Near-Legendre Differential Equations

Adel A. Abdelkarim
Previously: Mathematics Department, Yarmouk University, Irbid, Jordan
Adelafifo_afifo@yahoo.com DOI : http://dx.doi.org/10.31642/JoKMC/2018/050303

Abstract-A differential equation of the form $\left(\left(\mathbf{1}-\boldsymbol{x}^{2 m}\right) \boldsymbol{y}^{(\boldsymbol{k})}\right)^{(2 m-k)}+\lambda \boldsymbol{y}=\mathbf{0},-\mathbf{1} \leq \boldsymbol{x} \leq \mathbf{1}, \mathbf{0} \leq \boldsymbol{k} \leq \mathbf{2 m} ; \boldsymbol{k}, \boldsymbol{m}$ integers is called a near-Legendre equation. We show that such an equation has infinitely many polynomial solutions corresponding to infinitely many λ. We list all of these equations for $\mathbf{1} \leq \boldsymbol{m} \leq \mathbf{2}$. We show, for $\boldsymbol{m}=\mathbf{1}$, that these solutions are 'partially' orthogonal with respect to some weight functions and show how to expand functions using these polynomials. We give few applications to partial differential equations.

Keywords-Near-Legendre equation; Euler form; eigen polynomial.

I. INTRODUCTION

A Legendre polynomial $P_{n}, n=0,1,2, \ldots$ is a polynomial solution of the differential equation

$$
\begin{gathered}
\left(\left(1-x^{2}\right) y^{\prime}\right)^{\prime}+\lambda y=y^{\prime \prime}-x^{2} y^{\prime \prime}-2 x y^{\prime}+\lambda y \\
=0, \lambda=n(n+1),-1 \leq x \leq 1
\end{gathered}
$$

Usually a Legendre polynomial P_{n} is defined as a polynomial solution of the differential equation

$$
\left(\left(1-x^{2}\right) y^{\prime}\right)^{\prime}+n(n+1) y=0
$$

n nonnegative integer. In the way of generalization some research was done by replacing $n(n+1)$ by $A(A+1)$ where A is an analytic function. Another generalization was done by replacing $n(n+1)$ by $A(t)(A(t)+1)$, where $A(t)$ is a probabilistic function as done by [3]. In this article we generalize $\left(1-x^{2}\right)$ to $\left(1-x^{2 m}\right)$ in the original Legendre differential equation. Some authors studied the Legendre differential equation from the perspective of operator theory and eigen values as done in [5]. In this article we use some aspects of this approach but in a slight manner. Some authors applied Legendre equation in solving partial differential equations as in [4]. In this article we have given some examples of partial differential equations that can be solved by near-Legendre differential equations.

Let us call a finite sum
$a_{n} y^{(\mathrm{n})} x^{\mathrm{n}}+a_{n-1} y^{(\mathrm{n}-1)} x^{\mathrm{n}-1}+\ldots+a^{0} y, y \in C^{\{\infty\}}$, an
Euler form. Let k be an integer. A k-Euler form $E_{k}(y)$ is a finite sum $E_{k}(y)=\sum_{i \geq 0} a_{i} x^{i} y^{(i+k)}$. Thus a 0 -Euler form is an Euler form. When a k-Euler form is multiplied by x^{k} we get a 0 -Euler form. When an Euler form is equated to 0 we get an Euler homogeneous equation. We notice that the right hand side of a Legendre equation is a sum of a derivative, which is a 2-Euler form, and an Euler form involving some parameter λ. So let us call a differential equation
$E_{k}(y)+E_{0}(y)=0, E_{0}$ is involving $\lambda,-a \leq x \leq a, a>0$, a near-Legendre equation. It is proved below, Proposition (4), that

$$
\left(\left(1-x^{2 \mathrm{n}}\right) y^{(k)}\right)^{(2 n-k)}+\lambda y=0,-1 \leq x \leq 1
$$

is a near-Legendre differential equation that has polynomial solutions. In such equations sometimes we call the λ eigen values and the corresponding polynomial solutions the eigen polynomials although this is an abuse of language.

II. EXAMPLES

We give below several examples of near-Legendre equations with polynomial solutions.
Example (1): Consider the differential equation

$$
\left(\left(a^{2}-x^{2}\right) y^{\prime}\right)^{\prime}+\lambda y=0,-a \leq x \leq a
$$

This equation can be written as

$$
\begin{aligned}
& \left(\left(a^{2}-x^{2}\right) y^{\prime}\right)^{\prime}+\lambda y=\left(a^{2}-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+\lambda y \\
& =a^{2} y^{\prime \prime}-x^{2} y^{\prime \prime}-2 x y^{\prime}+\lambda y=0,-a \leq x \leq a
\end{aligned}
$$

So it is a near-Legendre equation. We notice that
$g(x)=a^{2}-x^{2}$ has no zeros in the interval $(-a, a)$ and $g(x)=0$ at $-a, a$.
This is similar to $1-x^{2}$ in the original Legendre equation on the interval $[-1,1]$. If we let $u=\frac{x}{a}$ then

$$
\frac{d y}{d x}=\left(\frac{1}{a}\right) \cdot \frac{d y}{d u}, \frac{d^{2} y}{d x^{2}}=\left(\frac{1}{a}\right) \cdot \frac{d\left(\frac{\left(\frac{1}{a}\right) d y}{d u}\right)}{d u}=\frac{\left(\frac{1}{a^{2}}\right) d^{2} y}{d u^{2}}
$$

Thus the equation reduces to

$$
\begin{aligned}
& \left(a^{2}-a^{2} u^{2}\right)\left(\frac{\left(\frac{1}{a^{2}}\right) d^{2} y}{d u^{2}}\right)-2 a u\left(\frac{1}{a}\right) \frac{d y}{d u}+\lambda y \\
= & \frac{\left(1-u^{2}\right) d^{2} y}{d u^{2}}-\frac{2 u d y}{d u}+\lambda y=0,-1 \leq u \leq 1 .
\end{aligned}
$$

This is the same as the usual equation

$$
\left(1-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+\lambda y=0,-1 \leq x \leq 1
$$

To get polynomial solutions we must set

$$
\lambda=k(k+1), k=0,1,2, \ldots .
$$

Thus the solution to this equation with
$\lambda=k(k+1)$ is $q_{k}(u)=p_{k}\left(\frac{x}{a}\right), k=0,1,2, \ldots$
We notice that the polynomial solutions are in powers of $(x-0), 0$ is the center of the interval $[-a, a]$ and $\left(a^{2}-x^{2}\right)=0$ at $a,-a$. Using a change of variable and orthogonality of $p_{k}(x)$, it is seen that the polynomials $p_{k}\left(\frac{x}{a}\right)$ are orthogonal on the interval $[-a, a]$.
Example (2): Consider the differential equation

$$
\begin{gathered}
\left(\left(c+d x-x^{2}\right) y^{\prime}\right)^{\prime}+\lambda y \\
=(d x-2 x) y^{\prime}+\left(c+d x-x^{2}\right) y^{\prime \prime}+\lambda y \\
=0, d \neq 0, c>0
\end{gathered}
$$

This is not a near- Legendre equation but it can be reduced to such equation. Let $h(x)=c+d x-x^{2}$. The discriminant of $h(x)=0$ is $d^{2}+4 c>0$ since $c, d^{2}>0$. Thus $h(x)=0$ has two distinct roots a, b and
$c=\left(\frac{b-a}{2}\right)^{2}+\left(\frac{b+a}{2}\right)^{2}, d=\frac{b+a}{2}$.

Then $h(x)=\left(\frac{b-a}{2}\right)^{2}-\left(x-\frac{a+b}{2}\right)^{2}, a \leq x \leq b$,
which is a generalization of the function
$f(x)=1-x^{2},-1 \leq x \leq 1$ since $h(a)=h(b)=0$.
The center of the interval $[a, b]$ is $\frac{a+b}{2}$.
Thus using the chain rule, this equation reduces to the differential equation
$\frac{d}{d\left(x-\left(\frac{a+b}{2}\right)\right)}$
$\left[\left\{\left(\frac{b-a}{2}\right)^{2}-\left(x-\left(\frac{a+b}{2}\right)\right)^{2}\right\} \frac{d y}{d\left(x-\left(\frac{a+b}{2}\right)\right)} \cdot \frac{d\left(x-\left(\frac{a+b}{2}\right)\right)}{d x}\right]$
$\frac{d\left(x-\left(\frac{a+b}{2}\right)\right)}{d x}+\lambda y=0$
which is similar to $\left(\left(a^{2}-x^{2}\right) y^{\prime}\right)^{\prime}+\lambda y=0$, a near-Legendre equation. We suggest a solution of the form

$$
y=\sum_{0} a_{n}\left(x-\left(\frac{a+b}{2}\right)\right) \mathrm{n}
$$

If we let

$$
u=x-\left(\frac{a+b}{2}\right), A=\left(\frac{b-a}{2}\right)
$$

then the last differential equation reduces to
$\frac{d}{d u}\left[\left(A^{2}-u^{2}\right) \frac{d y}{d u}\right]+\lambda y=0,-A \leq u \leq A$.
Thus we see that for a polynomial solution to exist, λ has to be of the form $k(k+1)$ and the polynomial solutions sought are
$Q_{k}=p_{k}\left(\frac{x-\left(\frac{a+b}{2}\right)}{\left(\frac{b-a}{2}\right)}\right), a \leq x \leq b, k=0,1,2, \ldots$
We prove the following remark.
Remark (1): Let $c>0$ and let $a<b$ be the distinct roots of the equation $\left(c+d x-x^{2}\right)=0$. Let $p_{k}(x)$ be the Legendre polynomials. Any two distinct solutions of differential equation $\left(\left(c+d x-x^{2}\right) y^{\prime}\right)^{\prime}+\lambda y=0$ are orthogonal over the interval $[a, b]$, Furthermore, $\int_{a}^{b} Q_{k}^{2}(x)=\left(\frac{b-a}{2}\right) \int_{-1}^{1} p_{k}^{2}(x) d x$. For, let $m \neq n$ be two nonnegative integers and consider
$I=\int_{a}^{b} Q_{m} Q_{n} d x$.
Then
$I=\int_{a}^{b} p_{m}\left(\frac{x-\left(\frac{a+b}{2}\right)}{\left(\frac{b-a}{2}\right)}\right) p_{n}\left(\frac{x-\left(\frac{a+b}{2}\right)}{\left(\frac{b-a}{2}\right)}\right) d x$.
Let $t=\frac{x-\left(\frac{a+b}{2}\right)}{\left(\frac{b-a}{2}\right)}, a \leq x \leq b$.
Then

$$
I=\left(\frac{b-a}{2}\right) \int_{-1}^{1} p_{m}(t) p_{n}(t) d t .-1 \leq t \leq 1
$$

The result follows from orthogonality of the Legendre polynomials p_{k}.

This way we have found a orthogonal polynomial basis for the space $P[a, b]$ of all polynomials over the interval $[a, b]$.

Example (3): Consider the interval $[0, b]$ and the equation

$$
\left(\left(b x-x^{2}\right) y^{\prime}\right)^{\prime}+\lambda y=0,0 \leq x \leq b, b>0 .
$$

This equation can be written as

$$
\begin{gathered}
\left(\left(b x-x^{2}\right) y^{\prime}\right)^{\prime}+\lambda y \\
=b x y^{\prime \prime}-x^{2} y^{\prime \prime}+b y^{\prime}-2 x y^{\prime}+\lambda y=0,0 \leq x \leq b, b>0 .
\end{gathered}
$$

This is a near-Legendre equation and we can expect a polynomial solutions. We can use the preceding example to solve it but we prefer to do it directly. We look for a solution of the form $y=\sum_{0} a_{n} x^{\mathrm{n}}$. Expanding we get
$\sum_{0} b . n(n-1) a_{n} x^{\mathrm{n}-1}-\sum_{0} n(n-1) a_{n} x^{\mathrm{n}}$
$+\sum_{0} b . n a_{n} x^{\mathrm{n}-1}-\sum_{0} 2 n a_{n} x^{\mathrm{n}}$
$+\sum_{0} \lambda a_{n} x^{\mathrm{n}}=0$.
Changing the summation variables we get
$\sum_{-1} b n(n+1) a_{n+1} x^{\mathrm{n}}-\sum_{0}(n-1) n a_{n} x^{\mathrm{n}}-$
$\sum_{0} 2 n a_{n} x^{\mathrm{n}}+\sum_{-1} b(n+1) a_{n+1} x^{\mathrm{n}}+\sum_{0} \lambda a_{n} x^{\mathrm{n}}=0$.
Then we get

$$
\begin{aligned}
& {\left[-b(0) 1 a_{0}+b(0) a_{0}\right] x^{-1}=0} \\
& \sum_{0}\left[-n(n-1) a_{n}-2 n a_{n}+\lambda a_{n}+b n(n+1) a_{n+1}\right. \\
& \left.\quad+b(n+1) a_{n+1}\right] x^{\mathrm{n}}=0
\end{aligned}
$$

Thus a_{0} is free and

$$
a_{n+1}=\frac{[n(n+1)-\lambda] a_{n}}{b(n+1)^{2}}, n=0,1, \ldots .
$$

Now to ensure solutions to be polynomials we must have $\lambda=m(m+1)$. Then

$$
a_{n+1}=\frac{[n(n+1)-m(m+1)] a_{n}}{b(n+1)^{2}}, n=0,1, \ldots
$$

Let us take $m=0$.Then a_{0} is free and $a_{1}=0, a_{2}=0$,
$a_{3}=0, \ldots$. The solution is $y_{0}=a_{0}$. Now let $m=1$. Then $\lambda=2$. Then a_{0} is free and

$$
a_{1}=\left(-\frac{2}{b}\right) a_{0}, a_{2}=\left(\frac{2-2}{4 b}\right) a_{2}=0, a_{3}=0, a_{4}=0, \ldots
$$

The solution is $y_{2}=a_{0}-\left(\frac{2}{b}\right) a_{0} x$. Let $m=2$.
Then $\lambda=6$. Let a_{0} be free then
$a_{1}=\left(-\frac{6}{b}\right) a_{0}, a_{2}=\left(\frac{2-6}{4 b}\right) a_{1}=\left(\frac{6}{b^{2}}\right) a_{0}, a_{3}=0$
$a_{4}=0, \ldots$.
The solution is $y_{6}=a_{0}-\left(\frac{6}{b}\right) a_{0} x+\left(\frac{6}{b^{2}}\right) a_{0} x^{2}$.
We notice that all solutions are constant multiple of
$p_{k}\left(\frac{x-\left(\frac{0+b}{2}\right)}{\frac{0+b}{2}}\right), 0 \leq x \leq b$.
Remark (2): The solutions of the equation
$\left(\left(a^{2}-x^{2}\right) y^{\prime}\right)^{\prime}+\lambda y=0$ are orthogonal on the interval $[0, b]$. As an example

$$
\begin{aligned}
y_{2 \cdot} y_{6} & =\int_{0}^{b} a_{0}^{2}\left(1-\frac{2}{b} x\right)\left(1-\frac{6}{b} x+\frac{6}{b^{2}} x^{2}\right) d x \\
& =\int_{0}^{b}\left(1-\frac{8}{b} x+\frac{18}{b^{2}} x^{2}-\frac{12}{b^{3}} x^{3}\right) d x \\
& =b-4 b+6 b-3 b=0
\end{aligned}
$$

We prove the orthogonality of the solutions directly. Let y, z be a polynomial solutions related to m and k respectively. Thus

$$
\begin{aligned}
\left(\left(x^{2}-b x\right) y^{\prime}\right)^{\prime}-m(m+1) y & =0 \\
\left(\left(x^{2}-b x\right) z^{\prime}\right)^{\prime}-k(k+1) z & =0
\end{aligned}
$$

Then

$$
\begin{gathered}
z\left[\left(\left(x^{2}-b x\right) y^{\prime}\right)^{\prime}-m(m+1) y\right]-y\left[\left(\left(x^{2}-b x\right) z^{\prime}\right)^{\prime}\right. \\
-k(k+1) z]=0
\end{gathered}
$$

This reduces to

$$
\begin{aligned}
& z\left[\left(x^{2}-b x\right) y^{\prime \prime}+\left(x^{2}-b x\right)^{\prime} y^{\prime}\right]-y\left[\left(x^{2}-b x\right) z^{\prime \prime}\right. \\
& \left.+\left(x^{2}-b x\right)^{\prime} z^{\prime}\right]+[(k(k+1)-m(m+1)] y z=0
\end{aligned}
$$

This simplifies to
$\left[\left(x^{2}-b x\right)\left(z y^{\prime}-y z^{\prime}\right)\right]^{\prime}+[(k(k+1)-m(m+1)] y z=0$.
Integrating over the interval $[0, b]$ we get

$$
\int_{0}^{b}[(k(k+1)-m(m+1)] y z d x=0
$$

But
$k(k+1)-m(m+1)=k^{2}-m^{2}+k-m$
$=(k-m)(k+m+1) \neq 0$ if $m \neq k$.
The result follows.

III. GENERAL RESULTS

Notation (1): let $n>k>0$ be positive integers. Let $n P k=n(n-1) \ldots(n-k+1)$. Let n, k be positive integers. Let $n L k=n(n+1) \ldots(n+k-1)$.

Proposition (1): The differential equation
$\left(\left(1-x^{2 m}\right) y^{(\mathrm{n})}\right)^{\prime}+\lambda y=0$, where m, n are positive integers is a near-Legendre equation which has a polynomial solution for some choice for λ if $2 m=n+1$.
Proof: We have

$$
\begin{aligned}
& \left(y^{(n)}-x^{2 m} y^{(n)}\right)^{\prime}+\lambda y \\
= & y^{(n+1)}-x^{2 m} y^{(n+1)}-2 m \cdot x^{2 m-1} y^{(n)}+\lambda y=0
\end{aligned}
$$

If $y=\sum a_{k} x^{k}$ then we would have

$$
\begin{align*}
& \sum_{k} a_{k} x^{k-n-1}-\sum_{k} a_{k} x^{k+2 m-n-1} \\
&-\sum_{k} 2 m \cdot a_{k} x^{k+2 m-1-n}+\sum_{k} \lambda a_{k} x^{k}=0 \tag{1}
\end{align*}
$$

To ensure polynomial solutions we must have three of the exponents in (1) the same. In fact they are the last three exponents. Thus
$k+2 m-n-1=k, 2 m-n-1=0,2 m=n+1$.
If $m=1$ then we would have the differential equation
$\left(\left(1-x^{2}\right) y^{\prime}\right)^{\prime}+\lambda f=0$ which is the classical Legendre equation. Notice that we take the power of x to be $2 m$ to use it for orthogonality purposes because we need $\left(1-x^{2 m}\right)$ to be zero when $x= \pm 1$ at least when $m=1$. As a special case
Example (4): Let us discuss the differential equation

$$
\begin{equation*}
\left(\left(1-x^{2 m}\right) y^{(2 m-1)}\right)^{\prime}+\lambda y=0, \quad-1 \leq x \leq 1 \tag{2}
\end{equation*}
$$

This equation is the same as
$y^{(2 m)}-x^{2 m} y^{(2 m)}-2 m x^{2 m-1} y^{(2 m-1)}+\lambda y=0$.
Equation (2) is a near-Legendre equation.
We propose a solution of the form $y=\sum_{0}^{\infty} a_{n} x^{n}$.
After expansion we get

$$
\begin{gathered}
\sum_{n=0} a_{n}(n)(n-1) \ldots(n-2 m+1) x^{n-2 m} \\
-\sum_{n=0} a_{n}(n)(n-1) \ldots(n-2 m+1) x^{\mathrm{n}} \\
-\sum_{n=0}^{2 m} a_{n}(n)(n-1) \ldots(n-2 m+2) x^{\mathrm{n}} \\
+\sum_{n=0} \lambda a_{n} x^{\mathrm{n}}=0
\end{gathered}
$$

Changing summation index we get
$\sum_{n=-2 m} a_{n+2 m}(n+2 m)(n+2 m-1) \ldots(n+1) x^{\mathrm{n}}$
$-\sum_{\mathrm{n}=0} a_{\mathrm{n}}(\mathrm{n})(\mathrm{n}-1) \ldots(\mathrm{n}-2 \mathrm{~m}+1) \mathrm{x}^{\mathrm{n}}$
$-\sum_{n=0} 2 m a_{n}(n)(n-1) \ldots(n-2 m+2) x^{\mathrm{n}}$
$+\sum_{n=0} \lambda a_{n} x^{\mathrm{n}}=0$.
Thus
$a_{n+2 m}=a_{n} \cdot \frac{n(n-1) \ldots(n-2 m+1)+2 m n(n-1) \ldots(n-2 m+2)-\lambda}{(n+2 m)(n+2 m-1) \ldots(n+1)}$ $=-a_{n} \cdot \frac{-(n+1)(n)(n-1) \ldots(n-2 m+2)+\lambda}{(n+2 m)(n+2 m-1) \ldots(n+1)}$

$$
\begin{equation*}
=-\frac{\lambda-(n+1) P(2 m)}{(n+1) L(2 m)} a_{n} \tag{3}
\end{equation*}
$$

To get a polynomial solution, recall Notation (1) λ must be of the form
$\lambda=(k+1) P(2 m)=(k+1) k(k-1) \ldots(k-2 m+2)$,

$$
k+1 \geq 2 m
$$

Now we write $k+1=s .2 m+r, 0 \leq r<2 m$ using Euclidean algorithm. Since $a_{0}, a_{1} \ldots, a_{2 m-1}$ are arbitrary we set $a_{i}=0, i \neq r$ and $a_{r}=1$. To get the polynomial solution in this case we have

$$
\begin{aligned}
a_{k+2 m}= & -\frac{\lambda-(n+1) P(2 m)}{(n+1) L(2 m)} a_{k} \\
& =\frac{(k+1) P(2 m)-(k+1) P(2 m)}{(n+1) L(2 m)} a_{k}=0
\end{aligned}
$$

and so all $a_{k+2 t m}=0, t=0,1,2, \ldots$. Thus we get a polynomial solution
$y=x^{r}+a_{r+2 m} x^{r+2 m}+a_{r+4 m} x^{r+4 m}+\cdots$
$+a_{k+1-2 m} x^{k+1-2 m}$.
Here the coefficients are gotten using (3). If we try to set some $a_{i} \neq 0$ for $i \neq 0$ we get a divergent series solution using the ratio test. So essentially we have a unique polynomial solution for every

$$
\begin{gathered}
\lambda=(k+1) P(2 m)=(k+1) k(k-1) \ldots(k-2 m+2) \\
, k+1 \geq 2 m
\end{gathered}
$$

Remark (3): Let u, v be C^{∞} - functions and n a positive integer. Leibniz Formula states that

$$
(u v)^{(\mathrm{n})}=\sum_{k=0}^{n}\binom{n}{k} u^{(k)} v^{(n-k)}
$$

Proposition (2): Let y be a C^{∞} function and let
$0 \leq m<n=s+t, m, n, s, t$ be nonnegative integers.
Let $L(y)=\left(\left(x^{m}-x^{\mathrm{n}}\right) y^{s}\right)^{(t)}$. Then
$L(y)=E_{(s+t-m)}-E_{(s+t-n)}$.
Proof: We have, using Remark (3)

$$
\begin{aligned}
&\left(\left(x^{m}-x^{\mathrm{n}}\right) y^{(s)}\right)^{(t)}=\sum_{k=0}^{t}\binom{t}{k}\left(x^{m}\right)^{(k)}\left(y^{(s)}\right)^{(t-k)} \\
&-\sum_{k=0}^{t}\binom{t}{k}\left(x^{\mathrm{n}}\right)^{(k)}\left(y^{(s)}\right)^{(t-k)} \\
&= \sum_{k=0}^{t}\binom{t}{k}\left(x^{m}\right)^{(k)}\left(y^{(s+t-k)}\right)-\sum_{k=0}^{t}\binom{t}{k}\left(x^{\mathrm{n}}\right)^{(k)}\left(y^{(s+t-k)}\right) \\
&=E_{s+t-k-(m-k)}-E_{s+t-k-(n-k)}=E_{s+t-m}-E_{s+t-n}
\end{aligned}
$$

as required.
Corollary (1): We have

$$
\begin{aligned}
\left(\left(1-x^{\mathrm{n}}\right) y^{(s)}\right)^{(t)} & =E_{s+t}-E_{s+t-n} \\
,\left(\left(x-x^{\mathrm{n}}\right) y^{(s)}\right)^{(t)} & =E_{s+t-1}-E_{s+t-n}
\end{aligned}
$$

Proof: Straightforward.

Remark (4): Let

$$
\begin{aligned}
L(y)=E_{0}(y)= & a_{0} y+a_{1} x y^{\prime}+\cdots+a_{m} x^{m} y^{(m)} \\
& =\sum_{k=0}^{m} a_{k} x^{k} y^{(k)}
\end{aligned}
$$

be a 0 -Euler form. We are interested in finding all real λ that ensure the existence of a polynomial solution for the equation $E_{0}(y)-\lambda y=0$. We notice that $E_{0}(y)-\lambda y=0$ is an E_{0} form and so we try a solution $y=x^{\mathrm{n}}$. Then we have

$$
\begin{gathered}
a_{0} x^{\mathrm{n}}+a_{1} \cdot n \cdot x^{\mathrm{n}}+\ldots+a_{m} \cdot n \cdot(n-1) \ldots(n-m+1) x^{m} \\
\quad-\lambda x^{m}=0, \\
\left(a^{0}+a^{1} \cdot n \cdot+\ldots+a_{m} \cdot n \cdot(n-1) \ldots(n-m+1)-\lambda\right) x^{m}=0, \\
\lambda=a_{0}+a_{1} \cdot n \cdot+\ldots+a_{m} \cdot n \cdot(n-1) \ldots(n-m+1) .
\end{gathered}
$$

Thus for each n and for each
$\lambda=a_{0}+a_{1} \cdot n .+\ldots+a_{m} \cdot n .(n-1) \ldots(n-m+1)$ we have a monomial solution $y=x^{\mathrm{n}}$. In general let $y=\sum_{i=0}^{n} b_{i} x^{i}$ be a polynomial eigen function for $E_{0}(y)-\lambda y=0$ for some λ.
Then we have

$$
\begin{gathered}
\sum_{k=0}^{m} a_{k} x^{k}\left(\sum_{i=0}^{n} b_{i} x^{i}\right)^{(k)}-\sum_{i=0}^{n} \lambda b_{i} x^{i}=0, \\
\sum_{k=0}^{m} a_{k} x^{k}\left(\sum_{i=0}^{n} i L k . b_{i} x^{i-k}\right)-\sum_{i=0}^{n} \lambda b_{i} x^{i}=0, \\
\sum_{i=0}^{n} b_{i}\left(\left(\sum_{k=0}^{m} a_{k} i L k\right)-\lambda\right) x^{i}=0
\end{gathered}
$$

Thus we have

$$
\begin{gathered}
\sum_{k=0}^{m}\left(a_{k} i L k-\lambda\right) b_{i}=0 \\
, i=0, \ldots, m
\end{gathered}
$$

Thus we look for all such solutions b_{i}, λ that satisfy the system and then if there are such solutions the corresponding polynomial solution would be

$$
y=\sum_{i=0}^{n} b_{i} x^{i}
$$

Proposition (3): Let k, m be a positive integers and

$$
\begin{gathered}
L(y)=E_{k}(y) \\
=a_{0} y^{(k)}+a_{1} x y^{(k+1)}+\ldots+a_{m} x^{m} y^{(k+m)}
\end{gathered}
$$

be a k-Euler form. Then the only polynomial solution of the equation

$$
E_{k}(y)-\lambda y=0
$$

are polynomials of degree less than k corresponding to $\lambda=0$.
Proof: For if there is such a polynomial of degree s greater than or equal to k then from
$a_{0} y^{(k)}+a_{1} x y^{(k+1)}+\ldots+a_{m} x^{m} y^{(k+m)}=\lambda y$,
we get, upon comparing coefficients of highest terms of both sides, that the degree of left hand side is $s-k$ while the degree of the right hand side is s which is absurd.
Proposition (4): Let k, m, n, t be nonnegative integers $, k>0, t<k$. Then

1. $\left(\left(1-x^{k}\right) y^{(m)}\right)^{(n)}+\lambda y=0$ is a near-Legendre equation and has polynomial solutions if and only if $m+n=k$.
2. $\left(\left(x^{t}-x^{k}\right) y^{(m)}\right)^{(n)}+\lambda y=0, t<k$ is a near-Legendre equation and has a polynomial solution if and only if
$m+n=k$.

Proof: We have

$$
\left(\left(1-x^{k}\right) y^{(m)}\right)^{(\mathrm{n})}-\lambda y=E_{(m+n)}-E_{(m+n-k)}-E_{0} .
$$

Since m, n, k are nonnegative we see that $m+n-k=0$. The proof of the other part is similar.
Proposition (5): When $m=1$ we have only three nearLegendre equations

1. $\left(\left(1-x^{2}\right) y\right)^{\prime \prime}+\lambda y=0$.
2. $\left(\left(1-x^{2}\right) y^{\prime}\right)^{\prime}+\lambda y=0$, the usual Legendre equation.
3. $\left(1-x^{2}\right) y^{\prime \prime}+\lambda y=0$.

While when $\mathrm{m}=2$ we have only five near-Legendre equations.

$$
\begin{aligned}
& \text { 1. }\left(\left(1-x^{4}\right) y\right)^{(4)}+\lambda y=0 . \\
& \text { 2. }\left(\left(1-x^{4}\right) y^{\prime}\right)^{(3)}+\lambda y=0 . \\
& \text { 3. }\left(\left(1-x^{4}\right) y^{\prime \prime}\right)^{\prime \prime}+\lambda y=0 . \\
& \text { 4. }\left(\left(1-x^{4}\right) y^{(3)}\right)^{\prime}+\lambda y=0 . \\
& \text { 5. }\left(\left(1-x^{4}\right) y^{(4)}+\lambda y=0 .\right.
\end{aligned}
$$

In general when $m=k$ we have $2 k+1$ cases

$$
\left(\left(1-x^{2 k}\right) y^{(i)}\right)^{(2 k-i)}+\lambda y=0,0 \leq i \leq 2 k
$$

Proof: We just apply Proposition (4) with different m and k.

IV. THE EQUATION $\left(1-x^{2}\right) y^{\prime \prime}+\lambda y=0$.

Consider the differential equation $\left(1-x^{2}\right) y^{\prime \prime}+\lambda y=0$. This is a near-Legendre differential equation and has polynomial solutions. Let y be a solution corresponding to λ and u a
solution corresponding to μ. Thus $\left(1-x^{2}\right) u^{\prime \prime}+\mu u=0$.
Let $y=\sum a_{n} x^{\mathrm{n}}$.

Then

$$
\begin{gathered}
\sum n(n-1) a_{n} x^{\mathrm{n}-2}-\sum n(n-1) a_{n} x^{\mathrm{n}} \\
\quad+\sum \lambda n(n-1) a_{n} x^{\mathrm{n}}=0
\end{gathered}
$$

This is equivalent to

$$
\begin{gathered}
\sum_{n=-2}(n+2)(n+1) a_{n+2} x^{\mathrm{n}} \\
-\sum_{n=0} n(n-1) a_{n} x^{\mathrm{n}}+\sum_{n=0} \lambda n(n-1) a_{n} x^{\mathrm{n}}=0 .
\end{gathered}
$$

It follows that
$a_{n+2}=-\frac{\lambda-n(n-1)}{(n+2)(n+1)} a_{n}, n \geq 0, a_{0}, a_{1}$ free.
It follows that for a polynomial solution to exist
$\lambda=k(k-1), k$ is a nonnegative integer.
Thus when $k=1$ or $0, \lambda=0$ and
$a^{2}=0, a_{3}=-\left(\frac{0-0}{6}\right) a_{1}=0$,
and so all $a_{n}=0, n \geq 2$. The solution is $y_{0}=a_{0}+a_{1} x$. Thus we have two solutions: $1, x$.
If $k=2, \lambda=2$ and
$a_{2}=-\left(\frac{2-0}{2}\right) a_{0}=-a_{-} 0, a_{3}=-\left(\frac{2-0}{6}\right) a_{1}$
$=-\frac{a_{1}}{3}, a_{4}=-\left(\frac{2-2}{12}\right) a_{3}=0, a_{5}=-c a_{1}$
for some constant c . If we set $a_{1}=0$ the polynomial solution is $y_{2}=a_{0}-a_{0} x^{2}$.
If $k=3, \lambda=6, a_{5}=0, a_{7}=0, a_{9}=0, \ldots$ and the polynomial solution is

$$
y_{6}=a_{1} x-a_{3} x^{3}, a_{3}=-\left(\frac{6-0}{6}\right) a_{1}=-a_{1}
$$

Thus $y_{6}=a_{1} x-a_{1} x^{3}$.
If $k=4, \lambda=12, a_{6}=0=a_{8}=a_{10}=\ldots$ and so the eigen polynomial is odd and of degree 5 ,

$$
y_{12}=a_{0}+a_{2} x^{2}+a_{4} x^{4}
$$

Here

$$
a_{2}=-\left(\frac{12-0}{2}\right) a_{0}=-6 a_{0}, a_{4}=-\left(\frac{12-2}{12}\right) a_{2}=5 a_{0}
$$

Thus the polynomial solution is
$y_{12}=a_{0}-6 a_{0} x^{2}+5 a_{0} x^{4}$.
We notice any polynomial solution y_{λ} is either even and the numerical coefficients are multiple of a_{0} or it is odd and the numerical coefficients are multiple of a_{1}. When we substitute in these solutions $a_{0}=1$ and $a_{1}=1$ we call the resulting solutions normalized polynomial solutions.

Remark (5): Consider the differential equation $\left(1-x^{2}\right) y^{\prime \prime}+\lambda y=0$. We notice that when $\lambda \neq 0$ and from $\left(\left(1-x^{2}\right) y^{\prime \prime}+\lambda y\right)(1)=0$ we get $y(1)=y(-1)=0$.
Proposition (6): The polynomial solutions y_{λ} of the equation

$$
\left(1-x^{2}\right) y^{(2)}+\lambda y=0
$$

are orthogonal over the interval $[-1,1]$ with weight $\left(1-x^{2}\right)^{-1}$.
Proof: Assume that we have

$$
\left(1-x^{2}\right) y_{\lambda}^{\prime \prime}+\lambda y_{\lambda}=0,\left(1-x^{2}\right) u_{\mu}^{\prime \prime}+\mu u_{\mu}=0, \lambda \neq \mu
$$

Multiply the first equation by $\frac{u_{\mu}}{1-x^{2}}$, the second by $\frac{y_{\lambda}}{1-x^{2}}$ and subtract to get

$$
\begin{equation*}
\int_{-1}^{1}\left(y_{\lambda}^{\prime \prime} u_{\mu}-u_{\mu}^{\prime \prime} y_{\lambda}\right) d x+(\lambda-\mu) \int_{-1}^{1} \frac{y_{\lambda} u_{\mu}}{\left(1-x^{2}\right)} d x=0 \ldots \tag{4}
\end{equation*}
$$

Now

$$
\begin{aligned}
\int_{-1}^{1} y_{\lambda}^{\prime \prime} u_{\mu} d x & \left.=y_{\lambda}^{\prime} u_{\mu}\right]_{-1}^{1}-\int_{-1}^{1} y_{\lambda}^{\prime} u_{\mu}^{\prime} \\
=0-\int_{-1}^{1} y_{\lambda}^{\prime} u_{\mu}^{\prime} d x & =-\int_{-1}^{1} y_{\lambda}^{\prime} u_{\mu}^{\prime} d x, \int_{-1}^{1} u_{\mu}^{\prime \prime} y_{\lambda} d x \\
& =-\int_{-1}^{1} y_{\lambda}^{\prime} u_{\mu}^{\prime} d x .
\end{aligned}
$$

Thus (4) reduces to
$(\lambda-\mu) \int_{-1}^{1}\left(\frac{y_{\lambda} u_{\mu}}{\left(1-x^{2}\right)}\right) d x=0$. Since $\lambda \neq \mu$, we get
$\int_{-1}^{1}\left(\frac{y_{\lambda} u_{\mu}}{1-x^{2}}\right) d x=0$. Thus y_{λ}, u_{μ} are orthogonal with weight $\frac{1}{1-x^{2}}$.
We notice that $\int_{-1}^{1}\left(\frac{y_{\lambda} u_{\mu}}{1-x^{2}}\right) d x$ exists since y_{λ}, u_{μ} are polynomials that vanish on $1,-1$ and hence $\left(\frac{y_{\lambda} u_{\mu}}{1-x^{2}}\right)$ is a polynomial.
For example if we take the polynomial solutions

$$
f=y=a_{0}-a_{0} x^{2}, g=b_{0}-6 b_{0} x^{2}+5 b_{0} x^{4}
$$

for the differential equation $\left(1-x^{2}\right) y^{\prime \prime}+\lambda y=0$ we see that

$$
\begin{gathered}
\int_{-1}^{1}\left(\frac{f g}{1-x^{2}}\right) d x=\int_{-1}^{1} a_{0} b_{0}\left(1-6 x^{2}+5 x^{4}\right) d x \\
=2 a_{0} b_{0}\left[x-2 x^{3}+x^{5}\right]_{0}^{1}=0
\end{gathered}
$$

as expected.
Conjecture: It is an open question that the solutions of $\left(1-x^{2 m}\right) y^{\prime \prime}+\lambda y=0$ are orthogonal with weight $\frac{1}{1-x^{2 m}}$ over the interval $[-1,1]$.
Proposition (7): Any continuous function f on the interval $[-1,1]$ can be expanded in terms of the normalized eigen polynomials of the differential equation

$$
\left(1-x^{2}\right) y^{\prime \prime}+\lambda y=0,-1 \leq x \leq 1
$$

Proof: Write $f=\sum a_{\lambda} y_{\lambda}, y_{\lambda}$ the normalized eigen polynomials of the given differential equation. To find a_{λ} we multiply both sides with $\left(\frac{y_{\lambda}}{1-x^{2}}\right)$ and integrate from -1 to 1 and use orthogonality to get

$$
a_{\lambda}=\frac{\int_{-1}^{1} f\left(\frac{y_{\lambda}}{1-x^{2}}\right) d x}{\int_{-1}^{1}\left(\frac{y_{\lambda}^{2}}{1-x^{2}}\right) d x}
$$

V. The EquATION

$$
\left(\left(1-x^{2}\right) y\right)^{\prime \prime}+\lambda y=0,-1 \leq x \leq 1
$$

The differential equation $\left(\left(1-x^{2}\right) y\right)^{\prime \prime}+\lambda y=0$ can be written as

$$
\begin{aligned}
\left(\left(1-x^{2}\right) y\right)^{\prime \prime}+\lambda y & =\left(-2 x y+y^{\prime}-x^{2} y^{\prime}\right)^{\prime}+\lambda y \\
& =-2 x y^{\prime}-2 y+y^{\prime \prime}-x^{2} y^{\prime \prime}-2 x y^{\prime} \\
& =\left(1-x^{2}\right) y^{\prime \prime}-4 x y^{\prime}+(\lambda-2) y \\
& =y^{\prime \prime}-x^{2} y^{\prime \prime}-4 x y^{\prime}+(\lambda-2) y \\
& =0 .
\end{aligned}
$$

It follows that the equation is near-Legendre one and so we expect polynomial eigen solutions. Let $y=\sum a_{n} x^{\mathrm{n}}$ be a power series solution. Then we have

$$
\begin{aligned}
0 & =\sum n(n-1) a_{n} x^{\mathrm{n}-2}-\sum n(n-1) a_{n} x^{n} \\
& -\sum 4 n \cdot a_{n} x^{\mathrm{n}}+(\lambda-2) \sum a_{n} x^{\mathrm{n}} \\
& =\sum(n+2)(n+1) a_{n+2} x^{\mathrm{n}} \\
& -\sum[n(n-1)+4 n-\lambda+2] a_{n} x^{\mathrm{n}} .
\end{aligned}
$$

It follows that $a_{n+2}=-\left(\frac{\lambda-(n+1)(n+2)}{(n+1)(n+2)}\right) a_{n}, n \geq 0, a_{0}, a_{1}$ free. To have a polynomial solution λ has to have value $\lambda=(k+1)(k+2), k \geq 0$.
For $k=0, \lambda=2, a_{2}=0=a_{4}=a_{6}=\ldots$ Thus a polynomial solution is $y_{2}=a_{0}$.

For $k=1, \lambda=6, a_{3}=0=a_{5}=a_{7}=\ldots$ Thus the polynomial solution is $y_{6}=a_{1} x$.
For $k=2, \lambda=12, a_{4}=0=a_{6}=a_{8}=\ldots$ Thus a polynomial solution is
$y_{12}=a_{0}+a_{2} x^{2}, a_{2}=-\left(\frac{[12-2]}{2}\right) a_{0}, y_{12}=a_{0}\left(1-5 x^{2}\right)$.
For $k=3, \lambda=20, a_{5}=0=a_{7}=a_{9}=\ldots$ Thus a polynomial solution is

$$
\begin{gathered}
y_{20}=a_{1} x+a_{3} x^{3}, a_{3}=-\left(\frac{[20-6]}{6}\right) a_{1} \\
y_{20}=a_{1}\left(x-\left(\frac{7}{3}\right) x^{3}\right)
\end{gathered}
$$

For $k=4, \lambda=30, a^{6}=0=a^{8}=a^{10}=\cdots$ Thus a polynomial solution is
$y_{30}=a_{0}+a_{2} x^{2}+a_{4} x^{4}, a_{2}=-\left(\frac{[30-2]}{2}\right) a_{0}=-14 a_{0}$,

$$
a_{4}=-\left(\frac{[30-12]}{12}\right) a_{2}=-\left(\frac{3}{2}\right) a^{2}=21 a_{0}
$$

$y_{30}=a_{0}\left(1-14 x^{2}+21 x^{4}\right)$. We can continue to find infinitely many polynomial eigen solutions.
$\operatorname{Remark}(6):$ Let y be even differentiable function on \boldsymbol{R}. Then

$$
\begin{gathered}
\left.\left.\left(\left(1-t^{2}\right) y(t)^{\prime}\right)\right]_{t=0}=0,\left(\left(1-t^{2}\right) y(t)^{\prime}\right)\right]_{t=x} \\
=\left(\left(1-x^{2}\right) y(x)\right)^{\prime}
\end{gathered}
$$

For, $\left(\left(1-t^{2}\right) y(t)\right)^{\prime}=y^{\prime}(t)-2 t y(t)-t^{2} y^{\prime}(t)$. If y is even then y^{\prime} is odd and we have

$$
\begin{aligned}
\left.\left(\left(1-t^{2}\right) y(t)\right)^{\prime}\right]_{t=0} & \left.=\left(y^{\prime}(t)-2 t y(t)-t^{2} y^{\prime}(t)\right)\right]_{t=0} \\
& =0-0-0=0
\end{aligned}
$$

and

$$
\begin{gathered}
\left.\left.\left(\left(1-t^{2}\right) y(t)\right)^{\prime}\right]_{t=x}=\left(y^{\prime}(t)-2 t y(t)-t^{2} y^{\prime}(t)\right)\right]_{t=x} \\
=y^{\prime}(x)-2 x y(x)-x^{2} y^{\prime}(x) \\
=\left(\left(1-x^{2}\right) y(x)\right)^{\prime}
\end{gathered}
$$

as expected.
Proposition (8): Let $y_{\lambda}, u_{\mu}, \lambda \neq \mu$ be two even polynomial solutions of the differential equation

$$
\left(\left(1-x^{2}\right) y\right)^{\prime \prime}+\lambda y=0,-1 \leq x \leq 1
$$

The antiderivatives $\int_{0}^{x} y_{\lambda} d t, \int_{0}^{x} u_{\mu} d t$ are orthogonal over the intervals $[0,1],[-1,1]$.

Proof: Let y_{λ}, u_{μ} be two even polynomial solutions of the given differential equations corresponding to $\lambda \neq \mu$ eigen values. Thus

$$
\left(\left(1-x^{2}\right) y_{\lambda}\right)^{\prime \prime}+\lambda y_{\lambda}=0,\left(\left(1-x^{2}\right) u_{\mu}\right)^{\prime \prime}+\mu y_{\lambda}=0
$$

Let

$$
U_{\mu}(x)=\int_{0}^{x} u_{\mu}(t) d t, Y_{\lambda}(x)=\int_{0}^{x} y_{\lambda}(t) d t
$$

Then we have

$$
\int_{0}^{x}\left(\left(1-t^{2}\right) y_{\lambda}(t)\right)^{\prime \prime} d t+\int_{0}^{x} \lambda y_{\lambda}(t) d t=0
$$

From Remark (6) we have

$$
\left(\left(1-x^{2}\right) y_{\lambda}(x)\right)^{\prime}+\int_{0}^{x} \lambda y_{\lambda}(t) d t=0 .
$$

Now multiply both sides by $U_{\mu}(x)$ and integrate from 0 to 1 to get

$$
\begin{aligned}
& \int_{0}^{1} U_{\mu}(x) \cdot\left(\left(1-x^{2}\right) y_{\lambda}(x)\right)^{\prime} d x \\
& \quad+\lambda \int_{0}^{1} U_{\mu}(x) Y_{\lambda}(x) d x=0
\end{aligned}
$$

By integration by parts we have

$$
\begin{gathered}
\left.U_{\mu}(x) \cdot\left(\left(1-x^{2}\right) y_{\lambda}(x)\right)\right]_{0}^{1} \\
-\int_{0}^{1}\left(\left(1-x^{2}\right) y_{\lambda}(x)\right) U_{\mu}(x)^{\prime} d x \\
+\lambda \int_{0}^{1} U_{\mu}(x) Y_{\lambda}(x) d x=0
\end{gathered}
$$

This is the same as

$$
\begin{align*}
& -\int_{0}^{1}\left(1-x^{2}\right) y_{\lambda}(x) u_{\mu}(x) d x \\
& +\lambda \int_{0}^{1} U_{\mu}(x) Y_{\lambda}(x) d x=0 \ldots \tag{5}
\end{align*}
$$

In a similar manner we get

$$
\begin{gathered}
-\int_{0}^{1}\left(\left(1-x^{2}\right) u_{\mu}(x)\right) Y_{\lambda}(x)^{\prime} d x \\
+\mu \int_{0}^{1} U_{\mu}(x) Y_{\lambda}(x) d x=0
\end{gathered}
$$

which is the same as

$$
\begin{align*}
& -\int_{0}^{1}\left(1-x^{2}\right) y_{\lambda}(x) u_{\mu}(x) d x \\
& +\mu \int_{0}^{1} U_{\mu}(x) Y_{\lambda}(x) d x=0 \ldots \tag{6}
\end{align*}
$$

By subtracting Equations (5), (6) we get

$$
\begin{gathered}
(\lambda-\mu) \int_{0}^{1} U_{\mu}(x) Y_{\lambda}(x) d x=0 \\
\int_{0}^{1} U_{\mu}(x) Y_{\lambda}(x) d x=0
\end{gathered}
$$

Since u, y are even U, Y are odd and $U_{\mu} Y_{\lambda}$ is even. Thus

$$
\begin{aligned}
& \int_{-1}^{1} U_{\mu}(x) Y_{\lambda}(x) d x \\
= & 2 \int_{0}^{1} U_{\mu}(x) Y_{\lambda}(x) d x=0
\end{aligned}
$$

as required.

For example consider the polynomial solutions

$$
f=a_{0}\left(1-5 x^{2}\right), g=b_{0}\left(1-14 x^{2}+21 x^{4}\right) .
$$

Then f, g have antiderivatives
$F=a_{0}\left(x-\frac{5 x^{3}}{3}\right), G=b_{0}\left(x-\frac{14 x^{3}}{3}+\frac{21 x^{5}}{5}\right)$.
Now

$$
\begin{aligned}
& 45 \int_{0}^{1}\left(x-\frac{5 x^{3}}{3}\right)\left(x-\frac{14 x^{3}}{3}+\frac{21 x^{5}}{5}\right) d x \\
&= \int_{0}^{1}\left(3 x-5 x^{3}\right)\left(15 x-70 x^{3}+63 x^{5}\right) d x \\
&= \int_{0}^{1}\left(45 x^{2}-285 x^{4}+539 x^{6}-315 x^{8}\right) d x \\
& \quad=15-57+77-35=0 .
\end{aligned}
$$

Thus $\int_{-1}^{1} F G d x=0$ as expected.
As before we normalize the solutions by putting $a_{0}=1$,
$a_{1}=1$.
Corollary (2): Any continuous function f on $[-1,1]$ can be expanded in polynomials derived from the normalized eigen polynomials of the differential equation

$$
\left(\left(1-x^{2}\right) y\right)^{\prime \prime}+\lambda y=0,-1 \leq x \leq 1 .
$$

Proof: If f is even then $f=\sum a_{\lambda} y_{\lambda}, y_{\lambda}$ are even.
Let $F(x)=\int_{0}^{x} f(t) d t$. Then $F=\sum a_{\lambda} Y_{\lambda}$. To get a_{λ} we multiply both sides by Y_{λ}, integrate and use orthogonality of the Y_{λ} to get

$$
a_{\lambda}=\frac{\int_{0}^{1} F Y_{\lambda}}{\int_{0}^{1} Y_{\lambda}^{2}} .
$$

If f is odd we expand f^{\prime} and then integrate the result to get back f. In general we write $f=f_{e}+f_{o}$ as a sum of even and odd functions and expand each and sum up the result is

$$
f_{e}(x)=\left(\frac{f(x)+f(-x)}{2}\right), f_{o}(x)=\left(\frac{f(x)-f(-x)}{2}\right)
$$

One may ask if there are similar-to Rodriguez's Formulas and Recursive Rules for these newly developed eigen polynomials. This is still an open problem
$\operatorname{Remark}(7)$:The eigen polynomials of the equation $\left(\left(1-x^{2}\right) y\right)^{\prime \prime}+\lambda y=0$ are the same as those of the the equation $y^{\prime \prime}-x^{2} y^{\prime \prime}-4 x y^{\prime}+(\lambda-2) y=0$ which are the same as those of the equation $y^{\prime \prime}-x^{2} y^{\prime \prime}-4 x y^{\prime}+\lambda y=0$.

VI. APPLICATIONS

1. Suppose we have a steady state partial differential equation

$$
\begin{aligned}
\left(1-x^{2}\right) u_{x x}+u_{y y} & =0,-1 \leq x \leq 1, y \geq 0, u(x, 0) \\
= & f(x), u(-1, y)=0=u(1, y)
\end{aligned}
$$

$f(x)$ continuous on $[-1,1]$.
We use separation of variables technique and assume $u=X(x) Y(y)$. Then we get $\left(1-x^{2}\right) X^{\prime \prime} Y+X Y^{\prime \prime}=0$. Thus upon dividing by $X Y$ we get

$$
\frac{\left(1-x^{2}\right) X^{\prime \prime}}{X}+\frac{Y^{\prime \prime}}{Y}=0
$$

It follows that

$$
\frac{\left(1-x^{2}\right) X^{\prime \prime}}{X}=-\lambda, \frac{Y^{\prime \prime}}{Y}=\lambda, \lambda>0 .
$$

Thus

$$
\left(1-x^{2}\right) X^{\prime \prime}+\lambda X=0, Y^{\prime \prime}-\lambda Y=0, \lambda>0
$$

The first equation is a near-Legendre equation and the second has general solution $Y=a e^{-\sqrt{\lambda y}}+b e^{+\sqrt{\lambda y}}$. To get a bounded solution we choose $Y=e^{-\sqrt{\lambda y}}$. Now we take the values of λ that give polynomial solutions to the equation

$$
\left(1-x^{2}\right) X^{\prime \prime}+\lambda X=0
$$

and take the corresponding polynomial solutions y_{λ}. The candidate solution for our partial differential equation is

$$
u=\sum a_{\lambda} y_{\lambda}(x) e^{-\sqrt{\lambda y}}
$$

Then we have

$$
u(x, 0)=f(x)=\sum a_{\lambda} y_{\lambda}(x)
$$

We find a_{n} using orthogonality in Proposition (6). If the series

$$
\sum a_{\lambda} y_{\lambda}(x) e^{-\sqrt{\lambda y}}
$$

Converges then

$$
u=\sum a_{\lambda} y_{\lambda}(x) e^{-\sqrt{\lambda y}}
$$

is the required solution.
2. Suppose we have a steady state partial differential equation

$$
\begin{gathered}
\left(1-x^{2}\right) u_{x x}-4 x u_{x}+u_{y y}=0,-1 \leq x \leq 1, \\
u(x, 0)=g(x), u(-1, y)=u(1, y),
\end{gathered}
$$

$g(x)$ continuous on $[-1,1]$.
We use separation of variables technique and assume
$u=X(x) Y(y)$.
Then we get

$$
\left(1-x^{2}\right) X^{\prime \prime} Y-4 x X^{\prime} Y+X Y^{\prime \prime}=0
$$

Thus upon dividing by $X Y$ we get

$$
\frac{\left(1-x^{2}\right) X^{\prime \prime}}{X}-\frac{4 x X^{\prime}}{X}+\frac{Y^{\prime \prime}}{Y}=0
$$

It follows that

$$
\frac{\left(1-x^{2}\right) X^{\prime \prime}}{X}-\frac{4 x X^{\prime}}{X}=-\lambda, \frac{Y^{\prime \prime}}{Y}=\lambda, \lambda>0
$$

This reduces to

$$
\left(1-x^{2}\right) X^{\prime \prime}-4 x X+\lambda X=0, Y^{\prime \prime}-\lambda Y=0, \lambda>0
$$

To have a bounded solution we choose $Y(y)=e^{-\sqrt{\lambda y}}$. The equation

$$
\left(1-x^{2}\right) X^{\prime \prime}-4 x X+\lambda X=0,-1 \leq x \leq 1
$$

is a near-Legendre equation which has an infinitely many eigen polynomials y_{λ} corresponding to infinitely many "eigen values λ "as referred to in Remark (7). Since we have $X(-1)=X(1)$ we choose the even y_{λ}. Thus we try a solution

$$
u(x, y)=\sum_{y_{\lambda} \text { even }} a_{\lambda} y_{\lambda}(x) e^{-\sqrt{\lambda y}}
$$

Then $u(x, 0)=\sum a_{\lambda} y_{\lambda}(x)=g(x)$. We find a_{λ} using orthogonality and Corollary (2). If the series

$$
\sum_{y_{\lambda} \text { even }} a_{\lambda} y_{\lambda}(x) e^{-\sqrt{\lambda y}}
$$

converges then

$$
u=\sum_{y_{\lambda} \text { even }} a_{\lambda} y_{\lambda}(x) e^{-\sqrt{\lambda y}}
$$

is a solution to our problem.
Remark(8): We can solve

$$
\begin{gathered}
\left(1-x^{2}\right) u_{x x}-u_{y y}=0,-1 \leq x \leq 1, y \geq 0 \\
u(x, 0)=f(x) \\
u(-1, y)=0=u(1, y)
\end{gathered}
$$

and we can solve

$$
\begin{gathered}
\left(1-x^{2}\right) u_{x x}-4 x u_{x}-u_{y y}=0,-1 \leq x \leq 1 \\
u(x, 0)=g(x) \\
u(-1, y)=u(1, y)
\end{gathered}
$$

using the same techniques but with proper replacement of

$$
e^{-\sqrt{\lambda y}}
$$

In a future work, we may discuss the other five cases, when $m=2$, of near-Legendre equations mentioned in Proposition (5)

VII. CONCLUSION

We generalized the Legendre equation
$\left(\left(1-x^{2}\right) y^{\prime}\right)^{\prime}+n(n+1) y=0,-1 \leq x \leq 1, n$ is a nonnegative integer, to near-Legendre equations

$$
\begin{aligned}
& \left(\left(1-x^{k}\right) y^{(m)}\right)^{(\mathrm{n})}+\lambda y=0 \\
& \left(\left(x^{t}-x^{k}\right) y^{(m)}\right)^{(\mathrm{n})}+\lambda y=0 \\
& -1 \leq x \leq 1, t<k, m+n=k
\end{aligned}
$$

n, m, k, t nonnegative integers. We discussed several cases to ensure the existence of polynomial solutions. We then gave applications to solve some partial differential equations.

Acknowledgment:

I would like to thank the referee for valuable suggestions that helped to make this article come in this form. Also I would like to thank Eng. Mohammed Ali Abdelkarim for several valuable discussions during the preparation of this article.

References

[1] Mary Boace, Mathematical Methods in The Physical Sciences, Third Edition,John Wiley and Sons, Inc., 2006.
[2] W. E. Boyce and R. C. DiPrima, Ordinary Differential Equations, 9th Edition, John Wiley and Sons, Inc., 2009.
[3] G. Calbo, L. Villafuerte, Solving the random Legendre differential equation: Mean square power series solution and its statistical functions, Computers \& Mathematics with Applications, Volume 61, Issue 9, Pages, 2782-2792
[4] Ali Davari, Abozar Ahmadi, New Implementation of Legendre Polynomials for Solving Partial Differential Equations, Applied Mathematics, 2013, 4, 1647-1650
[5] W. N. Everitt, R. Wellman, Legendre polynomials, Legendre-Stirling numbers, and left-definite spectral analysis of Legendre differential expression, Journal of Computational and Applied Mathematics, Volume 148, Issue 1, 1 November 2002, Pages 213-238

