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Abstract—A differential equation of the form ((     )    )
      

                        

integers is called a near-Legendre equation. We show that such an equation has infinitely many polynomial solutions 

corresponding to infinitely many λ. We list all of these equations for      . We show, for    , that these 

solutions are 'partially' orthogonal with respect to some weight functions and show how to expand functions using 

these polynomials. We give few applications to partial differential equations. 
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I. INTRODUCTION  

A Legendre polynomial   ,            is a polynomial 

solution of the differential equation   

(        )
 
                      

                    

Usually a Legendre polynomial    is defined as a polynomial 

solution of the differential equation                 

                        

  nonnegative integer. In the way of generalization some 

research was done by replacing        by        where 

A is an analytic function. Another generalization was done by 

replacing       by             , where      is a 

probabilistic function as done by [3]. In this article we 

generalize        to         in the original Legendre 

differential equation. Some authors studied the Legendre 

differential equation from the perspective of operator theory 

and eigen values as done in [5]. In this article we use some 

aspects of this approach but in a slight manner. Some authors 

applied Legendre equation in solving partial differential 

equations as in [4]. In this article we have given some 

examples of partial differential equations that can be solved by 

near-Legendre differential equations.  

Let us call a finite sum 

   
           

                     { }                an 

Euler form. Let   be an integer. A  -Euler form        is a 

finite sum       ∑    
       

   . Thus a 0-Euler form is an 

Euler form. When a  -Euler form is multiplied by    we get a 

0-Euler form. When an Euler form is equated to 0 we get an 

Euler homogeneous equation. We notice that the right hand 

side of a Legendre equation is a sum of a derivative, which is a 

2-Euler form, and an Euler form involving some parameter λ. 

So let us call a differential equation                              

                   is involving                  
a near- Legendre equation. It is proved below, Proposition (4), 

that                                                                                       

                                                             
is a near-Legendre differential equation that has polynomial 

solutions. In such equations sometimes we call the λ eigen 

values and the corresponding polynomial solutions the eigen 

polynomials although this is an abuse of language. 

II. EXAMPLES 

We give below several examples of near-Legendre equations 

with polynomial solutions.                                               

Example (1):  Consider the differential equation 

                          

This equation can be written as 

                                   

                               

                                                                                                

So it is a near -Legendre equation. We notice that        

           has no zeros in the interval        and 

                 

This is similar to      in the original Legendre equation on 

the interval  [    ]  If we let   
 

 
  then  

  

  
 (

 

 
)  

  

  
 
   

   
 (

 

 
)  

 (
(
 

 
)  

  
)

  
 

(
 

  )    

   
  

Thus the equation reduces to  

         (
(

 

  )    

   
)     (

 

 
)
  

  
    

 
         

   
   

    

  
              

This is the same as the usual equation 

                     1      

To get polynomial solutions we must set                   

                      

Thus the solution to this equation with  

        is         (
 

 
)              

We notice that the polynomial solutions are in powers of  

     , 0 is the center of the interval  [    ] and 

          at     . Using a change of variable and 

orthogonality of       , it is seen that the polynomials   (
 

 
) 

are orthogonal on the interval [    ]  

Example (2): Consider the differential equation  

                      

                              

            

This is not a near- Legendre equation but it can be reduced to 

such equation. Let              . The discriminant of 

        is           since       . Thus        

has two distinct roots     and 

  (
   

 
 )   (

   

 
)     

   

 
. 
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Then       (
   

 
)
 

 (  
   

 
)
 

                  

which is a generalization of the function                        

                 since            .         

The center of the interval [   ] is 
   

 
 .                               

Thus using the chain rule, this equation reduces to the 

differential equation  

  
 

 (  (
   

 
))

                               

*{(
   

 
 )

 

 (  (
   

 
))

 

}
  

 (  (
   

 
))

 
 (  (

   

 
))

  
+ 

.
 (  (

   

 
))

  
                                                                  

which is similar to                  , a near-Legendre 

equation. We suggest a solution of the form 

  ∑   (  (
   

 
))  

 
  

If we let 

     (
   

 
)    (

   

 
)  

then the last differential equation reduces to 

 

  
[       

  

  
]                                         

Thus we see that for a polynomial solution to exist,  λ has to be 

of the form        and the polynomial solutions sought are 

      (
  (

   

 
)

(
   

 
)
)                    

We prove the following remark. 

Remark (1): Let     and let     be the distinct roots of 

the equation            . Let       be the Legendre 

polynomials. Any two distinct solutions of differential equation 

                    are orthogonal over the interval  

[   ]  Furthermore, ∫   
    

 

 
 (

   

 
)∫   

       
 

  
 For, let 

    be two nonnegative integers and consider                   

  ∫       
 

 
.                                                                   

Then                              

  ∫   (
  (

   

 
)

(
   

 
)
)     (

  (
   

 
)

(
   

 
)
)  

 

 
    

      
  (

   

 
)

(
   

 
)

      .  

Then                                       

       (
   

 
)∫              

 

  
                             

The result follows from orthogonality of the Legendre 

polynomials   .  

This way we have found a orthogonal polynomial basis for the 

space  [   ] of all polynomials over the interval [   ]  

Example (3): Consider the interval  [   ] and the equation 

(         )
 
                     

This equation can be written as  

(         )
 
    

                                       

This is a near-Legendre equation and we can expect a 

polynomial solutions. We can use the preceding example to 

solve it but we prefer to do it directly. We look for a solution 

of the form   ∑      . Expanding we get 

∑               
 

 ∑           
 

 

 ∑          
 

 ∑       
 

 

 ∑      
 

    

Changing the summation variables we get 

∑              
  

 ∑           
 

  

∑       
 

 ∑             
  

 ∑      
 

    

Then we get 

[               ]        

∑ [                              
 

 

                      ]     

Thus    is free and  

     
[        ]  

       
             

Now to ensure solutions to be polynomials we must have 

        . Then 

      
[             ]  

       
            

Let us take     Then    is free and            
         . The solution is        Now let    . Then 

   . Then    is free and 

   ( 
 

 
)       (

   

  
)                   

The solution is       (
 

 
)    . Let    . 

Then      Let    be free then 
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   ( 
 

 
)       (

   

  
)   (

 

  
)          

          .                                                                              

The solution is       (
 

 
)     (

 

  )    
   

We notice that all solutions are constant multiple of  

  (
  (

   

 
)

   

 

)         

Remark (2):  The solutions of   the equation                   

                    are orthogonal on the interval [   ]  
As an example 

       ∫   
 (  

 

 
 ) (  

 

 
  

 

  
  )   

 

 

 

  ∫ (  
 

 
  

  

  
   

  

  
  )   

 

 

 

                            

We prove the orthogonality of the solutions directly. Let     

be a polynomial solutions related to   and   respectively. 

Thus                                                                                 

(         )
 
            

                                

Then                                                                              

 [                    ]   [(         )
 
 

        ]     

This reduces to 

    [                     ]   [           

                 ]  [              ]   = 0  

This simplifies to 

[                ]  [              ]      

Integrating over the interval [   ] we get 

∫ [              ]       
 

 

 

But 

                        

                                                        
The result follows. 

III. GENERAL RESULTS 

Notation (1): let       be positive integers. Let      

                      Let     be positive integers. 

Let                       

Proposition (1): The differential equation  

                    , where     are positive integers 

is a near-Legendre equation which has a polynomial solution 

for some choice for λ if        . 

Proof: We have                                                                    

                                      

                                     

If   ∑   
  then we would have 

∑    
     

 
   ∑    

        

 
 

 ∑       
        

 
 ∑     

   
 

           

To ensure polynomial solutions we must have three of the 

exponents in (1) the same. In fact they are the last three 

exponents. Thus 

                                         
If     then we would have the differential equation  

                 which is the classical Legendre 

equation. Notice that we take the power of   to be    to use it 

for orthogonality purposes because we need         to be 

zero when      at least when    .  As a special case  

Example (4): Let us discuss the differential equation 

(              )
 

                     

This equation is the same as  

                                  . 

Equation (2) is a near-Legendre equation.  

We propose a solution of the form   ∑      
 
 . 

After expansion we get  

∑                           

   
 

 ∑                        
   

 

 ∑                          
   

 

 ∑         
   

 

Changing summation index we get  

∑                              
     

 

 ∑                        
   

 

 ∑                          
   

 

 ∑         
   

 

 

Thus 
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To get a polynomial solution, recall Notation (1) 

  must be of the form                                                             

                                     

        

Now we write                    using 

Euclidean algorithm. Since                are arbitrary we 

set          and       To get the polynomial solution in 

this case we have 

 

       
            

          
   

 
                     

          
     

and so all                        Thus we get a 

polynomial solution 

                             

                . 
Here the coefficients are gotten using (3). If we try to set some 
     for     we get a divergent series solution using the 
ratio test. So essentially we have a unique polynomial solution 
for every 

                                    

        

Remark (3): Let     be     functions and   a positive 
integer. Leibniz Formula states that 

        ∑(
 

 
)           

 

   

 

Proposition (2): Let   be a    function and let                     
                   be nonnegative integers.          

Let      (         )
   

  Then                                   

                        

Proof: We have, using Remark (3) 

(           )
   

 ∑(
 

 
)        (    )

     
 

   

 

 ∑(
 

 
)        (    )

     
 

   

 

 ∑(
 

 
)                  

 

   

 ∑(
 

 
)        (        )

 

   

   

                                          

as required. 

Corollary (1): We have  

  (          )
   

                                            

 (          )
   

                

Proof: Straightforward.   

Remark (4): Let  

                   
             

 ∑   
     

 

   

 

be a  -Euler form. We are interested in finding all real   that 
ensure the existence of a polynomial solution for the 
equation          . We notice that            is an 
   form and so we try a solution     .Then we have 

                                       

        

                                           

                                     

Thus for each   and for each   
                                    we have 

a monomial solution     . In general let   ∑    
  

    be a 
polynomial eigen function for            for some  . 
Then we have 

∑   
 (∑   

 

 

   

)

    

   

 ∑    
 

 

   

    

∑   
  ∑       

   

 

   

 

 

   

 ∑    
 

 

   

    

∑  ((∑  

 

   

   )   )    

 

   

 

Thus we have  

∑           

 

   

    

                                                     .                                                                           
Thus we look for all such solutions      that satisfy the system 
and then if there are such solutions the corresponding 
polynomial solution would be 

  ∑   
  

 

   

 

Proposition (3): Let      be a positive integers and 
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be a         form. Then the only polynomial solution of the 
equation 

           

are polynomials of degree less than k corresponding to       

Proof: For if there is such a polynomial of degree   greater 
than or equal to   then from 

   
        

                       , 

we get, upon comparing coefficients of highest terms of both 
sides, that  the degree of left hand side is     while the 
degree of the right hand side is   which is absurd. 

Proposition (4): Let         be nonnegative integers 
          Then                                                                    

1. (          )
    

       is a near-Legendre equation 

and has polynomial solutions if and only if         

2. (           )
   

          is a near-Legendre 

equation and has a polynomial solution if and only if  

        

Proof: We have 

                                        

Since       are nonnegative we see that          The 
proof of the other part is similar. 

Proposition (5): When     we have only three near-
Legendre equations 

1.                   

2.                   the usual Legendre equation. 

3.                  

While when m=2 we have only five near-Legendre equations. 

 1.                    

 2.                     

 3.                     

 4.                     

 5.                   

  In general when     we have      cases 

(           )
      

              

Proof: We just apply Proposition (4) with different   and  . 

IV. THE EQUATION                  

Consider the differential equation                . This 
is a near-Legendre differential equation and has polynomial  
solutions. Let   be a solution corresponding to   and   a 

solution corresponding to  . Thus               .     
Let   ∑       

 

Then 

∑          
   ∑          

 ∑               

This is equivalent to 

∑                 

    

 

 ∑          

   

 ∑           

   

    

It follows that 

      
        

          
             free. 

It follows that for a polynomial solution to exist  

            is a nonnegative integer. 

Thus when       or         and                                      

         (
   

 
)       

and so all           The solution is            Thus 
we have two solutions:                                                             
If          and                                                              

    (
   

 
)             (

   

 
)                                  

  
  

 
     (

   

  
)              

for some constant c. If we set      the polynomial solution is 

            

If                             and the polynomial 
solution is                                                                              

                  (
   

 
)         

Thus              

If                          and so the eigen 
polynomial is odd and of degree   , 

                  

Here                                                             

     (
    

 
)             (

    

  
)         

Thus the polynomial solution is                                          

                                                                       
We notice any polynomial solution    is either even and the 
numerical coefficients are multiple of    or it is odd and the 
numerical coefficients are multiple of     When we substitute 
in these solutions      and      we call the resulting 
solutions normalized polynomial solutions.                      
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Remark (5): Consider the differential equation                         
                We notice that when λ≠0 and  from  
                    we get               

Proposition (6): The polynomial solutions     of the equation 

                 

are orthogonal over the interval [    ] with weight           

Proof: Assume that we have 

        
                 

              

Multiply the first equation by 
  

       the second by 
   

      and 

subtract to get 

∫ (  
       

    )  
 

  

      ∫
    

      
  

 

  

       

Now 

∫   
      

 

  

   
   ]  

  ∫   
   

 
 

  

 

   ∫   
   

   
 

  

  ∫   
   

   
 

  

 ∫   
      

 

  

  ∫   
   

    
 

  

 

Thus (4) reduces to                                                                

     ∫ (
    

      
)      

 

  
 Since      we get 

∫ (
    

    )   
 

  
  . Thus       are orthogonal with weight 

 

       

We notice that ∫ (
    

    )   
 

  
 exists since       are 

polynomials that vanish on      and hence (
    

    )  is a 

polynomial. 

For example if we take the polynomial solutions 

                             

for the differential equation                 we see that 

 ∫ (
  

    
)   

 

  

 ∫                  
 

  

      [        ] 
    

as expected. 

Conjecture: It is an open question that the solutions of  

                 are orthogonal with weight           
 

      over the interval  [    ]  

Proposition (7): Any continuous function    on the interval 
[    ] can be expanded in terms of the normalized eigen 
polynomials of the differential equation 

                        

Proof: Write   ∑        the normalized eigen polynomials 
of the given differential equation. To find    we multiply both 

sides with (
  

    ) and integrate from     to   and use 

orthogonality to get  

   
∫  (

  

    )   
 

  

∫ (
  
 

    )   
 

  

  

V. THE EQUATION                                                                

((    ) )
  
             

 

The differential equation                  can be 
written as                                                                               

(       )
  
                       

                                        ′ 

                                                 

                                         

                                     

It follows that the equation is near-Legendre one and so we 
expect polynomial eigen solutions. Let   ∑     be a power 
series solution. Then we have 

                ∑          
   ∑         

  

                   ∑             ∑     

                   ∑                 

                   ∑[             ]       

It follows that         (
            

          
)              free. 

To have a polynomial solution     has to have value              
                  

For                        Thus a polynomial 
solution is        

For                        Thus the polynomial 
solution is         

For                         Thus a polynomial 
solution is                     

                (
[    ]

 
)                   

For                         Thus a polynomial 
solution is 

           
      (

[    ]

 
)    

         (
 

 
)       
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For                        Thus a 
polynomial solution is                                                                             

                     (
[    ]

 
)           

    (
[     ]

  
)     (

 

 
)          

                     We can continue to find 
infinitely many polynomial eigen solutions.     

Remark(6): Let   be even differentiable function on  . Then 

(           )]                   ]   

                

For ,                                     If   is even 
then    is odd and we have 

             ]                          ]    

         

and 

             ]                          ]    

                      

               

as expected. 

Proposition (8): Let            be two even polynomial 

solutions of the differential equation 

                         

The antiderivatives  ∫     
 

 
 ∫     

 

 
  are orthogonal over the 

intervals [   ] [    ]  

Proof: Let       be two even polynomial solutions of the 

given differential equations corresponding to     eigen 
values. Thus 

                                       

Let 

      ∫        
 

 

       ∫         
 

 

 

Then we have 

∫                  
 

 

 ∫         
 

 

    

From Remark (6) we have 

               ∫         
 

 

    

Now multiply both sides by       and integrate from 0 to 1 to 

get 

∫       (           )
 
  

 

 

 

  ∫             
 

 

   

By integration by parts we have 

      (           )] 
  

 ∫ (           )     
   

 

 

 

  ∫             
 

 

   

This is the same as 

 ∫                   
 

 

 

          ∫             
 

 

          

In a similar manner we get 

 ∫ (            )         
 

 

 

  ∫             
 

 

   

which is the same as 

 ∫                   
 

 

 

          ∫             
 

 

        

By subtracting Equations (5), (6) we get 

     ∫             
 

 

    

∫             
 

 

    

Since     are even     are odd and      is even. Thus 

∫             
 

  

 

  ∫             
 

 

    

as required. 
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For example consider the polynomial solutions 

                               

Then     have antiderivatives  

       
   

 
         

    

 
 

    

 
 .                         

Now 

    ∫  (  
   

 
) (  

    

 
 

    

 
)  

 

 

 

  ∫                           
 

 

 

 ∫                            
 

 

 

                

 Thus ∫     
 

  
   as expected. 

 As before we normalize the solutions by putting         
        

Corollary (2): Any continuous function   on [    ] can be 
expanded in polynomials derived  from the normalized eigen 
polynomials of the differential equation 

                           

Proof: If     is even then   ∑        are even.                  

Let      ∫        
 

 
 Then   ∑      To get    we 

multiply both sides by     integrate and use orthogonality of the 
   to get  

   
∫    

 

 

∫   
  

 

  

If   is odd we expand    and then integrate the result to get 
back  . In general we write         as a sum of even and 
odd functions and expand each and sum up the result is  

      (
          

 
)        (

          

 
)  

One may ask if there are similar-to Rodriguez's Formulas and 
Recursive Rules for these newly developed eigen polynomials. 
This is still an open problem. 

Remark(7):The eigen polynomials of the equation           
                 are the same as those of the the 
equation                         which are the 
same as those of the equation                      

 

VI. APPLICATIONS 

 
1. Suppose we have a steady state partial differential 

equation 

                                           
                         

     continuous on [    ]  

We use separation of variables technique and assume            
            Then we get                          
Thus upon dividing by     we get 

         

 
 

   

 
    

It follows that 

         

 
    

   

 
        

Thus 

                             

The first equation is a near-Legendre equation and the second 

has general solution       √      √  . To get a bounded 

solution we choose      √  . Now we take the values of λ 
that give polynomial solutions to the equation 

                

and take the corresponding polynomial solutions   . The 
candidate solution for our partial differential equation is 

  ∑         
 √    

Then we have  

            ∑          

We find    using orthogonality in Proposition (6). If the series 

∑         
 √   

 

Converges then                                                                                

  ∑         
 √   

is the required solution. 

2. Suppose we have a steady state partial differential 
equation 

                             

                            

       continuous on [    ]  

We use separation of variables technique and assume 

              

Then we get 

                         

Thus upon dividing by    we get 
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It follows that 

         

 
 

    

 
    

   

 
        

This reduces to 

                                 

To have a bounded solution we choose        √    The 
equation 

                           

is a near-Legendre equation which has an infinitely many eigen 
polynomials    corresponding to infinitely many “eigen values 
 ”as referred to in Remark (7). Since we have            
we choose the even     Thus we try a solution 

       ∑         
 √  

       

  

Then        ∑                We find    using 
orthogonality and Corollary (2).  If the series 

∑         
 √  

       

    

converges then 

  ∑         
 √  

       

  

is a solution to our problem. 

Remark(8): We can solve 

                            

             

                  

and we can solve 

                             

             

                

using the same techniques but with proper replacement of  

  √    

In a future work, we may discuss the other five cases,         
when    , of near-Legendre equations mentioned in 
Proposition (5) 

 

 

VII. CONCLUSION 

We generalized the Legendre equation 

                               is a 
nonnegative integer, to near-Legendre equations 

                         

                       

                  

           nonnegative integers. We discussed several cases to 
ensure the existence of polynomial solutions. We then gave 
applications to solve some partial differential equations. 
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