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Abstract- Based on Taylor Galerkin /pressure-correction (TGPC) finite element method, this work is 

concerned with numerical study for incompressible Newtonian cable coating flows. The fluid motion is 

described by using the Naiver-Stoke equations, which include two essential differential equations. One of 

them is the equation for conservation of mass and the other one is the equation of conservation of momentum 

equations. 

Moreover, this study shows the free surface location methodology to determine the free surface position, and 

the boundary conditions. The Phan-Thien (dh/dt) scheme is applied to calculate the change in the free-

surface position. A number of computational investigations have been achieved to see the effect of different 

factors on the processing of coating. This includes investigating the influence of variation in surface tension 

on the shear rate and strain-rate stabilisation approach. 

 

Keywords-  finite element method; Galerkin method; surface tension; cable coating 

I. INTRODUCTION 

     A semi-implicit time-stepping Taylor-Galerkin 

Pressure-Correction finite element (TGPC) 

algorithm is employed to analyze the Newtonian 

coating fluid. The conservation of mass and time 

dependent of momentum equations are the 

essential components of this model, as they 

describe the behavior of the fluid. The model of 

differential equations under consideration is 

presented in cylindrical coordinates system 

(Axisymmetric flow). In this context, considering  

flow in annular two dimensional, axisymmetric 

cylindrical coordinate frames (laminar flow over 

circular conduit) is investigated (see [1]).    

     In the industrial field, cable coating process 

represents an important commercial issue. This 

process demands falling a molten polymer over a 

moving cable, and then cooling trough for the 

extruded cable [2-4]. Recently, two types of 

coating designs have been utilized in the 

commercial field; tube-tooling and pressure-

tooling [4-5]. In this study, the-tooling extrusion 

coating problem is treated numerically. Moreover, 

this investigation introduces the free surface flow 

matter, which is a major challenge in numerical 
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studies. In this context, a particle-tracking/surface 

height-function technique (dh/dt), developed by 

Phan-Thien [6] is implemented to treat the free-

surface movement. This method is applied based 

on two steps to get a suitable shape for the 

extrudate swell. Starting the solution as a fixed 

position problem (no free surface movement), and 

then using that solution as initial condition to 

solve the problem when the movement of surfaces 

is allowed.                  

Numerically, several studies are conducted to 

solve this type of problems (see foe example 

Caswell and Tanner [7], Sun et al. [8], Kuyl [9, 

10] and Al-Muslimawi [11]). In addition, this 

subject under boundary conditions is studied by 

many authors. Under this concept, 

Ngamaramvaranggul and Webster [12] and Al-

Muslimawi [13] used a TGPC finite element 

method to analyze the wire and cable coating 

problems for incompressible Newtonian flows, 

where the free surface issue is appeared strongly 

within TGPC method.  

Analytically, Slattery et al. [14] has a theoretical 

procedure wire-coating problem. Also, the 

analytic solution for same problem is discussed by 

Hade and Giacomin [16].  

In a recent article, the numerical solution for 

incompressible Newtonian cable coating flows 

with free surface movement is discussed based on 

(TGPC) method. Two computational tests have 

been performed to assess the effect of various 

features on the coating procedure within the draw-

down section (DDS) of the flow. This includes 

investigating the effect of variation in surface 

tension and strain-rate stabilisation approach 

II. MATHEMATICAL MODELLING 

     For incompressible Newtonian isothermal 

flow, the continuity equation and the momentum 

equation in the cylindrical components can be 

given respectively as:  

     .0 u                                            (1) 

Where, u  represents the velocity of fluid. 

The balance of momentum reduces to 

          uu
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u
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Where,   is the fluid density,   the total-stress 

tensor and , with  is 

the Euler rate-of-deformation tensor   .  

In the cylindrical components these equations can 

be re-written as 
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where, ru , u  and zu  represent the velocity in r  

direction,   direction and z  direction. Also, p  

and  represent the pressure and density of the 

fluid and s  is the solvent viscosity. Further, the 

equation can also be defined by the non-

dimensional groups of Reynolds number ( Re ), 

and viscosity (  ), which are characterized by the 

scales of velocity (U ), length ( L ) and density 

(  ) as, 
s

Ul
Re


=  and s =  (for more 

details see [14], [15]).  

III. NUMERICAL METHOD 

A. TIME DISCRETISATION 

     A Taylor Galerkin Pressure Correction time 

step method (TGPC) is implemented in this 

investigation to treat the equations (1-2). This 

numerical technique is introduced by Townsend 

and Webster (see [17]) based on Lax_Wendroff 

time stepping.  

Rewriting the momentum equation (2) in the non-

dimensional groups of Reynolds number ( Re ), 

and viscosity (  ) as  
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Now, by the tow steps of Lax_Wendroff approach 

we gather the velocity as,  
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In contrast, the pressure 2

1
n

p in Eq. (9b) is 

defined by  
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*u is an intermediate velocity such that        
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From Eq.(11) and Eq.(12), we have 
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Thus, from (9a), (9b), (13a) and (13b) we have the 

following stages  
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B.  FINITE ELEMENT SCHEME 

 

     To apply the (TGPC) method the 

approximations for velocity and pressure fields 

based on respective shape functions i  and j  

( 1,2,...,6=i , total number of nodes including 

mid-side points and 1,2,3=j , number of vertex 

nodes only) are introduced as    

  6,...,1),()(),(  jxtutxu jj  ,         

3,...,1),()(),(  kxtptxp kk  .        (15) 

Such that, the shape functions, )(xj  are selected 

as piecewise quadratic basis functions and 

)(xk  as piecewise linear basis functions. Then 

the stages (14a)-(14c) can be written in the 

matrix-form as   
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Where, M  is the mass matrix, S  is the 

momentum diffusion matrix, K  is the pressure                       

stiffness matrix, )(UN  is the convection matrix 

and L  is the divergence/ pressure gradient matrix. 

In a matrix notation 
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C.  STRAIN-RATE STABILISATION  

SCHEME 

     To see the effect of some factors on the present 

numerical solution of cable coating problem,   the 

Strain-Rate Stabilisation technique (d-dc) is 

applied for the momentum and continuity 

equations. This scheme is achieved by adding the 

following term to the momentum equation  

                )(2 cdd  ,                                    (17) 

where, Dc  is the approximate finite element rate 

of deformation tensor solution, and   is an 

stabilization factor. In this study α=0.25, α=0.5 is 

used. 

The numerical algorithm will be changed under 

the consideration of this scheme. The main change 

is appeared in stages (16a) and (16b), which 

modified to:  
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D. SURFACE TENSION EFFECT 

     The second factor in this study is the surface 

tension, thus problem can be solved under this 

factor by applying following boundary condition 

                                                                                                         

(19) 

 where,  pa is the ambient surrounding pressure 

level, R1 and R2 are the radius of the free surface 

curvature and n is the normal vector.  

E.  FREE-SURFACE PROCEDURE 

 To treat the free surface nodal movement, the 

Phan-Thien (dh/dt) method is chosen for the 

current study. In this method the calculation of the 

new position of the nodal is restricted in the radial 

motion only to be suitable with the nature of the 

problem under consideration. This procedure is 

satisfied via solution of the following first-order 

differential equation [18-19]:      

0
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Where, zr vu , are the radial and axial velocities 

respectively, and h represents the height. 

IV. PROBLEM SPECIFICATION 

     The design geometry of our problem (tube-

tooling) is shown in Figure 1. A schematic 

representation for the draw-down section (DDS) 

and cable region of tube-tooling design with the 

finite element mesh is presented in this Figure. 

Also, the relative dimensions of the mesh are 

provided in Table 1. All the found results are for 

Newtonian case with Re=10
-4

. 

Boundary conditions (BCs): The setting of BCs 

of the present problem is laid as follows:  

(a)  No-slip sBC  is applied on the die walls. 

 (b) For DD section and cable area we had: 

       (i)  slip sBC  is applied on the top and bottom 

surface without a pressure. 

      (ii) Plug flow is forced in the cable region. 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

V. NUMERICAL RESULTS 

     The (TGBC) numerical results for DDS of 

cable coating problem are presented. The 

study concerned with the shape of draw down 

section, which represents the major challenge 

in this work. In addition, the influence of two 

important factors in this process; surface 

tension and strain-rate stabilisation approach 

also are provided in this study.  

The shape for the DDS, with re-meshing in 

the essential locations at the exit of die and 

draw-down section, is shown in Figure 2. Plug 

flow applies at the domain outlet and there is 

distinct contact point movement observed 

(reducing the length of the DDS). The contact 

Elements Nodes Degrees of freedom 

(u, p) 

2004 4355 27306 

Figure 1: Schematic diagram for draw down 

section and cable region  
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Free 
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Bottom free 
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Top free 

surface 

Table 1: Mesh characteristic parameters 
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point is traversed smoothly, thus any node on 

the bottom free surface touches with the cable.         

 

 

 

 

 

  

 

 

 

 

Pressure field and profile along the draw-down 

centre are shown in Figure 3, with a zoomed die 

exit section. The maximum and minimum levels 

in pressure are illustrated in this Figure around the 

die exit. From the pressure profile, one can notice 

some changes are occurred in the draw-down and 

the coating, with a rising trend upon entry to the 

coating.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Axial and radial velocity fields with sampled 

profiles (top surface, bottom surface, core flow) 

are recorded in Figure 4. At the various positions 

throughout the DDS, different levels of velocities 

are displayed. In the axial velocity profile, the 

smallest value is noted around the entry to the 

draw-down, which then rises and relaxes 

throughout the cable coating region. While, for 

the radial velocity, there is a decline from the die- 

exit, to finally reaching a minimum value 

observed near the contact point on the bottom 

surface of this section. Radial velocity for the 

bottom surface at the exit of the DDS is about 

twice the magnitude (negative in sign) of that for 

the top and central sections; while, there is sharp 

adjustment in radial velocity on wetting the cable. 

Hence, plug flow conditions are clearly seen to 

apply in the coating. 
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Figure 4: Pressure fields and profiles for 

draw down section  

Figure 2: Top and bottom free surface movement 

draw down section  

Figure 3: Pressure field and profile for 

draw down section  
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(d-dc) scheme: This problem is solved by 

applying (d-dc) stabilization scheme, including 

factors α=0.25, α=0.5. The study is focused on the 

influence of this technique on the shape of DDS 

and the level of swell-exist compared to that 

without (d-dc). 

The corresponding swelling data and zoomed 

view of the die are provided in Figure 5. From 

these results, a slighter level of swelling is 

observed when the singularity is additionally 

accounted for through the (d-dc) realisation. This 

is particularly well noticeable in the comparison 

against the previous results without (d-dc) 

treatment. Furthermore, one can see the outcome 

of (d-dc) on the contact point solution, which 

follows slower movement under (d-dc). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Surface tension effect (st): In contrast to the 

foregoing of the study, the problem is solved with 

inclusion of surface tension. Comparative data are 

presented on pressure in Figure 6a, along the 

draw-down centre with/without surface tension 

effects. Findings indicate that there is insignificant 

change apparent with surface tension inclusion; 

yet there is some slight change noticed near the 

contact point region.  

Shear-rate (Gamma) profiles at the top and bottom 

free surface are illustrated in Figure 6b, 

with/without surface tension effects. The results 

reflect that overall, insignificant change is 

detected under surface tension influence, bar at 

the bottom surface near the contact point. There, 

Gamma reaches a peak value of around 35 units, 

which is an increase of 30% from that for instance 

without surface tension (25 units). The same 

response is gathered in shear stress (Trz), with 

reduction of contact-point peak value on the 

bottom surface due to surface tension, from 

around 70 to 40 units (see Figure 6c). 

Draw down 

section 

Figure 5: d-dc effect on geometry shape 

of draw down section  
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VI. CONCLUSION 

     This study is covered the analysis of the draw-

down section, with different scenarios. The shape 

of top and bottom surfaces and the behaviour of 

the velocity and pressure have been investigated 

throughout the draw-down section. Study of some 

factors also presented, which include the influence 

of the surface tension and that of the strain-rate 

stabilisation approach.  

The influence of singularity capturing on the die-

exit solution has been explored successfully using 

the (d-dc) technique. In this manner, A significant 

impact on the levels of die-swell that can occurred 

in such treatment is also shown. Finally, this study 

has shown insignificant changes are detected 

under surface tension influence. Thus one can 

conclude that, in the coating process the effect of 

surface tension is minor. 
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