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Abstract— In this paper, the existence of the global solution and its uniqueness is studied for the Second Order 

Nonlinear Integro–Differential Fractional Equations with boundary conditions by utilizing the Picard approximation 

method which is given by Sturble, 1962. Furthermore, several given results by Butris, 2010 have been extended. 
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I. INTRODUCTION  

Enormous of studies have discussed the solution of the 

differential and integral equation for fractional order such as 

[1], [2], [3], [4], [5], [6] and [7]. In this study, the focus will be 

on the 2nd order nonlinear integro–differential fractional 

equations [8], and [9].  

At the beginning, it’s worth to set some definitions and lemmas 

to be employed then for the main theorems proofs. 

 

Definition 1: [1], [10] 

Let f be a function which is defined a.e. (almost everywhere) 

on [a, b].  

For, we define: 
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provided this integral (Lebesgue) exists.   

 

 

 

Definition 2: [3], [10] 

If 0 , then Gamma’s function is denoted by   and 

defined by the form: 
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Lemma 1: [1], [11] 

If  
1nnf is a sequence of functions, is defined over the set 

E R such that nn Mf  , where nM is a positive number, 

then 
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convergent.  
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Lemma 2: [3] 

Let  
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where m = R, then:   

i. the series converges for ox  and 0  

ii. the series converges everywhere when 1  

iii. if 1 , then    mxxmE exp,1   

For the definitions and lemmas see [2], [8]. 

 

Consider the following fractional second order nonlinear 

integro–differential equations, which have the form:   
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… (1) 

 

Subject to the following boundary conditions:  

 

  `Aax  ,   Bbx       … (2) 

 

where the function  yxxtf ,,,   is a continuous in yxxt ,,, 

and defined over the domain:  

 

   TGGGTGGGRyxxt ,],0[,,, 2121        

         … (3)   

 

where G , 1G  and 2G  are close and bounded domains 

subset of the Euclidian space R  where A, B are positive 

constant. 

Suppose that the function  yxxtf ,,,   is satisfying following 

inequities:  

 

  ,,,, Myxxtf        … (4) 
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    212211222111 ,,,,,, xxLxxLyxxtgyxxtg     

… (6) 

 

for all  1Rt  and 12121 ,,,,, GxxxGxxx R    and 

221,, Gyyy  where 21321 ,,,,, LLKKKM  are positive 

constants and         




t

dssxsxsgstwxty ,,,, 0  where the 

function  stw ,  is defined and continuous on the domain -

 Tbtsa0 provided that where s, are a positive 

constants.  

 

We define the non–empty sets as follows:        
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… (7) 

 

where .max.   

 

Furthermore, we assumed that the greatest eigen–value of the 

following matrix: 
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is less than unity i.e. 

 

  1max oHh  
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where  

1311 LKKq



  and  2322 LKKq




    

.. (8) 

 

II. EXISTENCE OF THE SOLUTION:  

The study for existence of solution for the problem (1), (2) 

will be introduced by the following: 

  

1. Theorem 1: (Global Existence Theorem): 

Let the function  yxxtf ,,,   be defined in the domain (3), 

continuous in xxt ,, and satisfy the inequalities (4), (5) and (6), 

then the sequence of functions:     
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with  
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Converges uniformly on the domain 
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… (10) 

  

to the limit function  oxtx ,  which is satisfying the integral 

equation:  
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and  
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for   fGxTot  ,,  

where 
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Proof:  

The proof of this theorem has been given in details by [6]. 

 

Moreover, to prove that the solution   fo Gxtx ,1 for 

fo Gx  start by taking the following:  
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Since that the sequence   
omom xtx ,  is uniformly convergent 

on  To,  from the function ),( 0xtxm  on the same interval, 

then  
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Then the solution fGxtx ),( 0  

III. THE UNIQUENESS OF THE SOLUTION:   

The solution uniqueness study of the problem (1) and (2) to be 

gain by the following theorem.  

Theorem 2: Global Uniqueness Theorem [1]      

Let all the assumptions and conditions of theorem 1 be given. 

Then the problem (1), (2) has a unique solution on the domain 

(3).  

 

 

By assuming  oxtu ,  is another solution for (1), (2), i.e  
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Now, to prove    oooooo yxxtuyxxtx ,,,,,,    and 

   oo xtuxtx ,`,    the following inequality required to be 

proved using the principle of induction:  
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Same above technique could be utilized to prove the theorem 

1, the uniqueness solution of (1) and (2) to be got, due to 

oH m
o   as m  so that proceeding in the last inequality 

to the limit  

The equalities to be obtained 

   oom xtuxtx ,,   and    oom xtuxtx ,,    

… (19) 

 

Remark: By setting α=1, the results of Butris will be produced 

as it given by [2]. 
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