A Fuzzy ∧- ideal of a *BH*-algebra

Karrar Deiaa Mohamed Department of Mathematics University of Kufa / Faculty of Computer Science and Mathematics Najaf, Iraq <u>karrard.alsabti@uokufa.edu.iq</u>

Abstract--- In this paper, we introduce the notions of \wedge - ideal of a \mathcal{BH} -algebra in ordinary and fuzzy senses. Also, we give some properties of them and link these notions with some types of ideals of \mathcal{BH} - algebra in ordinary and fuzzy senses .The image and preimage of fuzzy \wedge - ideal under a \mathcal{BH} homomorphism are investigated.

المستخلص – قدمنا في هذا البحث مفهوم مثالي جديد وهو مثالي ideal - ٨ الضبابي في جبر - BH , كما درسنا المثالي ideal - ٨ الاعتيادي وربطناها مع بعض المفاهيم والمثاليات في جبر - BH وأعطينا بعض خواص هذا المثالي في الحالة الاعتيادية والحالة الضبابية في جبر – BH وناقشنا الصورة والصورة العكسية لهذا المثالي تحت التشاكل في جبر - BH.

Keywords: BH-algebra, ideal of BH-algebra, fuzzy ideal of BH-algebra.

I. INTRODUCTION

The concept of \mathcal{BH} -algebra and the notion of ideal of a \mathcal{BH} -algebra have been introduced by Y. B. Jun, E. H. Roh and H. `S. Kim in 1998, [10]. In 2001, Q.Zhang,Y. B. Jun and E. H. Roh introduced a normal \mathcal{BH} -algebra [9]. Then, Y. B. Jun, E. H. Roh, H. S. Kim and Q.Zhang discussed more properties on \mathcal{BH} -algebras [9]. In 2012, H. H. Abbass and H. A. Dahham introduced the notion of completely closed ideal of a \mathcal{BH} -algebra[5].

And the fuzzy set concept has been introduced by L. A. Zadeh In 1965, [6]. In 2001, \mathbb{Q} .Zhang, E. H. \mathcal{R} oh and Y. B. Jun studied the fuzzy theory in \mathcal{BH} -algebras [8]

II. Preliminaries

Some essential notations and definitions of \mathcal{BH} -algebras and ideals of \mathcal{BH} – algebra in fuzzy and ordinary senses that we need in our work has been introduced in this section. **Definition (2.1) [2]:**

A nonempty set \mathcal{K} with a binary operation"*" and a constant 0 satisfying the following conditions:

1)
$$\varkappa * \varkappa = 0$$
, $\forall \varkappa \in \mathcal{K}$.
2) $\varkappa * \gamma = 0$ and $\gamma * \varkappa = 0$ infer $\varkappa = \gamma$,
 $\forall \varkappa, \gamma \in \mathcal{K}$.
3) $\varkappa * 0 = \varkappa, \forall \varkappa \in \mathcal{K}$
is called A \mathcal{BH} -algebra.

Definition (2.2) [5]:

An associative \mathcal{BH} -algebra is a \mathcal{BH} -algebra \mathcal{K} satisfying the following:

 $(\varkappa * \gamma) * Z = \varkappa * (\gamma * Z), \forall \varkappa, \gamma, Z \in \mathcal{K}.$

Definition (2.3) [2]:

A nonempty subset I of a \mathcal{BH} -algebra \mathcal{K} is known as an ideal of \mathcal{K} if it fulfills:

1)
$$0 \in I$$
.

2) $\varkappa * \gamma \in I$ and $\gamma \in I$ infer $\varkappa \in I$.

Definition (2.4) [5]:

A completely closed ideal *I* of a \mathcal{BH} algebra \mathcal{K} is an ideal of \mathcal{K} satisfying $x * \gamma \in I, \forall \varkappa, \gamma \in I.$

Definition (2.5) [1]:

A normal ideal I of a \mathcal{BH} -algebra \mathcal{K} is an ideal of \mathcal{K} satisfying the following :

 $\varkappa * (\varkappa * \gamma) \in I$ infers $\gamma * (\gamma * \varkappa) \in I$, for all $\varkappa, \gamma \in \mathcal{K}$.

Definition (2.6) [5]:

Let \mathcal{K} a \mathcal{BH} -algebra and I be a subset of \mathcal{K} , then I is known as a \mathcal{BH} -ideal of \mathcal{K} if satisfying the following conditions:

- 1) $0 \in I$
- 2) $\varkappa * \gamma \in I$ and $\gamma \in I \Longrightarrow \varkappa \in I$,
- 3) $\varkappa \in I$ and $\gamma \in \mathcal{K} \implies \varkappa * \gamma \in I$, $I * \mathcal{K} \subseteq I$.

Remark (2.7)[11]:

Let $(\mathcal{K}, *, 0)$ and $(\mathcal{Y}, *', 0')$ are \mathcal{BH} -algebras. A mapping $F: \mathcal{K} \rightarrow \mathcal{Y}$ is known as a homomorphism if $F(\varkappa * \gamma) = F(\varkappa) * F(\gamma)$ $\forall \ \varkappa, \ \gamma \in \mathcal{K}$. A homomorphism F is known as epimorphism if it is surjective. For any homomorphism $F: \mathcal{K} \to Y$, the set $\{ \varkappa \in \mathcal{K}: F(\varkappa) = 0' \}$ is called the kernel of F, meant by ker(F), if S is a subset of \mathcal{K} then the set { $F(s): s \in \mathcal{K}$ } is known as the image of S indicated by F(S) and if H is a subset of \mathbb{Y} then the set { $\varkappa \in \mathcal{K}$: $F(\varkappa) \in H$ } is known as the preimage of the set H. Notice that F(0)= 0'.

Proposition(2.8) [5]:

In a \mathcal{BH} -algebra, every \mathcal{BH} -ideal is a completely closed ideal.

Proposition (2.9) [5]:

Let \mathcal{K} and \mathcal{Y} are a \mathcal{BH} -algebra and I is an ideal of \mathcal{K} and $F: \mathcal{K} \to \mathcal{Y}$ be a \mathcal{BH} -epimorphism. Then F(I) is an ideal of \mathcal{Y} .

Proposition (2.10) [5]:

Let

 \mathcal{K} and \mathcal{Y} are a \mathcal{BH} -algebra and I is an ideal of \mathcal{Y} and $F: \mathcal{K} \to \mathcal{Y}$ be a \mathcal{BH} -epimorphism. Then $F^{-1}(I)$ is an ideal of \mathcal{K} .

Proposition (2.11) [5]:

If \mathcal{K} is a \mathcal{BH} -algebra and $\{I_j, j \in \lambda\}$ be an ideals family of \mathcal{K} . Then $\bigcap_{j \in \lambda} I_j$ is an ideal of \mathcal{K} .

Proposition (2.12) [5]:

The associative \mathcal{BH} -algebra \mathcal{K} is satisfying the following properties:

1)
$$0 * \varkappa = \varkappa \quad \forall \varkappa \in \mathcal{K}$$
.

2) $\varkappa * \gamma = \gamma * \varkappa \forall \varkappa, \in \mathcal{K}.$

Now, we give a survey about the fuzzy concepts of a \mathcal{BH} -algebra that we need later

Definition (2.13) [6]:

A fuzzy set (fuzzy subset) \mathcal{A} in a nonempty set \mathcal{K} is a function from \mathcal{K} as the domain into the unit closed interval of real numbers [0,1] as the range of \mathcal{A} . **Definition (2.14) [3]:**

For any two fuzzy set \mathcal{A} and \mathfrak{B} in \mathcal{K} we have:

 $(\mathcal{A} \cap \mathfrak{B}) \quad (\varkappa) = \min\{\mathcal{A}(\varkappa), \mathfrak{B} \quad (\varkappa)\}, \forall \varkappa \in \mathcal{K}. \\ (\mathcal{A} \cup \mathfrak{B}) \quad (\varkappa) = \max\{\mathcal{A}(\varkappa), \mathfrak{B}(\varkappa)\}, \forall \varkappa \in \mathcal{K}. \\ \mathcal{A} \cap \mathfrak{B} \text{ and } \mathcal{A} \cup \mathfrak{B} \text{ are fuzzy sets in } \mathcal{K} \\ \text{generally speaking, if } \{\mathcal{A}_{\alpha}, \alpha \in \Lambda\} \text{ is a family of fuzzy sets in } \mathcal{K} \\ (\bigcap_{j \in \Gamma} \mathcal{A}_j) (\varkappa) = \inf\{\mathcal{A}_j (\varkappa), j \in \Gamma\}, \forall \varkappa \in \mathcal{K}. \\ (\bigcup_{j \in \Gamma} \mathcal{A}_j) (\varkappa) = \sup\{\mathcal{A}_j (\varkappa), j \in \Gamma\}, \forall \varkappa \in \mathcal{K}. \\ \text{Which are also fuzzy sets in } \mathcal{K}. \\ \text{Definition (2.15) [7]:}$

Let \mathcal{A} be a fuzzy subset of \mathcal{K} , for all $\alpha \in [0,1]$. The set $\mathcal{A}_{\alpha} = \{ \varkappa \in \mathcal{K}, \mathcal{A}(\varkappa) \ge \alpha \}$ is known as a level subset of \mathcal{A} . Note that: \mathcal{A}_{α} is a subset of \mathcal{K} in the ordinary sense.

Definition (2.16) [2]:

A fuzzy ideal is a fuzzy subset \mathcal{A} of a \mathcal{BH} -algebra \mathcal{K} satisfying the following: 1) \mathcal{A} (0) $\geq \mathcal{A}$ (\varkappa) $\forall \varkappa \in \mathcal{K}$. 2) $\mathcal{A}(\varkappa) \geq \min\{\mathcal{A} (\varkappa * \gamma), \mathcal{A}(\gamma)\} \forall \varkappa, \gamma \in \mathcal{K}$. **Definition (2.17): [5]**

A fuzzy completely closed ideal \mathcal{A} of a \mathcal{BH} -algebra \mathcal{K} is a fuzzy ideal satisfying the following

 $\mathcal{A}(\varkappa * \gamma) \ge \min{\{\mathcal{A}(\varkappa), \mathcal{A}(\gamma)\}}, \forall \varkappa, \gamma \in \mathcal{K}$ Definition (2.18): [4]

Let \mathcal{K} and \mathcal{Y} be any two sets, \mathcal{A} be any fuzzy set in \mathcal{K} and $F: \mathcal{K} \to \mathcal{Y}$ be a function. The set $F^{-1}(\gamma) = \{ \varkappa \in \mathcal{K} \mid F(\varkappa) = \gamma \}, \forall \gamma \in \Upsilon.$ The fuzzy set \mathfrak{B} in Υ defined by $\mathfrak{B} (\gamma) = \{ \begin{array}{ll} \sup \{ \mathcal{A}(\mathbf{x}) \mid \mathbf{x} \in \mathbf{f}^{-1}(\gamma) \} ; \text{ if } & \mathbf{f}^{-1}(\gamma) \neq \emptyset \\ \mathbf{0} & : & \text{otherwise} \end{array} \},$ otherwise ' $\forall \gamma \in \Upsilon$, is called the image of \mathscr{A} under *F* and is denoted by F $(\mathcal{A}).$ **Definition (2.19) [4]:**

Let \mathcal{K} and Υ are any two sets, $F: \mathcal{K} \to \Upsilon$ be any function and \mathfrak{B} be a fuzzy subset of $F(\mathcal{A})$. The fuzzy subset \mathcal{A} of \mathcal{K} defined by: $\mathcal{A}(\varkappa) = \mathfrak{B}(F(\varkappa)), \forall \varkappa \in \mathcal{K}$ is called the preimage of \mathfrak{B} under F and is denoted by $F^{-1}(\mathfrak{B})$.

Theorem (2.20) [5]:

Let \mathcal{A} be a fuzzy ideal of a \mathcal{BH} -algebra \mathcal{K} . Then the set $\mathcal{K}_{\mathcal{A}} = \{ \varkappa \in \mathcal{K} : \mathcal{A} (\varkappa) = \mathcal{A} (0) \}$ is an ideal of \mathcal{K} .

III. The Main Results:

We define in this section, the notions of a \wedge - ideal of a \mathcal{BH} -algebra ordinary and fuzzy senses. Some properties of them are investigated. Also, relations among them and other structure of a \mathcal{BH} – algebra is given.

Definition (3.1) :

Let \mathcal{K} be a \mathcal{BH} -algebra. The ideal I of \mathcal{K} is said to be \wedge - ideal if it is satisfying: $\varkappa \land \gamma = \gamma * (\gamma * \varkappa) \in I \quad \forall \varkappa, \gamma \in I$ Example (3.2) [6]:

Let $\mathcal{K} = \{0, \beta, \delta, \sigma\}$ be a \mathcal{BH} - algebra with binary operation defined by :

*	0	β	δ	σ
0	0	β	0	δ
β	β	0	σ	0
δ	δ	δ	0	σ
σ	σ	σ	σ	0

The ideal I= $\{0,\beta\}$ of \mathcal{K} is \wedge - ideal since $0 \land 0 = 0 * (0 * 0) = 0 * 0 = 0$

 $0 \land \beta = \beta * (\beta * 0) = \beta * \beta = 0$

 $\beta \land 0 = 0 * (0 * \beta) = 0 * \beta = \beta$

 $\beta \land \beta = \beta * (\beta * \beta) = \beta * 0 = \beta$

Then I is a
$$\wedge$$
 - ideal of \mathcal{K} .

Proposition (3.3):

be a \mathcal{BH} -algebra, Then every Let \mathcal{K} completely closed ideal of $\mathcal K$ is a \wedge - ideal of $\mathcal{K}.$

Proof:

Let I be a completely closed ideal and н, E Ι γ Then $\gamma * \varkappa \in I$ [since I is a completely closed ideal of \mathcal{K} Now γ , $\gamma * \varkappa \in I$ implies that $\gamma \ast (\gamma \ast \varkappa) = \varkappa \wedge$ ∈ I. γ Then I is a \wedge - ideal of $\mathcal K$. **Proposition (3.4):**

Let \mathcal{K} be associative \mathcal{BH} - algebra. Then every ideal in $\mathcal K$ is a \wedge - ideal of $\mathcal K$. **Proof:**

Let \mathcal{K} be an associative \mathcal{BH} - algebra and I is an ideal of \mathcal{K} with \varkappa , $\gamma \in I$. Now,

 $\gamma * (\gamma * \varkappa) = (\gamma * \gamma) * \varkappa = 0 * \varkappa = \varkappa \in I$ [By proposition 2.12]

Then I is a \wedge - ideal of \mathcal{K} .

Corollary (3.5):

Every \mathcal{BH} – ideal is a \wedge - ideal.

Proof:

Is directly from propositions (2.8) and (3.3).

Proposition (3.6):

Every normal ideal of associative \mathcal{BH} -algebra \mathcal{K} is a \wedge - ideal. **Proof:**

If I is a normal ideal of \mathcal{K} and let $\varkappa, \gamma \in I$. Now,

 $\varkappa * (\varkappa * \gamma) = (\varkappa * \varkappa) * \gamma = 0 * \gamma = \gamma \in I$

[By proposition 2.12]

Thus $\varkappa * (\varkappa * \gamma) \in I \Rightarrow \gamma * (\gamma * \varkappa) \in I$

[If I is a normal ideal]

 \Rightarrow I is a \wedge - ideal of \mathcal{K} .

Proposition (3.7):

If I is a \wedge - ideal of \mathcal{K} and $F: \mathcal{K} \to \mathcal{Y}$ be a \mathcal{BH} – epimorphism. Then F(I) is a \wedge - ideal of Υ.

Proof:

∵ I is an Λ - ideal of К. \Rightarrow I is an ideal \Rightarrow F (I) is an ideal of Υ [Using proposition (2.9)] Now, let \varkappa , $\gamma \in F$ (I) Then $\exists \alpha, \beta \in I$ such that

$$F(\alpha) = \varkappa, F(\beta) = \gamma$$

$$\Rightarrow \beta * (\beta * \alpha) \in I \quad [since \ I \ is \land - ideal]$$

$$\Rightarrow F(\beta * (\beta * \alpha)) \in F(I)$$

$$\Rightarrow F(\beta) * F(\beta * \alpha) \in F(I)$$

$$\Rightarrow F(\beta) * (F(\beta) * F(\alpha)) \in F(I)$$

$$\Rightarrow \gamma * (\gamma * \varkappa) \in F(I)$$

Then F (I) is $a \wedge - \text{ideal } of Y$.

Proposition (3.8):

Let $: \mathcal{K} \to \mathcal{Y}$ be a \mathcal{BH} – epimorphism and I be \wedge - ideal of Υ .Then F^{-1} (I) is a \wedge - ideal of \mathcal{K} .

Proof:

 \therefore I is a \wedge - ideal of Υ \Rightarrow F^{-1} (I) is an ideal in \mathcal{K} [Proposition 2.10]

Now, let
$$\varkappa$$
, $\gamma \in F^{-1}(I)$

$$\Rightarrow F(\varkappa), F(\gamma) \in I$$

$$\Rightarrow F(\gamma) *'(F(\gamma) *'F(\varkappa)) \in I$$
[Since I is an \wedge - ideal of Υ]

$$\Rightarrow F(\gamma) *'F(\gamma * \varkappa) \in I$$

$$\Rightarrow F(\gamma * (\gamma * \varkappa)) \in I$$

$$\Rightarrow \gamma * (\gamma * \varkappa) \in F^{-1}(I)$$
Then $F^{-1}(I)$ is a \wedge - ideal of \mathcal{K} .
Proposition (3.9):

Let $F: \mathcal{K} \to Y$ is a \mathcal{BH} – homomorphism. Then ker (*F*) is a \land - ideal of .

Proof:

It is clear that ker (F) is an ideal of \mathcal{K} .

Now, let
$$\varkappa$$
, $\gamma \in ker(F)$

$$\Rightarrow F(\varkappa) = 0', F(\gamma) = 0'$$

$$\Rightarrow F(\gamma * (\gamma * \varkappa)) = F(\gamma) *'(F(\gamma * \varkappa))$$

$$= F(\gamma) *'(F(\gamma) *'F(\varkappa))$$

$$= 0'*'(0' *'0')$$

Then $\gamma * (\gamma * \varkappa) \in ker(F)$

Then ker (*F*) is a \wedge - ideal of \mathcal{K} .

Proposition (3.10):

Let $\{I_j, j \in \lambda\}$ be a family of \wedge - ideals of a \mathcal{BH} - algebra \mathcal{K} . Then $\bigcap_{j \in \lambda} I_j$ is a \wedge - ideal of \mathcal{K} .

Proof:

 $: I_j \text{ is a } \land \text{-ideal of } \mathcal{K}, \forall j \in \lambda$

 \Rightarrow I_{*i*} is an ideal of \mathcal{K} , $\forall j \in \lambda$

 $\Rightarrow \bigcap_{j \in \lambda} I_j \text{ is an ideal} \\ \text{[using proposition (2.11)]}$

Now, let *x* , $\gamma \in \bigcap_{j \in \lambda} I_j$

$$\Rightarrow \varkappa, \gamma \in I_i$$
, for each $j \in \lambda$

 $\Rightarrow \gamma * (\gamma * \varkappa) \in I_j, \forall j \in \lambda$ [since I_j is \land - ideal]

 $\Rightarrow \gamma * (\gamma * \varkappa) \in \bigcap_{j \in \lambda} I_j$

Therefore, $\bigcap_{i \in \lambda} I_i$ is a \wedge - ideal of \mathcal{K} .

Proposition (3.11):

In a \mathcal{BH} - algebra \mathcal{K} if $\{I_j, j \in \lambda\}$ is a chain of \wedge - ideals. Then $\bigcup_{j \in \lambda} I_j$ is a \wedge - ideal of \mathcal{K} .

Proof:

Since I_j is \wedge - ideal of \mathcal{K} , $\forall j \in \lambda$ $\Rightarrow I_j$ is an ideal of \mathcal{K} , $\forall j \in \lambda$ Therefore, $\bigcup_{j \in \lambda} I_j$ is an ideal of \mathcal{K} . Now, let \varkappa , $\gamma \in \bigcup_{j \in \lambda} I_j$ $\Rightarrow I_j, I_k \in \{I_j\}_{j \in \lambda}, \exists \varkappa \in I_j, \gamma \in I_j$ Then either $I_k \subseteq I_j$ or $I_j \subseteq I_k$ If $I_j \subseteq I_k$ $\Rightarrow \varkappa, \gamma \in I_k$ $\Rightarrow \gamma * (\gamma * \varkappa) \in I_k$ Similarly, If $I_k \subseteq I_j$ $\Rightarrow \gamma * (\gamma * \varkappa) \in \bigcup_{j \in \lambda} I_j$

Therefore, $\bigcup_{i \in \lambda} I_i$ is a \wedge - ideal of \mathcal{K} .

Definition (3.12):

Let \mathcal{K} be a \mathcal{BH} -algebra. A fuzzy ideal \mathcal{A} of \mathcal{K} is known as a fuzzy \wedge - ideal of \mathcal{K} if it is satisfies $\mathcal{A}(\gamma * (\gamma * \varkappa)) \ge \min{\{\mathcal{A}(\varkappa), \mathcal{A}(\gamma)\}}, \forall \varkappa, \gamma \in \mathcal{K}.$ **Theorem (3.13):** In a \mathcal{BH} - algebra \mathcal{K} if $\gamma * (\gamma * \varkappa) = z, z \in \{0, \varkappa, \gamma\} \forall \varkappa, \gamma \in \mathcal{K}.$ Then every fuzzy ideal is a fuzzy \wedge - ideal of \mathcal{K} **Proof:** Let \mathcal{A} be a fuzzy ideal and $\varkappa, \gamma \in I$ If $\gamma * (\gamma * \varkappa) = 0$ $\Rightarrow \mathcal{A}(\gamma * (\gamma * \varkappa)) = \mathcal{A}(0) \ge \min{\{\mathcal{A}(\varkappa), \mathcal{A}(\gamma)\}}$

If $\gamma * (\gamma * \varkappa) = \varkappa$

 $\Rightarrow \mathcal{A}(\gamma * (\gamma * \varkappa)) = \mathcal{A}(\varkappa) \ge \min\{\mathcal{A}(\varkappa), \mathcal{A}(\gamma)\}$ If $\gamma * (\gamma * \varkappa) = \gamma$ $\Rightarrow \mathcal{A}(\gamma * (\gamma * \varkappa)) = \mathcal{A}(\gamma)$ $\ge \min\{\mathcal{A}(\varkappa), \mathcal{A}(\gamma)\}$

Then \mathcal{A} is a fuzzy \wedge - ideal of \mathcal{K} .

Proposition (3.14):

In associative \mathcal{BH} -algebra \mathcal{K} . Every fuzzy ideal is a fuzzy \wedge - ideal. **Proof:** Let \mathcal{A} be a fuzzy ideal, and $\varkappa, \gamma \in \mathcal{K}$ $\mathcal{A}(\gamma * (\gamma * \varkappa)) = \mathcal{A}((\gamma * \gamma) * \varkappa)$ $= \mathcal{A}(0* \varkappa) = \mathcal{A}(\varkappa)$

 $[0 * \varkappa = \varkappa \text{ by proposition (2.12)}]$

$$\Rightarrow \mathcal{A}(\gamma \ast (\gamma \ast \varkappa)) \geq \min \{\mathcal{A}(\varkappa), \mathcal{A}(\gamma)\}$$

Then \mathcal{A} is a fuzzy \wedge - ideal of \mathcal{K} .

Theorem (3.15):

In a \mathcal{BH} - algebra \mathcal{K} , \mathcal{A} is a fuzzy \wedge - ideal if and only if \mathcal{A}_{α} is a \wedge - Ideal of \mathcal{K} , for all $\alpha \in [0, 1], \mathcal{A}(0) = \sup_{\varkappa \in \mathcal{K}} \mathcal{A}(\varkappa)$.

Proof:

It is clear that \mathcal{A}_{α} is an ideal of \mathcal{K} .

Now, Let $\varkappa, \gamma \in \mathcal{A}_{\alpha}$. Then $\mathcal{A}(\varkappa) \geq \alpha$ and $\mathcal{A}(\gamma) \geq \alpha$ implies that $\min\{\mathcal{A}(\varkappa), \mathcal{A}(\gamma)\} \geq \alpha$.

But, $\mathcal{A}(\gamma * (\gamma * \varkappa)) \ge \min \{\mathcal{A}(\varkappa), \mathcal{A}(\gamma)\}$ [since \mathcal{A} is a fuzzy \land - ideal]

 $\Rightarrow \mathcal{A}(\gamma * (\gamma * \varkappa)) \ge \alpha$ $\Rightarrow \gamma * (\gamma * \varkappa) \in \mathcal{A}_{\alpha}$

Then \mathcal{A}_{α} is a \wedge - ideal of \mathcal{K} .

Conversely,

It is clear that \mathcal{A} is a fuzzy ideal of \mathcal{K} .

Let $\varkappa, \gamma \in \mathcal{K} \Rightarrow \mathcal{A}(\varkappa), \mathcal{A}(\gamma) \in [0, \mathcal{A}(0)]$

Now, let $\alpha = \min \{ \mathcal{A}(\varkappa), \mathcal{A}(\gamma) \}$

Then $\mathcal{A}(\varkappa) \geq \alpha$ and $\mathcal{A}(\gamma) \geq \alpha$ implies that $\varkappa, \gamma \in \mathcal{A}_{\alpha}$. Thus $\gamma * (\gamma * \varkappa) \in \mathcal{A}_{\alpha}$ [since \mathcal{A}_{α} is \land - ideal of \mathcal{K}]

Hence

 $\mathcal{A}(\gamma * (\gamma * \varkappa)) \ge \alpha = \min \{ \mathcal{A}(\varkappa), \mathcal{A}(\gamma) \}.$ Therefore, \mathcal{A} is a fuzzy \land - ideal of \mathcal{K} .

Theorem (3.16):

Let \mathcal{A} be a fuzzy \wedge - ideal of a \mathcal{BH} - algebra \mathcal{K} . Then the set

 $\mathcal{K}_{\mathcal{A}} = \{ \ \varkappa \in \mathcal{K} \colon \mathcal{A} \ (\varkappa) = \mathcal{A}(0) \ \} \text{is a } \land \text{- ideal} \\ \text{of } \mathcal{K}.$

Proof:

If \mathcal{A} is a fuzzy \wedge - ideal of \mathcal{K} .

 $\Rightarrow \mathcal{A}$ is a fuzzy ideal of \mathcal{K} .

 $\Rightarrow \mathcal{K}_{\mathcal{A}}$ is an ideal [By Theorem (2.20)]

Now let $\varkappa, \gamma \in \mathcal{K}_{\mathcal{A}}$

$$\Rightarrow \mathcal{A}(\varkappa) = \mathcal{A}(\gamma) = \mathcal{A}(0)$$

$$\Rightarrow \min\{\mathcal{A}(\mathcal{H}), \mathcal{A}(\gamma)\} = \mathcal{A}(0)$$

But,

 $\mathcal{A}(\gamma \ast (\gamma \ast \varkappa)) \geq \min \{\mathcal{A}(\varkappa) \mathcal{A}(\gamma)\} = \mathcal{A}(0)$

[Since \mathcal{A} is a fuzzy \wedge - ideal]

 $\mathcal{A}\left(\boldsymbol{\gamma} \ast \left(\boldsymbol{\gamma} \ast \boldsymbol{\varkappa}\right)\right) = \mathcal{A}(0)$

Then, $\gamma * (\gamma * \varkappa) \in \mathcal{K}_{\mathcal{A}}$

Therefore, $\mathcal{K}_{\mathcal{A}}$ is a \wedge - ideal of \mathcal{K} .

<u>Theorem (3.17):</u>

Let \mathcal{K} be a \mathcal{BH} -algebra and \mathcal{A} be a fuzzy set of \mathcal{K} . Then \mathcal{A} is a fuzzy \wedge - ideal of \mathcal{K} if and only if $\overline{\mathcal{A}}(\varkappa) = \mathcal{A}(\varkappa) + 1 - \mathcal{A}(0)$ is a fuzzy \wedge -ideal of \mathcal{K} .

Proof:

If \mathcal{A} is a fuzzy \wedge - ideal of \mathcal{K} $\Rightarrow \mathcal{A}$ is a fuzzy ideal of \mathcal{K} . It is clear that $\overline{\mathcal{A}}$ is a fuzzy ideal of \mathcal{K} . Now, let $\varkappa, \gamma \in \mathcal{K}$

$$\mathcal{A} \left(\boldsymbol{\gamma} \ast \left(\boldsymbol{\gamma} \ast \varkappa \right) \right) = \mathcal{A} \left(\boldsymbol{\gamma} \ast \left(\boldsymbol{\gamma} \ast \varkappa \right) \right) + 1 \text{-} \mathcal{A} \left(0 \right)$$

$$\Rightarrow \bar{\mathcal{A}} (\gamma \ast (\gamma \ast \varkappa))$$

 $\geq \min \{\mathcal{A}(\varkappa), \mathcal{A}(\gamma)\} + 1 - \mathcal{A}(0)$

$$\Rightarrow \mathcal{A} \left(\gamma \ast (\gamma \ast \varkappa) \right)$$

 $\geq \min \left\{ \mathcal{A}(\varkappa) + (1 - \mathcal{A}(0)), \mathcal{A}(\gamma) + (1 - \mathcal{A}(0)) \right\}$

$$\Rightarrow \mathcal{A} (\gamma * (\gamma * \varkappa)) \geq \min\{\mathcal{A}(\varkappa) \mathcal{A} (\gamma)\}$$

Then $\overline{\mathcal{A}}$ is a fuzzy \wedge - ideal of \mathcal{K} .

Conversely,

Let $\overline{\mathcal{A}}$ be a fuzzy \wedge - ideal of \mathcal{K}

It is clear that \mathcal{A} is a fuzzy ideal of \mathcal{K} .

Now let $\varkappa, \gamma \in \mathcal{K}$

$$\mathcal{A}(\gamma * (\gamma * \varkappa)) = \bar{\mathcal{A}}(\gamma * (\gamma * \varkappa)) - 1 + \mathcal{A}(0)$$

 $\Rightarrow \mathcal{A}(\gamma * (\gamma * \varkappa)) \ge \\ \min \left\{ \bar{\mathcal{A}}(\varkappa), \bar{\mathcal{A}}(\gamma) \right\} - 1 + \mathcal{A}(0)$

 $\Rightarrow \mathcal{A}(\gamma * (\gamma * \varkappa)) \geq \\ \min \{\bar{\mathcal{A}}(\varkappa) - 1 + \mathcal{A}(0), \bar{\mathcal{A}}(\gamma) - 1 + \mathcal{A}(0)\} \\ \Rightarrow \mathcal{A}(\gamma * (\gamma * \varkappa)) \geq \min \{\mathcal{A}(\varkappa), \mathcal{A}(\gamma)\}$

Then is a fuzzy \wedge - ideal of \mathcal{K} .

Proposition (3.18):

Let \mathcal{K} be \mathcal{BH} -algebra, and $\{\mathcal{A}_j: j \in \Gamma\}$ be a family of fuzzy \wedge - ideal of \mathcal{K} . Then $(\bigcap_{j \in \Gamma} \mathcal{A}_j)$ is a fuzzy \wedge - ideal of \mathcal{K} .

Proof:

It is clear that $(\bigcap_{j\in\Gamma} \mathcal{A}_j)$ is a fuzzy ideal of \mathcal{K} .

Now, let
$$\varkappa$$
, $\gamma \in \mathcal{K}$
 $(\bigcap_{j \in \Gamma} \mathcal{A}_j) (\gamma * (\gamma * \varkappa))$
 $= \inf \{ \mathcal{A}_j (\gamma * (\gamma * \varkappa)), j \in \Gamma \}$
 $\geq \inf \{ \min \{ \mathcal{A}_j (\varkappa), \mathcal{A}_j (\gamma) \}, j \in \Gamma \}$

 $\geq \min \{ \inf \mathcal{A}_{j} (\varkappa), \inf \mathcal{A}_{j}(\gamma) \}, j \in \Gamma \}$ $\geq \min \{ (\bigcap_{j \in \Gamma} \mathcal{A}_{j}) (\varkappa), (\bigcap_{j \in \Gamma} \mathcal{A}_{j}) (\gamma) \}$ $\Rightarrow (\bigcap_{j \in \Gamma} \mathcal{A}_{j}) (\gamma * (\gamma * \varkappa))$ $\geq \min \{ (\bigcap_{j \in \Gamma} \mathcal{A}_{j}) (\varkappa), (\bigcap_{j \in \Gamma} \mathcal{A}_{j}) (\gamma) \}$ $\forall \varkappa, \gamma \in \mathcal{K}$

Therefore, $(\bigcap_{j\in\Gamma} \mathcal{A}_j)$ is a fuzzy \wedge - ideal of \mathcal{K} .

Proposition (3.19):

Let \mathcal{K} be a \mathcal{BH} -algebra, and $\{\mathcal{A}_j: j \in \Gamma\}$ be a chain of fuzzy \wedge - ideals of \mathcal{K} .

Then $(\bigcup_{j\in\Gamma} \mathcal{A}_j)$ is a fuzzy \wedge - ideal of \mathcal{K} .

Proof:

It is clear that $(\bigcup_{j\in\Gamma} \mathcal{A}_j)$ is a fuzzy ideal of \mathcal{K} .

Now, let $\varkappa, \gamma \in \mathcal{K}$

$$(\bigcup_{j\in\Gamma}\mathcal{A}_j)(\gamma*(\gamma*\varkappa))$$

 $= \sup\{ \mathcal{A}_i(\gamma * (\gamma * \varkappa)), j \in \Gamma \}$

 $\geq \sup\{ \min(\mathcal{A}_j (\varkappa), \mathcal{A}_j (\gamma), j \in \Gamma \} \\ [\text{Since } \mathcal{A}_j \text{ is a fuzzy } \land \text{ - ideal}, \forall j \in \Gamma] . \\ [\text{By definition (2.16)}] \end{cases}$

 $\geq \min \{ \sup(\mathcal{A}_i(\varkappa), \sup \mathcal{A}_i(\gamma)), j \in \Gamma \}$

 $\geq \min \{ (\bigcup_{j \in \Gamma} \mathcal{A}_j) (\varkappa), (\bigcup_{j \in \Gamma} \mathcal{A}_j) (\gamma) \}$

 $\Rightarrow (\bigcup_{j \in \Gamma} \mathcal{A}_j) (\gamma * (\gamma * \varkappa))$ $\geq \min\{ (\bigcup_{j \in \Gamma} \mathcal{A}_j) (\varkappa), (\bigcup_{j \in \Gamma} \mathcal{A}_j) (\gamma) \}$ $\forall \varkappa, \gamma \in \mathcal{K}$

Therefore, $(\bigcup_{j\in\Gamma} \mathcal{A}_j)$ is a fuzzy \wedge - ideal of \mathcal{K} .

Theorem (3.20):

Let $(\mathcal{K}, *, 0)$ and (Y, *', 0') are two \mathcal{BH} algebra, $F: \mathcal{K} \to Y$ be a \mathcal{BH} - epimorphism. If \mathcal{A} is a fuzzy \wedge - ideal of \mathcal{K} , then $F(\mathcal{A})$ is a fuzzy \wedge - ideal of Y.

Proof:

It is clear that $F(\mathcal{A})$ is a fuzzy ideal of \mathbb{Y}

Now, let
$$\gamma_1$$
, $\gamma_2 \in \Upsilon$.

We have
$$(F(\mathcal{A}))(\gamma_1 *' (\gamma_1 *' \gamma_2))$$

$$= \sup \{ \mathcal{A}(\varkappa_1 * (\varkappa_1 * \varkappa_2)) \mid \varkappa_1 \in F^{-l}(\gamma_1), \\ \varkappa_2 \in F^{-l}(\gamma_2) \text{ and } (\varkappa_1 * (\varkappa_1 * \varkappa_2)) \\ \in F^{-l}(\gamma_1 *' (\gamma_1 *' \gamma_2)) \} \text{ [By definition (2.18)]}$$

$$\geq \sup \{ \min\{ \mathcal{A}(\varkappa_1) : \varkappa_1 \in F^{-l}(\gamma_1), \\ \min\{ \mathcal{A}(\varkappa_2) : \varkappa_2 \in F^{-l}(\gamma_2) \} \}$$

[Since \mathcal{A} is a fuzzy \wedge -ideal of]

$$= \min \{ \sup \mathcal{A}(\varkappa_{1}) : \varkappa_{1} \in F^{-1}(\gamma_{1}), \\ \min \{ \mathcal{A}(\varkappa_{2}) : \varkappa_{2} \in F^{-1}(\gamma_{2}) \} \\ = \min \{ F(\mathcal{A})(\gamma_{1}), F(\mathcal{A})(\gamma_{2}) \}. \\ \text{Then} (F(\mathcal{A}))(\gamma_{1} *'(\gamma_{1} *' \gamma_{2})) \\ \ge \min \{ F(\mathcal{A})(\gamma_{1}), F(\mathcal{A})(\gamma_{2}) \} \\ \end{cases}$$

Therefore, $F(\mathcal{A})$ is a fuzzy \wedge - ideal of Υ .

Theorem (3.21):

If $(\mathcal{K}, *, 0)$ and $(\mathcal{Y}, *', 0')$ are two \mathcal{BH} -algebra, $F: \mathcal{K} \to \mathcal{Y}$ be a \mathcal{BH} -homomorphism. If \mathfrak{B} is a fuzzy \wedge - ideal of \mathcal{Y} , then $F^{-1}(\mathfrak{B})$ is a fuzzy \wedge - ideal of \mathcal{K} .

Proof

It is clear that $F^{-1}(\mathfrak{B})$ is a fuzzy ideal of \mathcal{K} .

Now, let
$$\varkappa_1$$
, $\varkappa_2 \in \mathcal{K}$. Then
 $(F^{-1}(\mathfrak{B}))(\varkappa_1 * (\varkappa_1 * \varkappa_2))$

$$= \mathfrak{B} \left(F(\varkappa_1 \ast (\varkappa_1 \ast \varkappa_2)) \right)$$

 $= \{ \mathfrak{B} (F(\varkappa_1) *' (F(\varkappa_1) *' F(\varkappa_2)) \}$

[Since *F* is a homomorphism]

$$\geq \min \{ \mathfrak{B}(F(\varkappa_1)), \mathfrak{B}(F(\varkappa_2)) \}.$$

[Since (\mathfrak{B} be a fuzzy \wedge - ideal)]

 $= min \{ F^{-1}(\mathfrak{B})(\varkappa_1), F^{-1}(\mathfrak{B})(\varkappa_2) \}.$

So, $(F^{-1}(\mathfrak{B}))(\varkappa_1 * (\varkappa_1 * \varkappa_2))$ $\geq \min \{ F^{-1}(\mathfrak{B})(\varkappa_1), F^{-1}(\mathfrak{B})(\varkappa_2) \}.$

Thus, $F^{-1}(\mathfrak{B})$ is a fuzzy \wedge - ideal of \mathcal{K} .

References

[1] A. B.Saeid, A. Namdar and R. A. Borzooei,"Ideal Theory of *BCH*-Algebras", world applied Sciences Journal 7 (11):1446-1455, 2009.

[2] C. H. Park, "Interval-valued fuzzy ideal in \mathcal{BH} -algebras", Advance in fuzzy set and systems 1(3), 231–240, 2006.

[3] D. Dubois and *H*. Prade, "Fuzzy Sets And Systems", Academic Press. Inc. (London) Ltd., Academic Press. INC. fifth Avenue, New York, 1980.

[4] E.M. kim and S. S. Ahn "On Fuzzy n-fold Strong Ideals of BH- algebras", J. Appl. Math & Informatics. 30,(No.3) – 4, pp. 665-676,2012.
[5] H. H. Abass and H. A. Dahham, "A Completely Closed Ideal Of a BG- Algebra", first edition, Scholar's press, Germany 2016.

[6] L. A. Zadeh, "Fuzzy Sets", Information and control, Vol. 8, PP. 338-353, 1965.

[7] L. Martinez, "Fuzzy Modules Over Fuzzy Rings in Connection with Fuzzy Ideal of Ring", J. Fuzzy Math. Vol.4, P.843-857, 1996.

[8] Q. Zhang, E. H. Roh and Y. B. Jun, "On Fuzzy BH-algebras", J. Huanggang, Normal Univ. 21(3), pp. 14–19, 2001.
[9] Q.Zhang, Y. B. Jun and E. H. Roh, "On the Product of Content o

[9] Q.Zhang, Y. B. Jun and E. H. Roh, "On the Branch of *BH*-algebras", Scientiae Mathematicae Japonicae Online, Vol.4, pp.917-921,2001.

[10] Y. B. Jun, E. H. Roh and H. S. Kim, "On \mathcal{BH} -algebras", Scientiae Mathematicae 1(1), pp. 347–354, 1998.

[11] Y. B. Jun, H. S. Kim and M. Kondo," On \mathcal{BH} -relations in \mathcal{BH} -algebras", Scientiae Mathematicae Japonicae Online, Vol.9, pp. 91–94, 2003.