_{2}\right)$ for f is one to one. Since X is semi- $Z T_{2}$ space then there exist U, V semi-open sets such that
$f^{-1}\left(y_{1}\right) \in U, f^{-1}\left(y_{2}\right) \in V, U \cap V=\phi$ and $U^{b s} \cap V^{b s}=\phi$. Now,
$y_{1} \in f(U) y_{2} \in f(V)$ and $f(U) \cap f(V)=$ $f(U \cap V)=f(\phi)=\phi$. Since f pre-semiopen then $f(U)$ and $f(V)$ are semi-open in Y. Now, $(f(U))^{b s} \cap(f(V))^{b s}$, [Theorem 2.12 (i)], $=f\left(U^{b s}\right) \cap f\left(V^{b s}\right)=f\left(U^{b s} \cap V^{b s}\right)=f(\phi)=\phi$. Hence $\left(Y, \tau^{*}\right)$ is semi- $Z T_{2}$ space.

Theorem 3.18 Every $Z T_{2}$ space is a semi- $Z T_{2}$ space.

Proof: Let (X, τ) be a $Z T_{2}$ space and $x, y \in$ $X, x \neq y$, then there exist disjoint open sets U and V such that $x \in U, y \in V$, and $U^{b} \cap V^{b}=\phi$. Since every open set is semi-open set and $U^{b s} \subset U^{b}$, $V^{b s} \subset V^{b}$, [Remark 2.14], and $U^{b} \cap V^{b}=\phi$, then $U^{b s} \cap V^{b s}=\phi$. Hence (X, τ) is a semi- $Z T_{2}$ space.

Remark 3.19 Every $Z T_{2}$ space is a T_{2} space and every semi- $Z T_{2}$ space is a semi- T_{2} space.

Remark 3.20 The converse of Theorem $\mathbf{3 . 1 8}$ is not true for the space in the Example $\mathbf{3 . 6}$ is semi$Z T_{2}$ space but not $Z T_{2}$ space.

Theorem 3.21 The product space of two semi$Z T_{2}$ spaces is a semi- $Z T_{2}$ space.
proof: Let (X, τ) and $\left(Y, \tau^{*}\right)$ be semi- $Z T_{2}$ spaces. To prove $\left(X \times Y, \tau_{\text {pro }}\right)$ is also semi- $Z T_{2}$ space, let $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in X \times Y,\left(x_{1}, y_{1}\right) \neq\left(x_{2}, y_{2}\right)$. Suppose $x_{1} \neq x_{2}$. Since X is semi- $Z T_{2}$ space, $x_{1} \neq x_{2}$ then there exist U_{1}, U_{2} semi-open sets such that $x_{1} \in U_{1}, x_{2} \in U_{2}, U_{1} \cap U_{2}=\phi$ and $U_{1}{ }^{b s} \cap U_{2}{ }^{b s}=\phi$.
$U_{1} \times Y, U_{2} \times Y$ are semi-open sets in $X \times Y$, [Theorem 2.8], such that $\left(x_{1}, y_{1}\right) \in U_{1} \times Y=G$, $\left(x_{2}, y_{2}\right) \in U_{2} \times Y=H$ and,
$G \cap H=\left(U_{1} \times Y\right) \cap\left(U_{2} \times Y\right)=\left(U_{1} \cap U_{2}\right) \times$ $(Y \cap Y)=\phi \times Y=\phi$. Now,
$\left(U_{1} \times Y\right)^{b s}=\left({\overline{U_{1} \times Y^{s}}}^{s}\right) \cap\left({\overline{\left(U_{1} \times Y\right)^{c}}}^{s}\right)$, [Remark 2.6]

$$
\begin{align*}
& =\left({\overline{U_{1} \times Y}}^{s}\right) \cap\left(\overline{\left(\overline{U 1}^{c} \times Y\right) \cup\left(X \times Y^{c}\right)}{ }^{s}\right) \\
& =\left(\overline{U_{1} \times Y}{ }^{s}\right) \cap\left(\overline{\left(U_{1}^{c} \times Y\right)} \cup(X \times \phi)\right. \\
& \left.=\overline{\left(U_{1} \times Y\right)}\right) \\
& \subset\left(\bar{U}_{1}{ }^{s} \times \bar{Y}^{s}\right) \cap\left({\overline{U_{1}{ }^{c}}}^{s} \times \bar{Y}^{s}\right),[\text { Theorem } \\
& =\left({\overline{U_{1}}}^{s} \times Y\right) \cap\left({\overline{U_{1}{ }^{c}}}^{s} \times Y\right) \\
& =\left({\overline{U_{1}}}^{s} \cap{\overline{U_{1} c^{c}}}^{s}\right) \times(Y \cap Y) \\
& =\left({\overline{U_{1}}}^{s} \cap{\overline{U_{1}{ }^{c}}}^{s}\right) \times Y=U_{1}^{b s} \times Y .
\end{align*}
$$

Similarity, $\left(U_{2} \times Y\right)^{b s} \subset U_{2}^{b s} \times Y$.
So $\left(U_{1} \times Y\right)^{b s} \cap\left(U_{2} \times Y\right)^{b s} \subset\left(U_{1}^{b s} \times Y\right) \cap$ $\left(U_{2}{ }^{b s} \times Y\right)=\left(U_{1}{ }^{b s} \cap U_{2}{ }^{b s}\right) \times Y=\phi \times Y=\phi$.
Hence the product space of two semi- $Z T_{2}$ spaces is a semi- $Z T_{2}$ space.

Remark 3.22 The semi continuous image of the semi- $Z T_{2}$ needs not be a semi- $Z T_{2}$ space. $f:\left(\mathbb{Z}, \tau_{d}\right) \rightarrow\left(\mathbb{R}, \tau_{\text {ind }}\right), f(x)=x$ is semi continuous function and, $\left(\mathbb{Z}, \tau_{d}\right)$ is semi- $Z T_{2}$ space but $f(\mathbb{Z})=\mathbb{Z}$ with the relative indiscrete topology is not a semi- $Z T_{2}$ space.

4 Conclusion

The two separation axioms have the following relationships in diagram.

$$
\begin{array}{cc}
\mathrm{ZT}_{2} \text { space } & \Rightarrow \text { semi-ZT } \mathbf{T}_{2} \text { space } \\
\Downarrow \\
\Downarrow & \mathbf{T}_{2} \text { space } \Rightarrow \text { semi- } \mathbf{T}_{2} \text { space }
\end{array}
$$

References

[1] B. Ahmad , M. Khan , T. Noiri. A note on semi-frontier, Indian J. pure appl. Math. 22(1), 61-62 (1991)
[2] C. C. Adams and R. D. Franzosa. Introduction to Topology Pure and Applied, Pearson Prentice Hall Upper Saddle River. (2008)
[3] C. Dorsett. Product spaces and semiseparation axioms, Periodica Mathematica Hungarica 13(1), 39-45 (1982)
[4] J. Dugundji. Topology Allyn and Bacon, Inc. Boston. (1966)
[5] J. N. Sharma. General topology, Krishan Prakashan Meerut UP (1977)
[6] M. Caldas. A Separation Axioms Between Semi-T0 and Semi-T1, Pro Mathematica 11, 21-22, (1997)
[7] N. Levine. Semi-open sets and semicontinuity in topological space, The American Mathematical Monthly. 70(1), 36-41 (1963)
[8] S. G. Crossley and S. K. Hildebrand. Semitopological properties, Fundamenta Mathematicae. 74(3), 233-254(1972)
[9] T. M. Nour. A note on semi-application of semi-open sets, Internat. J. Math. and Math. Sci. 21(1), 205-207 (1998)
[10] W. J. M. Thomas. Semi-open sets, PhD Thesis. (1965)

