
Journal of Kufa for Mathematics and Computer Vol.5, No.1, Mar., 2018, pp 25-38

25

A classical approach for hiding encryption key in the same

encrypted text document

 Prof. Dr. Taleb A. S. Obaid
1
 Assist. Prof. Dr. Mohammed J. Khami

2

College of Computer Science and Information Technology, Basra Technical Institute,

 Basra University, Southern Technical University,

 Basra, Iraq. Basra, Iraq.

 tasobaid@gmail.com mjkhami@yahoo.com,

 Dr. Lemya Gh. Shehab
3

Basra Technical Institute,

Southern Technical University

Basra, Iraq.

Lemyaaldawood@yahoo.com

 Received October 22, 2017. Accepted for publication January 17, 2018

DOI: http://dx.doi.org/10.31642/JoKMC/2018/050104

Abstract --- Data encrypting and steganography techniques each have its own merits and weaknesses.

Crackers and hackers developed many software applications that can attack the weakness of these techniques

and thus can reach to the meaning of the private information and its existence.

In this paper, a simple technique is proposed to make use of encrypting and steganography merits

simultaneously, and thus makes any attempt for breaking both techniques at the same time harder than

applying each of them alone. The proposal uses English, Arabic, or mixed writing plain text. Encrypting the

text by AES-encrypting algorithm with an encryption key of 128 bit long and then hiding the encrypted text

with only one part of the encrypting key (sender key only), in another English/Arabic (cover), plain text. The

text hiding technique is done according to the nonprintable characters of the Unicode character set method.

The proposed technique is coded into a form of Matlab program. Experimenting with this paper technique

shows how difficult to break the system and thus can applying it in emailing private documents between users

connected to a virtual network on an insecure public channel.

Keywords --- encrypting and steganography techniques, hybrid systems, Unicode character set.

I. INTRODUCTION
Nowadays life depends completely on

internet and computing, or on what is called the

information technology (IT). However, the

existence of defenselessness in IT has created

some security issues that greatly affect the privacy

of individuals [1,2]. Many techniques are used to

protect privacy issues through the enforcement of

security rules and requirements. The most

common techniques to do this is either

transforming private data into a different form or

concealing its existence while it‟s on the way by a

suitable hiding method [3,4].

Cryptography, watermarking, and

steganography are examples of the most basic data

encrypting and hiding techniques that are being

used to address copyright management, protect

information, and conceal secrets [5,6].

The central to cryptographic operations

are cryptographic keys. A key is a piece of

variable data that is fed as input into a

cryptographic algorithm to perform

encryption/decryption operations. In a well-

Taleb A. S. Obaid Mohammed J. Khami Lemya Gh. Shehab

26

designed cryptographic scheme, the security of the

system depends only on the security of the keys

used.

The big matter facing the communication

security is how the messages cannot be read by

anyone except the intended recipient using a set of

algorithms combined with keys to convert the

original message (plain-text) to encrypted message

(cipher-text) and convert it back in the intended

recipient side to the original message (plain-text).

The field that related to this problem is called

cryptography (the science of writing secret codes),

so, now a day‟s become more important to

discourse this issue [7]. The real challenge facing

the security of communications is to hide the key

to prevent intruders from discovering it on the

internet.

Steganography is the art and science of

data hiding that makes data invisible by hiding (or

embedding) them in another piece of data, known

alternatively as the cover, the host, or the carrier.

There is a need to hide secret information inside

certain types of digital data. Storing, hiding, or

embedding secret information in all types of

digital data is one of the tasks of the field of

steganography. Steganography can be used to

prove copyright ownership, to identify attempts to

tamper with sensitive data and to embed

annotations, for more details see [8,9].

Practical cases prove that when encrypting

used with steganography techniques before

transmitting private and secret data on a public or

insecure channels, the results show an

enhancement in the security issues and make it

difficult for the intruders to obtain the real

meaning of such transmitted data. For this reasons,

we are going to apply suitable types of both

techniques in emailing text documents on a virtual

network of users.

The proposal work uses new structure

style to hide the encrypted text and its encrypting

key within another plain text (cover text). But

since both encrypting and steganography

techniques require their own keys, thus these

secret keys must be embedded in the same cover

text before transmitting. How and where these

keys are hidden this will be the main goal of our

proposal.

II. PROPOSED SYSTEM LAYOUT
Figure (1) depicts a virtual network of

users [A, B, C, D, E, F, G, and H], each user has

his own Private key, [Key(A), Key(B), Key(C),

Key(D), Key(E), Key(F), Key(G)]. The

transmit/receive operations among users of this

virtual network can be from one-to-all (Public-

mode), and one-to-one (Private-mode). In public-

mode all user must agree on using the same key in

their transmit/receive operations while in private-

mode any user must assign one private key to each

user in the network to control (allow, deny), the

delivering of his encrypted message (different keys

to different users). However, user key can be

changed whenever his owner finds it necessary to

do so.

Even though, users use some sort of

available secure mailing applications, that may

exist on the internet like electronic mail (e-mail),

they can use this paper method to increase security

of their important data when transmit it over

public channels and not depends on what such

public emailing applications offer from the

security point view.

The network needs not be made of

physically connected nodes (users), instead, it may

be made of a group of users apart from each other,

and all may use public and insecure channels in

mailing their secret and private text documents.

For example, a network can be imagined in the

case of big manufacturing company and some

expert peoples who are living apart across the

country and the company needs their suggestions

and evaluations about a newly designed product in

form of typed text reports.

The heart of the network management in

this proposal depends on running the same copy of

text document encrypt/decrypt program. The

program works according to the advanced

encryption standard (AES), algorithm with the use

of 128-bits (16-characters) long encrypting key. In

this paper, the underlying encrypt/decrypt key is

made by combining two keys. The first key (128-

bits long), is supplied by the sender (S-Key), while

the second key (also 128-bit long), is obtained

from the receiver (R-Key). The combined key

(SR-Key), will be used in plaintext document

encrypting process and when document encrypting

is completed, only sender key must be hidden

(according to a selected steganography technique),

in the encrypted document before sending it to the

other user (receiving user).

At the receiving end, the hidden sender

key is extracted first and then combined with the

receiver key (known to receiver since it is his key).

The new combined key will be used to decrypt the
encrypted text document (of course, after filtering

the received encrypted text from the hidden key

bytes). The workflow of this system can be
described at two different locations, sending and

receiving locations as in following:

Journal of Kufa for Mathematics and Computer Vol.5, No.1, Mar., 2018, pp 25-38

27

Sending location:

1. Sender private encrypting key, S-Key, is

Known to him. S-Key is 128 bits (or 16-

characters), long.

2. Receiver private encrypting key, R-Key,

could be obtained by asking the receiver for it.

R-Key must be also 128 bits long.

3. Combine S-Key with R-Key to get new

encrypting key SR-Key of 128 bits long too.

4. The sender selects the plain text document

that he wants to encrypt.

5. Encrypt the selected plain text document by

applying AES algorithm and SR-Key.

6. Hide only sender key, S-Key, in the encrypted

text document by applying suitable

steganography, hiding-technique.

7. Send the encrypted text document with hidden

S-Key in it to the receiver side.

Receiving location:

1. Read the received encrypted document.

2. Receiver private encrypting key, R-Key, is

Known to him. R-Key is 128 bits (or 16-

characters), long.

3. Sender encrypting key, S-Key, has to be

extracted from the received encrypted

document by applying suitable steganography,

extracting-technique.

4. Filtering the received encrypted text document

from the hidden S-Key data. The outcome of

this step is exactly like the encrypted text

document before the sender hides his S-Key in

it.

5. Combine S-Key with R-Key to get the original

encrypting key, SR-Key (128 bit long).

6. Decrypt the encrypted text document by AES

algorithm and SR-Key to obtain the original

sent plain text document.

Key combining operation:
Combining of S-Key with R-Key is done by

simple processing steps. These are:

Step-1: Read both S-Key and R-Key strings.

Step-2: Make sure that S-Key and R-Key have

exactly 128 bits (or 16-characters) long. If any

of them is less than 16 characters then append

spaces to it, until it is 16-characters long. But if

it is longer than 16 characters then issue an

error message to notify that.

Step-3: Convert both keys into the binary system.

Step-4: Reverse R-Key binary sequence in such

way that bit 128 becomes 1 and bit 127

becomes 2 and so on for all other bits. As

shown in Figure(2).

Step-5: Execute simple XOR between S-Key and

the reversed sequence of R-Key
Rev

 to obtain the

combined encrypting key, SR-key.

Note: In step-5, reversing only the R-Key binary

bit sequence is to reduce the probability of getting

a combined key, SR-Key, with all its bit, are set to

zero, since this is expected when executing XOR()

function between two identical values.

Hiding/extracting techniques:

Steganography techniques followed in this paper

work according to the use of the non-printable

characters of the Unicode character set from

[10,11]. In these techniques, the ASCI-value of

any character of the combined key, SR-Key, first

converted into its binary equivalent value, then

replacing each „0' and „1' of it with the

nonprintable characters of the code point of

200Chex (or 8204dec) and 200Dhex (or 8205dec)

respectively. For example the character „A' with

ASCI-value of (65)Dec or (01000001)Bin become

(200C 200D 200C 200C 200C 200C 200C 200D).

This new character representation can be hidden

(appended to or inserted in), in any character string

and no one can notice its existence neither can

appear when printing the whole string.

Encrypted text filtering operation:

Since the received encrypted document has the

sender key S-Key characters hidden in it thus,

filtering operation is needed to get only the

original encrypted message from the received

encrypted text. From the computer programing

side view, the applied filtering technique of this

paper is done by setting any character of the

received encrypted text with ASCI-value greater

than 255 to 0 (note the character with ASCI of 0 is

the null „ nothing ‟ character), and this means

removing any hidden data from the received text

document.

III. SYSTEM IMPLEMENTATION

 System steps are written and encoded into

a form of (m-file) Matlab encrypt/decrypt program

(Appendix A). The program can deal with only

English, only Arabic, or English mixed with

Arabic plain text documents. Both sender and

receiver must have a copy of this program to

encrypt and decrypt messages in between them.

An example of documents, before and after

encryption, are shown in Figure(3). Some of the

important processing steps and flow diagram, for

an English only, Arabic only and English/Arabic
mixed text documents are depicted in Figure(4) for

both sending and receiving locations.

Taleb A. S. Obaid Mohammed J. Khami Lemya Gh. Shehab

28

Conclusions

The central to cryptographic operations

are cryptographic keys. In a well-designed

cryptographic scheme, the security of the scheme

depends only on the security of the used-keys. Our

encrypting/hiding method concentrates on how

encrypting and hiding keys transmitted on opened

space without letting intruders know about them.

The following points of conclusions show some

important issues on our method:

1) The proposed encrypt/decrypt processing steps

of this work can work efficiently with any type

of encrypting/decrypting algorithms as long as

these algorithms apply an encrypting key.

2) When this paper method is used in an opened

and insecure transmitting media, such as a

public electronic mail, it will add more

security consideration points to what that

public media already have.

3) Hiding one part of the encrypting key (sender

encrypting key), into the encrypted document

by the nonprintable characters of the Unicode

character set has some advantages, and also

some disadvantages too, over the use of other

available hiding methods. Here is some of

them:-

a) Hiding by the Unicode method allows us to

recover %100 same original encrypted text

very easy and without any change in its

content or its configuration. This type of

recovery is very important at the decryption

end. Since changing any character type or its

position within the encrypted text will make

it difficult to decrypt it right again.

b) Filtering of the original encrypted text

from what is hidden in it (sender key data),

can be accomplished just by scanning the

received encrypted text one character at a

time and whenever a Unicode character is

met, it must be replaced by a null character

(a character with ASCI-value of zero).

c) The disadvantage of using the Unicode

character set method in hiding the sender

key is denoted by the big change in

encrypted text file size before and after

hiding the key. The size of the encrypted

text with the hidden key could be twice (or

more), as the size of the same text before

hiding sender key in it. The reasons for this

is that any character of the encrypted text

with the hidden key should be represented

by two bytes instead of one, and also due to

the application of the external encoding

system (1 to 7 Unicode characters sequence

for replacing each sender key character).

4) Added security consideration on

transmitting text documents by this paper

method, come from the following points:

I. Additive securities come from the

application of the encryption technique at

the first place. Different encrypting

techniques may have different difficulties

and may require more complicated

decrypted methods.

II. In the second place, additive securities

result from the applied steganography

technique. These additive securities could

come out as results of:

A) Hiding secret text (sender key in our

case), in a cover text (the encrypted text

document), could be done in many ways.

Hiding the encrypting key could be in a

pre-specified and known location (static),

or in randomly selected position

(dynamic), from those of the cover text.

Selection any way of these methods may

add more difficulties in recovering

hidden data back.

B) Sender key could be hidden in random

locations on the cover text according to

static or dynamic key location production

method (Note: hiding key and encrypting

key are not the same, as shown by their

names). Hence, should we use a static or
dynamic production method in generating

such key. And if dynamic key production

method is chosen, then what criteria must

one use as a seed for the random number

generator to determine the locations of

the key characters among those of the

cover text.

C) The hidden message in Unicode character

set hiding method is obtained by

encoding the secret text according to

suitable encoding system before hiding it

in the cover message. The selection of the

encoding system could depend on special

criteria such the use of language

character sequence, (In this paper the

letter-frequency sequence of the English

secret message text), and the applied

coding technique (Coding technique in

this work is the Hoffman coding). Part of

the obtained codebook is depicted in

Table(1). Characters ordering and

encoding techniques add more difficulties

to recover the hidden text and thus better

security.

Journal of Kufa for Mathematics and Computer Vol.5, No.1, Mar., 2018, pp 25-38

29

5) Using encrypting and steganography

techniques at the same time on one text data

object produce an encrypting-steganography

hybrid system. It enforces features and cancels

drawbacks of both techniques.

REFERENCES
[1] Philip Brey, Adam Briggle,and Edward

Spence, ”The Good Life in

Technological Age”, New York, Routledge,

Taylor & Francis, 2012

[2] G.Kalpana, P. V. Kumar and R.V. Krishnaiah,

“A Brief Survey on Security Issues in Cloud

and its Service Models", International Journal

of Advanced Research in Computer and

Communication Engineering, Vol. 4, Issue 6,

June 2015.

[3] Jayaram P, Ranganatha H R, Anupama H S,

“Information hiding using Audio

steganography”, The International Journal of

Multimedia & Its Applications, Vol.3, No.3,

August 2011

[4] Arvind Kumar, and Km. Pooja,

“Steganography- A Data Hiding Technique”,

International Journal of Computer

Applications, Vol. 9, Issue 7, Nov. 2010.

[5] Palak Mahajan, ”Steganography: A Data

Hiding Technique“, International Journal of

Advanced Research in Computer Science and

Software Engineering, Volume 4, Issue 11,

November 2014.

[6] C. C. Chang, P. Tsai, and M.H. Lin, "An

Adaptive Steganography for Index-based

images using Codeword Grouping", Advances

in Multimedia Information Processing –PCM,

Springer, Vol. 3333, pp 731-738, 2004.

[7] Melvin Hausner, “Notes on Number Theory

and Cryptography (V55.0106) Quantitative

Reasoning: 4 Cryptography “, New York

University, 2002.

[8] Debnath Bhattacharyya, Asmita Haveliya, and

Tai-hoon Kim, " Secure Data Hiding in Binary

Text Document for Authentication", Applied.

Mathematic. Information and Science, Vol. 8,

No. 1, 371-378 (2014).

[9] L. Y. Por, B. Delina, “Information Hiding: A

New Approach In Text Steganography”, 7th

Wseas Int. Conf. On Applied Computer &

Applied Computational Science (Acacos ‟08),

Hangzhou, China, (2008)

[10] M. J. Khami, “Unlimited size of English

plaintext-in-text hiding algorithm”,

International Journal Of Computer Science

and Engineering, Vol. 6, Issue 1, Dec. – Jan.

2017; 89-96.

[11] M. j. Khami, “New rules-based approach for

text data hiding", International Journal Of

Computer Science and Engineering, Vol. 6,

Issue 3, Apr May 2017; 1-20.

Taleb A. S. Obaid Mohammed J. Khami Lemya Gh. Shehab

30

Figure (1) Virtual network of users.

Figure (2) Combining S-Key and R-Key into SR-Key.

Journal of Kufa for Mathematics and Computer Vol.5, No.1, Mar., 2018, pp 25-38

31

Figure(3) An example of documents, before and after encryption.

Taleb A. S. Obaid Mohammed J. Khami Lemya Gh. Shehab

32

Figure(4) System flow diagram at both sending and receiving locations.

Journal of Kufa for Mathematics and Computer Vol.5, No.1, Mar., 2018, pp 25-38

33

Table(1) Part of system codebook.

Taleb A. S. Obaid Mohammed J. Khami Lemya Gh. Shehab

34

Appendix A : System Matlab files

Program 1: main_aes_encrypt5.m

clc;

clear;

% This program is to encrypt the content

of the plain text file

% "filename.txt" and save the encrypted

text in "En_filename.txt"

% Note:

% Sender and Receiver keys have

maximum lengths of 128 bits(16_chars).

%

% Dr. Mohammed J. Khami

% March - 2017

% mjkhami@yahoo.com

fclose all;

WD=cd();

cr_lf_char=[char(13),char(10)];

%% Program section (1):

% A) Get Encryption/Decryption Key.

[SPlainKey, RPlainKey]=getplainkey5();

PlainKeyLength1=length(SPlainKey);

PlainKeyLength2=length(RPlainKey);

if PlainKeyLength1<1 ||

PlainKeyLength1>16 || PlainKeyLength2<1 ||

PlainKeyLength2>16

 ttext='Error: Sender & Receiver Keys

must be 1-to-16 characters Long.';

uiwait(msgbox({ttext},'Error','error','modal'));

 cd(WD);

 clc;

 return;

end

CompositeKey=two_keys_in_one5(SPlain

Key, RPlainKey);

PlainKey=CompositeKey; % Encryption

key is ready.

% B)Initialize AES algorithm with

PlainKey>

[s_box, inv_s_box, w, poly_mat,

inv_poly_mat] = aes_init(PlainKey);

% C) Get Plaintext filename.

[filen1 path1] =uigetfile({'*.txt';},'Choose

Plain Text File: ');

if isequal(filen1,0) || isequal(path1,0)

 ttext='Error: Filename must not be

empty';

uiwait(msgbox({ttext},'Error','error','modal'));

 cd(WD);

 return % User cancelled.

end

PlainTextFileName= [path1 filen1];

FE1 = fopen(PlainTextFileName,'r');

%

if filen1(1:3)=='En_'

 ttext='Error: This file is allready

encrypted and can not be encrypted agian.';

uiwait(msgbox({ttext},'Error','error','modal'));

 cd(WD);

 return % User cancelled.

end

if strcmp(filen1(1:3),'De_')

 filen2=filen1(4:end);

end

filen2=['En_',filen1];

EncryptedTextFileName=[path1 filen2];

FE2=fopen(EncryptedTextFileName,'w');

%

plaintext=fread(FE1);

% Divid Current PlainText into slices of

16 characters.

PlainText=plaintext';

PlainTextLength=length(PlainText);

loop_int=fix(PlainTextLength/16);

loop_rem=mod(PlainTextLength,16);

if loop_rem>=1 && loop_rem<=15

 for i=loop_rem+1:16

 PlainText=[PlainText,' '];

 end

 loop_int=loop_int+1;

end

PlainText = double(PlainText);

for cy=1:loop_int

 PlainText1=PlainText((cy-

1)*16+1:cy*16);

 ciphertext = cipher (PlainText1, w,

s_box, poly_mat);

 if cy==1

 EncText =ciphertext;

 else

 EncText =[EncText,ciphertext];

 end

end % End of ciphering one compelet line

of plaint text.

EncText=hide_key5(SPlainKey,EncText);

fwrite(FE2,EncText,'ubit16');

fprintf('\n\n\tEncrption of(%s) is saved in

(%s)\n\n',filen1,filen2);

fclose all;

close all;

cd(WD);

% End of Encryption Program.

Journal of Kufa for Mathematics and Computer Vol.5, No.1, Mar., 2018, pp 25-38

35

Program 2: main_aes_decrypt5.m
clc;

clear;

% This program is to decrypt the content

of the encrypted text file

% "En_filename.txt" and save the

recoverd text in "De_filename.txt"

% Note:

% En_filename.txt must be encrypted

by "main_aes_encrypt5.m".

% The receiving key have maximum

lengths of 128 bits (16_chars).

%

% Dr. Mohammed J. Khami

% March - 2017

% mjkhami@yahoo.com

%% Variables declaration.

WD=cd(); % Current Directory

cr_lf_char=[char(13),char(10)]; %

Carriage-Return Symbole

[Letter,

Letter_BineCode,Letter_UniCode]=array_definitio

n5;

% Read file of encrypted text.

[filen1 pth1]

=uigetfile({'En_*.txt';},'Choose Encrypted Text

File: ');

if isequal(filen1,0) || isequal(pth1,0)

 ttext='Error: Filename must not be

empty';

uiwait(msgbox({ttext},'Error','error','moda

l'));

 cd(WD);

 return % User cancelled.

end

EncryptTextFileName= [pth1 filen1];

FE1=fopen(EncryptTextFileName,'r');

if filen1(1:3)=='De_'

 ttext='Error: File contains plain text &

can not be decrypted unless you change its name.';

uiwait(msgbox({ttext},'Error','error','moda

l'));

 cd(WD);

 return % User cancelled.

else

 filen2=['De_',filen1(4:end)];

end

DecryptTextFileName= [pth1,filen2];

FE2=fopen(DecryptTextFileName,'w');

EncryptedText=fread(FE1,'ubit16');

EncryptedText=EncryptedText';

[Plainkey,EncryptedText_Pure]=Extract_

Hidden_Key5(EncryptedText);

SPlainKey=Plainkey;

RPlainKey=getplainkey_receiver();

CompositeKey=two_keys_in_one5(SPlain

Key,RPlainKey);

PlainKey=double(CompositeKey);

[s_box, inv_s_box, w, poly_mat,

inv_poly_mat] = aes_init(PlainKey);

PlainText=EncryptedText_Pure;

PlainTextLength=length(PlainText);

% Divide PlainTex into slices each of 16-

characters.

loop_int=fix(PlainTextLength/16);

loop_rem=mod(PlainTextLength,16);

if loop_rem>0 && loop_rem<16

 for i=loop_rem+1:16

 PlainText=[PlainText,' '];

 end

 loop_int=loop_int+1;

end

PlainText0 = double(PlainText);

for cy=1:loop_int

 if cy==1

 PlainText1=PlainText0((cy-

1)*16+1:cy*16);

 else

 PlainText1=PlainText0((cy-

1)*16+1:cy*16);

 end

 decText = inv_cipher (PlainText1, w,

inv_s_box, inv_poly_mat);

 if cy==1

 DecText =decText;

 else

 DecText =[DecText,decText];

 end

end

fwrite(FE2,DecText);

fprintf('\n\tRecovered plain text is saved in

file(%s)\n',filen2);

FE3=fopen(filen2,'r');

fclose all;

close all;

cd(WD);

% End of Decryption Program.

Function 1: getplainkey5.m
function [SPlainKey,

RPlainKey]=getplainkey5()

SPlainKey='';

RPlainKey='';

PlainKey='';

prompt = {'Sender (Encryption)

Key?','Receiver (Decryption) Key?'};

dlg_title = 'Input Keys';

num_lines = 1;

defaultans ={'Khami1953';''};

Taleb A. S. Obaid Mohammed J. Khami Lemya Gh. Shehab

36

options='on';

PlainKey=inputdlg(prompt,dlg_title,num_l

ines,defaultans,options);

if isempty(PlainKey)

 return;

end

PlainKey1=char(PlainKey{1});

PlainKey2=char(PlainKey{2});

PlainKeyLength1=length(PlainKey1);

PlainKeyLength2=length(PlainKey2);

if PlainKeyLength1<16

 for i=1:16-PlainKeyLength1

 PlainKey1=[PlainKey1,' '];

 end

end

if PlainKeyLength2<16

 for i=1:16-PlainKeyLength2

 PlainKey2=[PlainKey2,' '];

 end

end

SPlainKey=PlainKey1;

RPlainKey=PlainKey2;

Function 2: two_keys_in_one5.m
function CompositeKey =

two_keys_in_one5(SenderKey,ReceiverKey)

%% Make sure both given keys are 16

char long.

s=length(SenderKey);

r=length(ReceiverKey);

if (s~=16)||(r~=16)

 CompositeKey='';

 return

end

a_bin='';

b_bin='';

for i=1:16

 a_bin=[a_bin,dec2bin(SenderKey(i),8)];

b_bin=[b_bin,dec2bin(ReceiverKey(i),8)];

end

ab=[];

for i=1:128

ab(i)=xor(str2num(a_bin(i)),str2num(b_bi

n(129-i)));

end

nk=reshape(ab,16,8);

CompositeKey=[];

for i=1:16

CompositeKey(i)=(bin2dec(num2str(nk(i,

1:8))));

end

Function 3: hide_key5.m
function KeyStegoLine=hide_key5(ts,tc)

%% Variables declaration for

steganography section.

[Letter,

Letter_BineCode,Letter_UniCode]=array_definitio

n5;

%% Start hiding algorithm

sizets=size(ts,2); % Determine size of

current secret text line .

sizetc=size(tc,2); % Determine size of

current cover text line .

rng(sizetc); % Set the random number

generator to (sizetc)

IdxCurrentCoverLine=randperm(sizetc);

field=1; % Special flag used in

[tablesearch() and cellsearch()]

 % functions.

StegoText= []; % Variable to hold the

stegano text

%

%% Embedding one character from secret

text line before it‟s

% corresponding character of the

corresponding cover text line.

%

for ct=1: sizetc

 if IdxCurrentCoverLine(ct)<=sizets

 %

 % tablesearch() function is used to

code each character of the

 % secret text line according to special

coding scheme which

 % applies two characters (200C and

200D) of the Unicode

 % character set.

 %

 GivenCellString=ts(1,

IdxCurrentCoverLine(ct));

 [CellName,CellBinCode,

CellUniCode]=tablesearch5(GivenCellString,

field);

 StegoText= [StegoText,' ',

char(CellUniCode)];

 end

 %

 GivenString=tc(1, ct);

 StegoText= [StegoText,' ',

dec2hex(double(GivenString),4)];

end

%

SizeStego=size(StegoText,2); % Get size

of Stego text line.

%

Journal of Kufa for Mathematics and Computer Vol.5, No.1, Mar., 2018, pp 25-38

37

% Each character of the resultant stego

text must be coded in form of

% two byte per character, i.e., as same as

the coding applied in

% Unicode character set.

%

KeyStegoLine= [];

for c=1:5: size(StegoText,2)

 T=StegoText(c+1:c+4);

 if ismember(' ',T)

 T=StegoText(c+2:c+5);

 end

 KeyStegoLine= [KeyStegoLine,

char(hex2dec(T))];

end

Function 4: array_definition5.m
function

[Letter,Letter_BinCode,Letter_UniCode]=

array_definition5

global Letter;

global Letter_BinCode;

global Letter_UniCode;

% Creation of Letter,Letter_BinCode, and

Letter_Unicode

Letter=[];

Letter=[{'

'};{'e'};{'t'};{'a'};{'o'};{'i'};{'n'};{'s'};{'h'};{'r'};{'d'

};

{'l'};{'c'};{'u'};{'m'};{'w'};{'f'};{'g'};{'y'};

{'p'};{'b'};{'v'};

{'k'};{'j'};{'x'};{'q'};{'z'};{'A'};{'B'};{'C'};

{'D'};{'E'};{'F'};

{'G'};{'H'};{'I'};{'J'};{'K'};{'L'};{'M'};{'N'

};{'O'};{'P'};{'Q'};

{'R'};{'S'};{'T'};{'U'};{'V'};{'W'};{'X'};{'

Y'};{'Z'};{'!'};{'"'};

{'#'};{'$'};{'%'};{'&'};{''''};{'('};{')'};{'*'};

{'+'};{','};

{'-

'};{'.'};{'/'};{'0'};{'1'};{'2'};{'3'};{'4'};{'5'};{'6'};

{'7'};

{'8'};{'9'};{':'};{';'};{'<'};{'='};{'>'};{'?'};{'

@'};{'['};{'\'};

{']'};{'^'};{'_'};{'`'};{'{'};{'|'};{'}'};{'~'};{c

har(13)};

{char(10)};{char(9)};{char(11)};{char(12)

};{char(14)};{char(15)};

{char(16)};{char(17)};{char(18)};{char(1

9)};{char(20)};{char(21)};

{char(22)};{char(23)};{char(24)};{char(2

5)};{char(26)};{char(27)};

{char(28)};{char(29)};{char(30)};{char(3

1)};{char(8)}; {char(7)};

{char(6)};{char(5)};{char(4)};{char(3)};{

char(2)};{char(1)}];

 Letter_BinCode=[

 {'0'};{'1'};{'00'};{'10'};{'01'};{'11'};

{'000'};{'001'};{'010'};{'011'};{'100'};{'10

1'};{'110'};{'111'};

{'0000'};{'0001'};{'0010'};{'0011'};{'0100'};{'010

1'};{'0110'};{'0111'};

{'1000'};{'1001'};{'1010'};{'1011'};{'1100'};{'110

1'};{'1110'};{'1111'};

{'00000'};{'00001'};{'00010'};{'00011'};{'00100'};

{'00101'};{'00110'};

{'00111'};{'01000'};{'01001'};{'01010'};{'01011'};

{'01100'};{'01101'};

{'01110'};{'01111'};{'10000'};{'10001'};{'10010'};

{'10011'};{'10100'};

{'10101'};{'10110'};{'10111'};{'11000'};

{'11001'};{'11010'};{'11011'};{'11100'};

{'11101'};{'11110'};{'11111'};

{'000000'};{'000001'};{'000010'};{'000011'};{'00

0100'};{'000101'};

{'000110'};{'000111'};{'001000'};{'001001'};{'00

1010'};{'001011'};

{'001100'};{'001101'};{'001110'};{'001111'};{'01

0000'};{'010001'};

{'010010'};{'010011'};{'010100'};{'010101'};{'01

0110'};{'010111'};

{'011000'};{'011001'};{'011010'};{'011011'};{'01

1100'};{'011101'};

{'011110'};{'011111'};{'100000'};{'100001'};{'10

0010'};{'100011'};

{'100100'};{'100101'};{'100110'};{'100111'};{'10

1000'};{'101001'};

{'101010'};{'101011'};{'101100'};{'101101'};{'10

1110'};{'101111'};

{'110000'};{'110001'};{'110010'};{'110011'};{'11

0100'};{'110101'};

{'110110'};{'110111'};{'111000'};{'111001'};{'11

1010'};{'111011'};

{'111100'};{'111101'};{'111110'};{'111111'}];

 Letter_UniCode=[];

 for i=1:size(Letter_BinCode,1)

 te=char(Letter_BinCode(i,1));

 dd=[];

 for j=1:size(te,2)

 if te(1,j)=='0'

 if j>1

 dd=[dd,' ','200C'];

 else

 dd=['200C'];

 end

 else

 if j>1

 dd=[dd,' ','200D'];

 else

 dd=['200D'];

 end

Taleb A. S. Obaid Mohammed J. Khami Lemya Gh. Shehab

38

 end

 end

 Letter_UniCode=[Letter_UniCode;{dd}];

 End

Function 5: getplainkey_receiver.m
function PlainKey=getplainkey_receiver()

PlainKey='';

while 1

 prompt={'Input Receiver Key (1 to 16)

characters? '};

 name = 'Input Receiver Key';

 defaultans = {' '};

 options.Resize ='on';

 options.WindoStyle ='modal';

 options.Interpreter = 'tex';

PlainKey=inputdlg(prompt,name,[1,40],

defaultans,options);

 PlainKey=char(PlainKey);

 if isempty(PlainKey)

 return;

 end

 PlainKey=PlainKey;

 PlainKeyLength=length(PlainKey);

 if PlainKeyLength<1 ||

PlainKeyLength>16

 uiwait(msgbox([{'Error: Key length

must be in'};{'between 1- to- 16

characters.'}],'Error','error','Modal'));

 cd(WD);

 clc;

 return;

 end

 break;

end

add_key=16-PlainKeyLength;

if PlainKeyLength<16

 for i=1:16-PlainKeyLength

 PlainKey=[PlainKey,' '];

 end

end

return

Function 6: tablesearch5.m
function [CellName,CellBinCode,

CellUniCode]=tablesearch5(GivenString, field)

global Letter;

global Letter_BinCode;

global Letter_UniCode;

CellName={};

CellBinCode={};

CellUniCode={};

if (field<1)||(field>3)||

isempty(GivenString)

 return

end

for i=1:size(Letter,1)

 if field==1

 id=strfind(Letter,GivenString);

 end

 if field==2

 id=strfind(Letter_BinCode,GivenString);

 end

 if field==3

 id=strfind(Letter_UniCode,GivenString);

 end

 if id{i,1}==1

 break

 end

end

if id{i,1}==1

 CellName=Letter(i);

 CellBinCode=Letter_BinCode(i);

 CellUniCode=Letter_UniCode(i);

else

 CellName={};

 CellBinCode={};

 CellUniCode={};

End

Note: Unlisted functions like aes_initi(),

cipher() and inv_cipher() have standard forms and

can be easily downloaded from the internet.

