A Fuzzy \wedge - ideal of a $\mathcal{B \mathcal { H }}$-algebra

Karrar Deiaa Mohamed
Department of Mathematics
University of Kufa / Faculty of Computer Science and Mathematics
Najaf, Iraq
karrard.alsabti@uokufa.edu.iq

Abstract

In this paper, we introduce the notions of \wedge - ideal of a $\mathcal{B H}$-algebra in ordinary and fuzzy senses. Also, we give some properties of them and link these notions with some types of ideals of $\mathcal{B H}$ - algebra in ordinary and fuzzy senses .The image and preimage of fuzzy \wedge - ideal under a $\mathcal{B H}$ homomorphism are investigated.


```
الهثالي
في الحالة الوعتيادية والحالة الضبابية في جبر - BH
```

Keywords: $\mathcal{B H}$-algebra, ideal of $\mathcal{B H}$-algebra, fuzzy ideal of $\mathcal{B H}$-algebra.

I. INTRODUCTION

The concept of $\mathcal{B H}$-algebra and the notion of ideal of a $\mathcal{B H}$-algebra have been introduced by Y. B. Jun, E.H. Roh and H. `S. Kim in 1998, [10]. In 2001, Q.Zhang, Y. B. Jun and E. H. $\mathcal{R o h}$ introduced a normal $\mathcal{B H}$-algebra [9]. Then, $\mathbb{Y} . B$. Jun, E. H. Roh, H. S. Kim and $\mathbb{Q} . Z$ hang discussed more properties on $\mathcal{B H} \mathcal{H}$-algebras [9]. In 2012, H. H. Abbass and H. A. Dahham introduced the notion of completely closed ideal of a $\mathcal{B \mathcal { H }}$ algebra[5].

And the fuzzy set concept has been introduced by \mathbb{L}. A. Zadeh In 1965, [6]. In 2001, \mathbb{Q}. Zhang, E. H. \mathcal{R} oh and $Y . B$. Jun studied the fuzzy theory in $\mathcal{B H}$-algebras [8]

II. Preliminaries

Some essential notations and definitions of $\mathcal{B H}$-algebras and ideals of $\mathcal{B H}$ - algebra in fuzzy and ordinary senses that we need in our work has been introduced in this section. Definition (2.1) [2]:

A nonempty set \mathcal{K} with a binary operation" $*$ " and a constant 0 satisfying the following conditions:

1) $\varkappa * \varkappa=0, \forall \varkappa \in \mathcal{K}$.
2) $\mathcal{\varkappa} * \gamma=0$ and $\gamma * \varkappa=0$ infer $\varkappa=\gamma$,
$\forall \mathcal{\varkappa}, \gamma \in \mathcal{K}$.
3) $\varkappa * 0=\mathcal{\varkappa}, \forall \varkappa \in \mathcal{K}$
is called $\mathrm{A} \mathcal{B H}$-algebra.

Definition (2.2) [5]:

An associative $\mathcal{B H}$-algebra is a $\mathcal{B} \mathcal{H}$-algebra \mathcal{K} satisfying the following:
$(\varkappa * \gamma) * z=\mathcal{\varkappa} *(\gamma * z), \forall \mathcal{\varkappa}, \gamma, z \in \mathcal{K}$.
Definition (2.3) [2]:
A nonempty subset I of a $\mathcal{B H}$-algebra \mathcal{K} is known as an ideal of \mathcal{K} if it fulfills:

1) $0 \in \mathrm{I}$.
2) $\mathcal{H} * \gamma \in \mathrm{I}$ and $\gamma \in \mathrm{I}$ infer $\boldsymbol{\chi} \in \mathrm{I}$.

Definition (2.4) [5]:

A completely closed ideal I of a $\mathcal{B H}$ algebra \mathcal{K} is an ideal of \mathcal{K} satisfying $x * \gamma \in \mathrm{I}, \forall \mathcal{H}, \gamma \in \mathrm{I}$.
Definition (2.5) [1]:
A normal ideal I of a $\mathcal{B H}$-algebra \mathcal{K} is an ideal of \mathcal{K} satisfying the following :
$\mathcal{\varkappa} *(\mathcal{H} * \gamma) \in \mathrm{I}$ infers $\gamma *(\gamma * \mathcal{\varkappa}) \in \mathrm{I}$, for all $\mathcal{H}, \gamma \in \mathcal{K}$.

Definition (2.6) [5]:

Let \mathcal{K} a $\mathcal{B H}$-algebra and I be a subset of \mathcal{K}, then I is known as a $\mathcal{B H}$-ideal of \mathcal{K} if satisfying the following conditions:

1) $0 \in I$
2) $x * \gamma \in \mathrm{I}$ and $\gamma \in \mathrm{I} \Rightarrow \varkappa \in \mathrm{I}$,
3) $x \in \mathrm{I}$ and $\gamma \in \mathcal{K} \Rightarrow x * \gamma \in \mathrm{I}$, $\mathrm{I} * \mathcal{K} \subseteq \mathrm{I}$.

Remark (2.7)[11]:

Let ($\mathcal{K},{ }^{*}, 0$) and ($\Upsilon, *^{\prime}, 0^{\prime}$) are $\mathcal{B H}$-algebras. A mapping $\mathrm{F}: \mathcal{K} \rightarrow \Upsilon$ is known as a homomorphism if $F(\mathcal{\varkappa} \quad * \gamma)=F(\mathcal{X}) *{ }^{\prime} F(\gamma)$ $\forall \mathcal{K}, \gamma \in \mathcal{K}$. A homomorphism F is known as epimorphism if it is surjective. For any homomorphism $F: \mathcal{K} \rightarrow \Upsilon$, the set $\{\chi \in \mathcal{K}: F(\mathcal{x})=0$ ' is called the kernel of F, meant by $\operatorname{ker}(F)$,if S is a subset of \mathcal{K} then the set $\{F(s): s \in \mathcal{K}\}$ is known as the image of S indicated by $F(\mathrm{~S})$ and if H is a subset of \mathbb{Y} then the set $\{\mathcal{\chi} \in \mathcal{K}: F(\mathcal{X}) \in H\}$ is known as the preimage of the set H. Notice that $\quad F(0)=0^{\prime}$. Proposition(2.8) [5]:

In a $\mathcal{B H}$-algebra, every $\mathcal{B H}$-ideal is a completely closed ideal.
Proposition (2.9) [5]:
Let \mathcal{K} and Υ are a $\mathcal{B} \mathcal{H}$-algebra and I is an ideal of \mathcal{K} and $F: \mathcal{K} \rightarrow Y$ be a $\mathcal{B H}$ epimorphism. Then $F(\mathrm{I})$ is an ideal of Υ.
Proposition (2.10) [5]:
Let
\mathcal{K} and Υ are a $\mathcal{B H}$-algebra and I is an ideal of Υ and $F: \mathcal{K} \rightarrow \Upsilon$ be a $\mathcal{B H}$-epimorphism. Then $F^{-1}(\mathrm{I})$ is an ideal of \mathcal{K}.

Proposition (2.11) [5]:

If \mathcal{K} is a $\mathcal{B H}$-algebra and $\left\{\mathrm{I}_{j}, j \in \lambda\right\}$ be an ideals family of \mathcal{K}.Then $\bigcap_{j \in \lambda} I_{j}$ is an ideal of \mathcal{K}.

Proposition (2.12) [5]:

The associative $\mathcal{B H}$-algebra \mathcal{K} is satisfying the following properties:

1) $0 * \mathcal{\varkappa}=\boldsymbol{\varkappa} \quad \forall \chi \in \mathcal{K}$.
2) $\mathcal{\varkappa} * \gamma=\gamma * \mathcal{\varkappa} \quad \forall \mathcal{X}, \in \mathcal{K}$.

Now, we give a survey about the fuzzy concepts of a $\mathcal{B H}$-algebra that we need later

Definition (2.13) [6]:

A fuzzy set (fuzzy subset) \mathcal{A} in a nonempty set \mathcal{K} is a function from \mathcal{K} as the domain into the unit closed interval of real numbers $[0,1]$ as the range of \mathcal{A}.

Definition (2.14) [3]:

For any two fuzzy set \mathcal{A} and \mathfrak{B} in \mathcal{K} we have:
$(\mathcal{A} \cap \mathfrak{B})(\mathcal{X})=\min \{\mathcal{A}(\mathcal{X}), \mathfrak{B} \quad(\mathcal{X})\}, \forall \mathcal{X} \in \mathcal{K}$. $(\mathcal{A} \cup \mathfrak{B}) \quad(\mathcal{X})=\max \{\mathcal{A}(\mathcal{H}), \mathfrak{B}(\mathcal{X})\}, \forall \mathcal{X} \in \mathcal{K}$. $\mathcal{A} \cap \mathfrak{B}$ and $\mathcal{A} \cup \mathfrak{B}$ are fuzzy sets in \mathcal{K}. generally speaking, if $\left\{\mathcal{A}_{\alpha}, \alpha \in \Lambda\right\}$ is a family of fuzzy sets in \mathcal{K}, then : $\left(\cap_{j \in \Gamma} \mathcal{A}_{j}\right)(\mathcal{X})=\inf \left\{\mathcal{A}_{j}(\mathcal{X}), j \in \Gamma\right\}, \forall \mathcal{X} \in \mathcal{K}$ $\left(\mathrm{U}_{j \in \Gamma} \mathcal{A}_{j}\right)(\mathcal{\varkappa})=\sup \left\{\mathcal{A}_{j}(\mathcal{H}), j \in \Gamma\right\}, \forall \mathcal{K} \in \mathcal{K}$. Which are also fuzzy sets in \mathcal{K}. Definition (2.15) [7]:
Let \mathcal{A} be a fuzzy subset of \mathcal{K}, for all $\alpha \in[0,1]$. The set $\mathcal{A}_{\alpha}=\{\varkappa \in \mathcal{K}, \mathcal{A}(\mathcal{\varkappa}) \geq \alpha\}$ is known as a level subset of \mathcal{A}. Note that: \mathcal{A}_{α} is a subset of \mathcal{K} in the ordinary
sense.

Definition (2.16) [2]:

A fuzzy ideal is a fuzzy subset \mathcal{A} of a $\mathcal{B H}$-algebra \mathcal{K} satisfying the following:

1) $\mathcal{A}(0) \geq \mathcal{A}(\mathcal{K}) \quad \forall \chi \in \mathcal{K}$.
2) $\mathcal{A}(\mathcal{X}) \geq \min \{\mathcal{A}(\mathcal{H} * \gamma), \mathcal{A}(\gamma)\} \forall \mathcal{X}, \gamma \in \mathcal{K}$.

Definition (2.17): [5]

A fuzzy completely closed ideal \mathcal{A} of a $\mathcal{B H}$-algebra \mathcal{K} is a fuzzy ideal satisfying the following
$\mathcal{A}(\varkappa * \gamma) \geq \min \{\mathcal{A}(\mathcal{H}), \mathcal{A}(\gamma)\}, \forall \mathcal{X}, \gamma \in \mathcal{K}$

Definition (2.18): [4]

Let \mathcal{K} and Υ be any two sets, \mathcal{A} be any fuzzy set in \mathcal{K} and $F: \mathcal{K} \rightarrow \Upsilon$ be a function. The set $F^{-1}(\gamma)=\{\chi \in \mathcal{K} \mid F(\chi)=\gamma\}, \forall \gamma \in \gamma$. The fuzzy set \mathfrak{B} in γ defined by $\mathfrak{B}(\gamma)=\left\{\begin{array}{l}\sup \left\{\mathcal{A}(\mathbf{x}) \mid \mathbf{x} \in \mathbf{f}^{-1}(\gamma)\right\} ; \text {; } \begin{array}{c}\mathbf{f}^{-1}(\gamma) \neq \varnothing \\ \text { otherwise }\end{array},\end{array}\right.$ $\forall \gamma \in \Upsilon$, is called the image of \mathcal{A} under F and is denoted by $F \quad(\mathcal{A})$.

Definition (2.19) [4]:

Let \mathcal{K} and Υ are any two sets, $F: \mathcal{K} \rightarrow \Upsilon$ be any function and \mathfrak{B} be a fuzzy subset of $F(\mathcal{A})$. The fuzzy subset \mathcal{A} of \mathcal{K} defined by: $\mathcal{A}(\mathcal{X})=\mathfrak{B}(F(\mathcal{H})), \forall \mathcal{X} \in \mathcal{K}$ is called the preimage of \mathfrak{B} under F and is denoted by $F^{-1}(\mathfrak{B})$.

Theorem (2.20) [5]:

Let \mathcal{A} be a fuzzy ideal of a $\mathcal{B H}$-algebra \mathcal{K}. Then the set $\mathcal{K}_{\mathcal{A}}=\{\varkappa \in \mathcal{K}: \mathcal{A}(\varkappa)=\mathcal{A}(0)\}$ is an ideal of \mathcal{K}.

III. The Main Results:

We define in this section, the notions of a Λ - ideal of a $\mathcal{B H} \mathcal{H}$-algebra ordinary and fuzzy senses. Some properties of them are investigated. Also, relations among them and other structure of a $\mathcal{B H}$ - algebra is given.

Definition (3.1) :

Let \mathcal{K} be a $\mathcal{B H}$-algebra. The ideal I of \mathcal{K} is said to be Λ - ideal if it is satisfying: $\mathcal{\varkappa} \wedge \gamma=\gamma *(\gamma * \mathcal{H}) \in \mathrm{I} \quad \forall \mathcal{\mu}, \gamma \in \mathrm{I}$ Example (3.2) [6]:
Let $\mathcal{K}=\{0, \beta, \delta, \sigma\}$ be a $\mathcal{B H}$ - algebra with binary operation defined by :

$*$	0	β	δ	σ
0	0	β	0	δ
β	β	0	σ	0
δ	δ	δ	0	σ
σ	σ	σ	σ	0

The ideal $\mathrm{I}=\{0, \beta\}$ of \mathcal{K} is Λ-ideal since $0 \wedge 0=0 *(0 * 0)=0 * 0=0$
$0 \wedge \beta=\beta *(\beta * 0)=\beta * \beta=0$
$\beta \wedge 0=0 *(0 * \beta)=0 * \beta=\beta$
$\beta \wedge \beta=\beta *(\beta * \beta)=\beta * 0=\beta$
Then I is a Λ - ideal of \mathcal{K}.

Proposition (3.3):

Let \mathcal{K} be a $\mathcal{B \mathcal { H }}$-algebra, Then every completely closed ideal of \mathcal{K} is a \wedge - ideal of \mathcal{K}.

Proof:

Let I be a completely closed ideal and \mathcal{H}, $\gamma \quad \in \quad$ I Then $\gamma * \mathcal{\varkappa} \in I$ [since I is a completely closed ideal of \mathcal{K}] Now $\gamma, \gamma * \varkappa \in \mathrm{I}$ implies that $\gamma *(\gamma * \varkappa)=\varkappa \wedge \quad \gamma \in \mathrm{I}$. Then I is a \wedge - ideal of \mathcal{K}.

Proposition (3.4):

Let \mathcal{K} be associative $\mathcal{B H}$ - algebra. Then every ideal in \mathcal{K} is a \wedge - ideal of \mathcal{K}. Proof:
Let \mathcal{K} be an associative $\mathcal{B H}$ - algebra and I is an ideal of \mathcal{K} with $\mathcal{K}, \gamma \in I$. Now,
$\gamma *(\gamma * \varkappa)=(\gamma * \gamma) * \mathcal{\varkappa}=0 * \mathcal{\varkappa}=\boldsymbol{\varkappa} \in \mathrm{I}$
[By proposition 2.12]
Then I is a \wedge - ideal of \mathcal{K}.

Corollary (3.5):

Every $\mathcal{B H}$ - ideal is a \wedge - ideal.

Proof:

Is directly from propositions (2.8) and (3.3).

Proposition (3.6):

Every normal ideal of associative $\mathcal{B H}$-algebra \mathcal{K} is a \wedge - ideal.

Proof:

If I is a normal ideal of \mathcal{K} and let $\mathcal{\varkappa}, \gamma \in \mathrm{I}$.
Now,

$$
\varkappa *(\varkappa * \gamma)=(\varkappa * \varkappa) * \gamma=0 * \gamma=\gamma \in \mathrm{I}
$$

[By proposition 2.12]
Thus $\mathcal{\varkappa} *(\varkappa * \gamma) \in \mathrm{I} \Rightarrow \gamma *(\gamma * \mathcal{\chi}) \in \mathrm{I}$
[If I is a normal ideal]
\Rightarrow I is a \wedge - ideal of \mathcal{K}.

Proposition (3.7):

If I is a Λ - ideal of \mathcal{K} and $F: \mathcal{K} \rightarrow \Upsilon$ be a $\mathcal{B H}$ - epimorphism. Then $F(\mathrm{I})$ is a \wedge - ideal of

Proof:

$\because \quad \mathrm{I}$ is an \wedge - ideal of \mathcal{K}.
\Rightarrow I is an ideal $\Rightarrow F$ (I) is an ideal of Υ
[Using proposition (2.9)]
Now, let $\mathcal{\varkappa}, \gamma \in F(\mathrm{I})$
Then $\exists \alpha, \beta \in \mathrm{I}$ such that
$F(\alpha)=\mathcal{H}, F(\beta)=\gamma$
$\Rightarrow \beta *(\beta * \alpha) \in \mathrm{I} \quad[$ since I is \wedge - ideal]
$\Rightarrow F(\beta *(\beta * \alpha)) \in F(\mathrm{I})$
$\Rightarrow F(\beta) * F(\beta * \alpha) \in F(\mathrm{I})$
$\Rightarrow F(\beta) *(F(\beta) * F(\alpha)) \in F(\mathrm{I})$
$\Rightarrow \gamma *(\gamma * \varkappa) \in F(\mathrm{I})$
Then $F(\mathrm{I})$ is $a \wedge$ - ideal of Υ.

Proposition (3.8):

Let : $\mathcal{K} \rightarrow \Upsilon$ be a $\mathcal{B H}$ - epimorphism and I be \wedge - ideal of Υ.Then F^{-1} (I) is a \wedge - ideal of \mathcal{K}.

Proof:

\because I is a \wedge - ideal of Υ
$\Rightarrow F^{-1}(\mathrm{I})$ is an ideal in \mathcal{K}
[Proposition 2.10]

Now, let $\varkappa, \gamma \in F^{-1}(\mathrm{I})$
$\Rightarrow F(\mathcal{H}), F(\gamma) \in I$
$\Rightarrow F(\gamma) *^{\prime}\left(F(\gamma) *^{\prime} F(\mathcal{H})\right) \in \mathrm{I}$
[Since I is an Λ - ideal of γ]
$\Rightarrow F(\gamma) *^{\prime} F(\gamma * \mathcal{*}) \in \mathrm{I}$
$\Rightarrow F(\gamma *(\gamma * \varkappa)) \in \mathrm{I}$
$\Rightarrow \gamma *(\gamma * \varkappa) \in F^{-1}(I)$
Then $F^{-1}(\mathrm{I})$ is a \wedge - ideal of \mathcal{K}.

Proposition (3.9):

Let $F: \mathcal{K} \rightarrow \Upsilon$ is a $\mathcal{B H}$ - homomorphism. Then $\operatorname{ker}(F)$ is a \wedge - ideal of .

Proof:

It is clear that $\operatorname{ker}(F)$ is an ideal of \mathcal{K}.
Now, let $\mathcal{K}, \gamma \in \operatorname{ker}(F)$
$\Rightarrow F(\mathcal{H})=0^{\prime}, F(\gamma)=0^{\prime}$
$\Rightarrow F(\gamma *(\gamma * \mathcal{\varkappa}))=F(\gamma) *^{\prime}(F(\gamma * \mathcal{H}))$
$=F(\gamma) *^{\prime}\left(F(\gamma) *^{\prime} F(\mathcal{H})\right)$
$=0^{\prime}{ }^{\prime}{ }^{\prime}\left(0^{\prime} *^{\prime} 0^{\prime}\right)$
Then $\gamma *(\gamma * \varkappa) \in \operatorname{ker}(F)$
Then $\operatorname{ker}(F)$ is a \wedge - ideal of \mathcal{K}.

Proposition (3.10):

Let $\left\{\mathrm{I}_{j}, j \in \lambda\right\}$ be a family of Λ - ideals of a $\mathcal{B H}$ - algebra \mathcal{K}.Then $\bigcap_{j \in \lambda} \mathrm{I}_{j}$ is a Λ - ideal of \mathcal{K}.

Proof:

$\because \mathrm{I}_{j}$ is a Λ - ideal of $\mathcal{K}, \forall j \in \lambda$
$\Rightarrow \mathrm{I}_{j}$ is an ideal of $\mathcal{K}, \forall j \in \lambda$
$\Rightarrow \bigcap_{j \in \lambda} \mathrm{I}_{j}$ is an ideal
[using proposition (2.11)]
Now, let $x, \gamma \in \bigcap_{j \in \lambda} I_{j}$
$\Rightarrow \mathcal{\varkappa}, \gamma \in \mathrm{I}_{j}$, for each $j \in \lambda$
$\Rightarrow \gamma *(\gamma * \mathcal{K}) \in \mathrm{I}_{j}, \forall j \in \lambda$
[since I_{j} is \wedge - ideal]
$\Rightarrow \gamma *(\gamma * \varkappa) \in \bigcap_{j \in \lambda} \mathrm{I}_{j}$
Therefore, $\bigcap_{j \in \lambda} \mathrm{I}_{j}$ is a Λ - ideal of \mathcal{K}.

Proposition (3.11):

In a $\mathcal{B H}$ - algebra \mathcal{K} if $\left\{I_{j}, j \in \lambda\right\}$ is a chain of \wedge - ideals. Then $\cup_{j \in \lambda} \mathrm{I}_{j}$ is a \wedge - ideal of \mathcal{K}.

Proof:

Since I_{j} is Λ - ideal of $\mathcal{K}, \forall j \in \lambda$
$\Rightarrow \mathrm{I}_{j}$ is an ideal of $\mathcal{K}, \forall j \in \lambda$
Therefore, $U_{j \in \lambda} I_{j}$ is an ideal of \mathcal{K}.
Now, let $\mathcal{\varkappa}, \gamma \in \cup_{j \in \lambda} \mathrm{I}_{j}$
$\Rightarrow \mathrm{I}_{j}, \mathrm{I}_{k} \in\left\{\mathrm{I}_{j}\right\}_{j \in \lambda}, \exists \mathcal{} \quad, \mathrm{I}_{j}, \gamma \in \mathrm{I}_{j}$
Then either $\mathrm{I}_{k} \subseteq \mathrm{I}_{j}$ or $\mathrm{I}_{j} \subseteq \mathrm{I}_{k}$
If $\mathrm{I}_{j} \subseteq \mathrm{I}_{k}$
$\Rightarrow \mathcal{H}, \gamma \in \mathrm{I}_{k}$
$\Rightarrow \gamma *(\gamma * \varkappa) \in \mathrm{I}_{k}$
Similarly,
If $I_{k} \subseteq \mathrm{I}_{j}$
$\Rightarrow \gamma *(\gamma * \varkappa) \in U_{j \in \lambda} \mathrm{I}_{j}$
Therefore, $U_{j \in \lambda} \mathrm{I}_{j}$ is a Λ - ideal of \mathcal{K}.

Definition (3.12):

Let \mathcal{K} be a $\mathcal{B \mathcal { H }}$-algebra. A fuzzy ideal \mathcal{A} of \mathcal{K} is known as a fuzzy \wedge - ideal of \mathcal{K} if it is

satisfies

$\mathcal{A}(\gamma *(\gamma * \mathcal{\varkappa})) \geq \min \{\mathcal{A}(\mathcal{\varkappa}), \mathcal{A}(\gamma)\}, \forall \varkappa, \gamma \in \mathcal{K}$.

Theorem (3.13):

In a $\mathcal{B \mathcal { H }}$ - algebra \mathcal{K} if $\gamma *(\gamma * \mathcal{\varkappa})=z, z \in\{0, \mathcal{H}, \gamma\} \forall \mathcal{H}, \gamma \in \mathcal{K}$. Then every fuzzy ideal is a fuzzy \wedge - ideal of \mathcal{K}

Proof:

Let \mathcal{A} be a fuzzy ideal and $\mathcal{\varkappa}, \gamma \in \mathrm{I}$
If $\gamma *(\gamma * \mathcal{H})=0$
$\Rightarrow \mathcal{A}(\gamma *(\gamma * \mathcal{X}))=\mathcal{A}(0) \geq \min \{\mathcal{A}(\mathcal{\varkappa}), \mathcal{A}(\gamma)\}$
If $\gamma *(\gamma * \mathcal{H})=\varkappa$
$\Rightarrow \mathcal{A}(\gamma *(\gamma * \mathcal{\varkappa}))=\mathcal{A}(\mathcal{\varkappa}) \geq \min \{\mathcal{A}(\mathcal{\varkappa}), \mathcal{A}(\gamma)\}$
If $\gamma *(\gamma * \mathcal{H})=\gamma$
$\Rightarrow \mathcal{A}(\gamma *(\gamma * \mathcal{H}))=\mathcal{A}(\gamma)$
$\geq \min \{\mathcal{A}(\mathcal{H}), \mathcal{A}(\gamma)\}$
Then \mathcal{A} is a fuzzy \wedge - ideal of \mathcal{K}.

Proposition (3.14):

In associative $\mathcal{B H}$-algebra \mathcal{K}. Every fuzzy ideal is a fuzzy Λ - ideal.

Proof:

Let \mathcal{A} be a fuzzy ideal, and $\mathcal{K}, \gamma \in \mathcal{K}$
$\mathcal{A}(\gamma *(\gamma * \mathcal{X}))=\mathcal{A}((\gamma * \gamma) * \mathcal{X})$
$=\mathcal{A}(0 * \mathcal{H})=\mathcal{A}(\mathcal{H})$
[$0 * \mathcal{H}=\mathcal{H}$ by proposition (2.12)]
$\Rightarrow \mathcal{A}(\gamma *(\gamma * \varkappa)) \geq \min \{\mathcal{A}(\varkappa), \mathcal{A}(\gamma)\}$

Then \mathcal{A} is a fuzzy \wedge - ideal of \mathcal{K}.

Theorem (3.15):

In a $\mathcal{B H}$ - algebra \mathcal{K}, \mathcal{A} is a fuzzy \wedge - ideal if and only if \mathcal{A}_{α} is a \wedge - Ideal of \mathcal{K}, for all $\alpha \in[0,1], \mathcal{A}(0)=\sup _{\mathcal{\varkappa} \in \mathcal{K}} \mathcal{A}(\mathcal{K})$.

Proof:

It is clear that \mathcal{A}_{α} is an ideal of \mathcal{K}.
Now, Let $\mathcal{K}, \gamma \in \mathcal{A}_{\alpha}$. Then $\mathcal{A}(\mathcal{H}) \geq \alpha$ and $\mathcal{A}(\gamma) \geq \alpha$ implies that $\min \{\mathcal{A}(x), \mathcal{A}(\gamma)\} \geq \alpha$.

But, $\mathcal{A}(\gamma *(\gamma * \mathcal{H})) \geq \min \{\mathcal{A}(\mathcal{H}), \mathcal{A}(\gamma)\}$ [since \mathcal{A} is a fuzzy \wedge - ideal]
$\Rightarrow \mathcal{A}(\gamma *(\gamma * \mathcal{H})) \geq \alpha$
$\Rightarrow \gamma *(\gamma * \varkappa) \in \mathcal{A}_{\alpha}$
Then \mathcal{A}_{α} is a \wedge - ideal of \mathcal{K}.
Conversely,
It is clear that \mathcal{A} is a fuzzy ideal of \mathcal{K}.
Let $\mathcal{H}, \gamma \in \mathcal{K} \Rightarrow \mathcal{A}(\mathcal{H}), \mathcal{A}(\gamma) \in[0, \mathcal{A}(0)]$
Now, let $\alpha=\min \{\mathcal{A}(\mathcal{H}), \mathcal{A}(\gamma)\}$
Then $\mathcal{A}(\mathcal{H}) \geq \alpha$ and $\mathcal{A}(\gamma) \geq \alpha$ implies that $\varkappa, \gamma \in \mathcal{A}_{\alpha}$.Thus $\gamma *(\gamma * \varkappa) \in \mathcal{A}_{\alpha}$ [since \mathcal{A}_{α} is Λ - ideal of \mathcal{K}]

Hence
$\mathcal{A}(\gamma *(\gamma * \mathcal{X})) \geq \alpha=\min \{\mathcal{A}(\mathcal{H}), \mathcal{A}(\gamma)\}$. Therefore, \mathcal{A} is a fuzzy \wedge - ideal of \mathcal{K}.

Theorem (3.16):

Let \mathcal{A} be a fuzzy \wedge - ideal of a $\mathcal{B H}$ - algebra \mathcal{K}.Then the set
$\mathcal{K}_{\mathcal{A}}=\{\chi \in \mathcal{K}: \mathcal{A}(\mathcal{H})=\mathcal{A}(0)\}$ is a \wedge-ideal of \mathcal{K}.

Proof:

If \mathcal{A} is a fuzzy \wedge - ideal of \mathcal{K}.
$\Rightarrow \mathcal{A}$ is a fuzzy ideal of \mathcal{K}.
$\Rightarrow \mathcal{K}_{\mathcal{A}}$ is an ideal [By Theorem (2.20)]
Now let $\mathcal{H}, \gamma \in \mathcal{K}_{\mathcal{A}}$
$\Rightarrow \mathcal{A}(\mathcal{H})=\mathcal{A}(\gamma)=\mathcal{A}(0)$
$\Rightarrow \min \{\mathcal{A}(\mathcal{H}), \mathcal{A}(\gamma)\}=\mathcal{A}(0)$
But,

$$
\begin{aligned}
& \mathcal{A}(\gamma *(\gamma * \varkappa)) \geq \min \{\mathcal{A}(\varkappa) \mathcal{A},(\gamma)\}= \\
& \mathcal{A}(0)
\end{aligned}
$$

[Since \mathcal{A} is a fuzzy \wedge - ideal]
$\mathcal{A}(\gamma *(\gamma * \mathcal{X}))=\mathcal{A}(0)$

Then, $\gamma *(\gamma * \mathcal{X}) \in \mathcal{K}_{\mathcal{A}}$
Therefore, $\mathcal{K}_{\mathscr{A}}$ is a Λ - ideal of \mathcal{K}.

Theorem (3.17):

Let \mathcal{K} be a $\mathcal{B H}$-algebra and \mathcal{A} be a fuzzy set of \mathcal{K}.Then \mathcal{A} is a fuzzy \wedge - ideal of \mathcal{K} if and only if $\overline{\mathcal{A}}(\mathcal{H})=\mathcal{A}(\mathcal{H})+1-\mathcal{A}(0)$ is a fuzzy \wedge-ideal of \mathcal{K}.

Proof:

If \mathcal{A} is a fuzzy \wedge - ideal of \mathcal{K}
$\Rightarrow \mathcal{A}$ is a fuzzy ideal of \mathcal{K}. It is clear that $\overline{\mathcal{A}}$ is a fuzzy ideal of \mathcal{K}.
Now, let $\mathcal{\varkappa}, \gamma \in \mathcal{K}$
$\overline{\mathcal{A}}(\gamma *(\gamma * \varkappa))=\mathcal{A}(\gamma *(\gamma * \mathcal{X}))+1-\mathcal{A}(0)$
$\Rightarrow \overline{\mathcal{A}}(\gamma *(\gamma * \mathcal{\varkappa}))$
$\geq \min \{\mathcal{A}(\mathcal{H}), \mathcal{A}(\gamma)\}+1-\mathcal{A}(0)$
$\Rightarrow \overline{\mathcal{A}}(\gamma *(\gamma * \varkappa))$
$\geq \min \{\mathcal{A}(\mathcal{H})+(1-\mathcal{A}(0)), \mathcal{A}(\gamma)+(1-\mathcal{A}(0))\}$
$\Rightarrow \overline{\mathcal{A}}(\gamma *(\gamma * \mathcal{H})) \geq \min \{\overline{\mathcal{A}}(\mathcal{H}) \overline{\mathcal{A}}(\gamma)\}$
Then $\overline{\mathcal{A}}$ is a fuzzy \wedge - ideal of \mathcal{K}.
Conversely,
Let $\overline{\mathcal{A}}$ be a fuzzy \wedge - ideal of \mathcal{K}
It is clear that \mathcal{A} is a fuzzy ideal of \mathcal{K}.
Now let $\mathcal{\varkappa}, \gamma \in \mathcal{K}$
$\mathcal{A}(\gamma *(\gamma * \mathcal{X}))=\overline{\mathcal{A}}(\gamma *(\gamma * \mathcal{X}))-1+\mathcal{A}(0)$
$\Rightarrow \mathcal{A}(\gamma *(\gamma * \mathcal{H})) \geq$
$\min \{\overline{\mathcal{A}}(\mathcal{X}), \overline{\mathcal{A}}(\gamma)\}-1+\mathcal{A}(0)$
$\Rightarrow \mathcal{A}(\gamma *(\gamma * \mathcal{X})) \geq$
$\min \{\overline{\mathcal{A}}(\mathcal{\varkappa})-1+\mathcal{A}(0), \overline{\mathcal{A}}(\gamma)-1+\mathcal{A}(0)\}$
$\Rightarrow \mathcal{A}(\gamma *(\gamma * \mathcal{H})) \geq \min \{\mathcal{A}(\mathcal{H}), \mathcal{A}(\gamma)\}$
Then is a fuzzy \wedge - ideal of \mathcal{K}.

Proposition (3.18):

Let \mathcal{K} be $\mathcal{B \mathcal { H }}$-algebra, and $\left\{\mathcal{A}_{j}: j \in \Gamma\right\}$ be a family of fuzzy \wedge - ideal of \mathcal{K}. Then $\left(\bigcap_{j \in \Gamma} \mathcal{A} j\right)$ is a fuzzy Λ - ideal of \mathcal{K}.

Proof:

It is clear that $\left(\bigcap_{j \in \Gamma} \mathcal{A}_{j}\right)$ is a fuzzy ideal of \mathcal{K}.

Now, let $\mathcal{H}, \gamma \in \mathcal{K}$

$$
\begin{aligned}
& \left(\cap_{j \in \Gamma} \mathcal{A}_{j}\right)(\gamma *(\gamma * \mathcal{\varkappa})) \\
& =\inf \left\{\mathcal{A}_{j}(\gamma *(\gamma * \varkappa)), j \in \Gamma\right\} \\
& \geq \inf \left\{\min \left\{\mathcal{A}_{j}(\varkappa), \mathcal{A}_{j}(\gamma)\right\}, j \in \Gamma\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \left.\geq \min \left\{\inf \mathcal{A}_{j}(\mathcal{H}), \inf \mathcal{A}_{j}(\gamma)\right\}, j \in \Gamma\right\} \\
& \geq \min \left\{\left(\cap_{j \in \Gamma} \mathcal{A}_{j}\right)(\mathcal{X}),\left(\cap_{j \in \Gamma} \mathcal{A}_{j}\right)(y)\right\} \\
& \Rightarrow\left(\bigcap_{j \in \Gamma} \mathcal{A}_{j}\right)(\gamma *(\gamma * \mathcal{X})) \\
& \geq \min \left\{\left(\bigcap_{j \in \Gamma} \mathcal{A}_{j}\right)(\mathrm{x}),\left(\cap_{j \in \Gamma} \mathcal{A}_{j}\right)(\gamma)\right\} \\
& \forall \mathcal{X}, \gamma \in \mathcal{K}
\end{aligned}
$$

Therefore, $\left(\bigcap_{j \in \Gamma} \mathcal{A}_{j}\right)$ is a fuzzy \wedge-ideal of \mathcal{K}.

Proposition (3.19):

Let \mathcal{K} be a $\mathcal{B \mathcal { F }}$-algebra, and $\left\{\mathcal{A}_{j}: j \in \Gamma\right\}$ be a chain of fuzzy \wedge-ideals of \mathcal{K}.
Then $\left(U_{j \in \Gamma} \mathcal{A}_{j}\right)$ is a fuzzy \wedge - ideal of \mathcal{K}.

Proof:

It is clear that $\left(U_{j \in \Gamma} \mathcal{A}_{j}\right)$ is a fuzzy ideal of \mathcal{K}.

Now, let $\boldsymbol{\varkappa}, \gamma \in \mathcal{K}$
$\left(\mathrm{U}_{j \in \Gamma} \mathcal{A}_{j}\right)(\gamma *(\gamma * \mathcal{X}))$
$=\sup \left\{\mathcal{A}_{j}(\gamma *(\gamma * \mathcal{X})), j \in \Gamma\right\}$
$\geq \sup \left\{\min \left(\mathcal{A}_{j}(\mathcal{X}), \mathcal{A}_{j}(\gamma), j \in \Gamma\right\}\right.$
[Since \mathcal{A}_{j} is a fuzzy \wedge-ideal, $\left.\forall j \in \Gamma\right]$.
[By definition (2.16)]
$\geq \min \left\{\sup \left(\mathcal{A}_{j}(\mathcal{X}), \sup \mathcal{A}_{j}(\gamma)\right), j \in \Gamma\right\}$
$\geq \min \left\{\left(\mathrm{U}_{j \in \Gamma} \mathcal{A}_{j}\right)(\mathcal{X}),\left(\mathrm{U}_{j \in \Gamma} \mathcal{A}_{j}\right)(\gamma)\right\}$
$\Rightarrow\left(\mathrm{U}_{j \in \Gamma} \mathcal{A}_{j}\right)(\gamma *(\gamma * \mathcal{x}))$
$\geq \min \left\{\left(\mathrm{U}_{j \in \Gamma} \mathcal{A}_{j}\right)(\mathcal{X}),\left(\mathrm{U}_{j \in \Gamma} \mathcal{A}_{j}\right)(\gamma)\right\}$
$\forall \varkappa, \gamma \in \mathcal{K}$
Therefore, ($\mathrm{U}_{j \in \Gamma} \mathcal{A}_{j}$) is a fuzzy \wedge - ideal of \mathcal{K}.

Theorem (3.20):

Let $(\mathcal{K}, *, 0)$ and $\left(Y, *^{\prime}, 0^{\prime}\right)$ are two $\mathcal{B H}$ algebra, $F: \mathcal{K} \rightarrow \Upsilon$ be a $\mathcal{B H}$ - epimorphism. If \mathcal{A} is a fuzzy \wedge - ideal of \mathcal{K}, then $F(\mathcal{A})$ is a fuzzy \wedge - ideal of γ.

Proof:

It is clear that $F(\mathcal{A})$ is a fuzzy ideal of \mathbb{Y}
Now, let $\gamma_{1}, \gamma_{2} \in \Upsilon$.
We have $(F(\mathcal{A}))\left(\gamma_{1} *^{\prime}\left(\gamma_{1} *^{\prime} \gamma_{2}\right)\right)$
$=\sup \left\{\mathcal{A}\left(\varkappa_{1} *\left(\varkappa_{1} * \varkappa_{2}\right)\right) \mid \varkappa_{1} \in F^{-1}\left(\gamma_{1}\right)\right.$,
$\varkappa_{2} \in F^{-1}\left(\gamma_{2}\right)$ and $\left(\mathcal{\varkappa}_{1} *\left(\mathcal{\varkappa}_{1} * \varkappa_{2}\right)\right)$
$\left.\in F^{-1}\left(\gamma_{1} *^{\prime}\left(\gamma_{1} *^{\prime} \gamma_{2}\right)\right)\right\}$ [By definition (2.18)]
$\geq \sup \left\{\min \left\{\mathcal{A}\left(\varkappa_{1}\right): \varkappa_{1} \in F^{-1}\left(\gamma_{1}\right)\right.\right.$,
$\min \left\{\mathcal{A}\left(\varkappa_{2}\right): \varkappa_{2} \in F^{-1}\left(\gamma_{2}\right)\right\}$
[Since \mathcal{A} is a fuzzy \wedge-ideal of]
$=\min \left\{\sup \mathcal{A}\left(\varkappa_{1}\right): \mathcal{\varkappa}_{1} \in F^{-1}\left(\gamma_{1}\right)\right.$,
$\min \left\{\mathcal{A}\left(x_{2}\right): \mathcal{x}_{2} \in F^{-1}\left(\gamma_{2}\right)\right\}$
$=\min \left\{F(\mathcal{A})\left(y_{1}\right), F(\mathcal{A})\left(y_{2}\right)\right\}$.
Then $(F(\mathcal{A}))\left(\gamma_{1} *^{\prime}\left(\gamma_{1} *^{\prime} \gamma_{2}\right)\right)$
$\geq \min \left\{F(\mathcal{A})\left(\gamma_{I}\right), F(\mathcal{A})\left(\gamma_{2}\right)\right\}$
Therefore, $F(\mathscr{A})$ is a fuzzy \wedge - ideal of Υ.

Theorem (3.21):

If $(\mathcal{K}, *, 0)$ and $\left(\Upsilon, * ', 0^{\prime}\right)$ are two $\mathcal{B H}$-algebra, $F: \mathcal{K} \rightarrow \Upsilon$ be a $\mathcal{B \mathcal { H }}$-homomorphism. If \mathfrak{B} is a fuzzy \wedge - ideal of Υ, then $F^{-1}(\mathfrak{B})$ is a fuzzy \wedge - ideal of \mathcal{K}.

Proof

It is clear that $F^{-1}(\mathcal{B})$ is a fuzzy ideal of \mathcal{K}.
Now, let $\varkappa_{1}, \boldsymbol{\varkappa}_{2} \in \mathcal{K}$. Then
$\left(F^{-1}(\mathfrak{B})\right)\left(\varkappa_{1} *\left(\varkappa_{1} * \varkappa_{2}\right)\right)$
$=\mathfrak{B}\left(F\left(\mathcal{H}_{1} *\left(\mathcal{X}_{1} * \mathcal{\varkappa}_{2}\right)\right)\right.$
$=\left\{\mathfrak{B}\left(F\left(\mathcal{\varkappa}_{1}\right) *^{\prime}\left(F\left(\mathcal{\varkappa}_{1}\right) *^{\prime} F\left(\mathcal{\varkappa}_{2}\right)\right)\right\}\right.$
[Since F is a homomorphism]
$\geq \min \left\{\mathfrak{B}\left(F\left(\mathcal{K}_{1}\right)\right), \mathfrak{B}\left(F\left(\mathcal{K}_{2}\right)\right)\right\}$.
[Since (\mathfrak{B} be a fuzzy \wedge - ideal)]
$=\min \left\{F^{-1}(\mathfrak{B})\left(\varkappa_{1}\right), F^{-1}(\mathfrak{B})\left(\varkappa_{2}\right)\right\}$.
So, $\left(F^{-1}(\mathfrak{B})\right)\left(\varkappa_{1} *\left(\varkappa_{1} * \varkappa_{2}\right)\right)$
$\geq \min \left\{F^{-1}(\mathfrak{B})\left(\varkappa_{1}\right), F^{-1}(\mathfrak{B})\left(\varkappa_{2}\right)\right\}$.
Thus, $F^{-1}(\mathcal{B})$ is a fuzzy \wedge - ideal of \mathcal{K}.

References

[1] A.B.Saeid, A. Namdar and R.A. Borzooei,"Ideal Theory of BCH-Algebras", world applied Sciences Journal 7 (11):14461455, 2009.
[2] C. H. Park, "Interval-valued fuzzy ideal in $\mathcal{B H}$-algebras", Advance in fuzzy set and systems 1(3), 231-240, 2006.
[3] D. Dubois and H. Prade, "Fuzzy Sets And Systems", Academic Press. Inc. (London) Ltd., Academic Press. INC. fifth Avenue, New York, 1980.
[4] E.M. kim and S.S. Ahn "On Fuzzy n-fold Strong Ideals of $\mathcal{B H}$ - algebras", J. Appl. Math \& Informatics. 30, (No.3) -4 , pp. 665-676,2012.
[5] H. H. Abass and H. A. Dahham, " A Completely Closed Ideal Of a $B G$ - Algebra", first edition, Scholar's press, Germany 2016.
[6] L. A. Zadeh, "Fuzzy Sets", Information and control, Vol. 8, PP. 338-353, 1965.
[7] L. Martinez, "Fuzzy Modules Over Fuzzy Rings in Connection with Fuzzy Ideal of Ring", J. Fuzzy Math. Vol.4,P.843-857,1996.
[8] Q. Zhang, E. H. Roh and Y. B. Jun, "On Fuzzy $\mathcal{B H}$-algebras", J. Huanggang, Normal Univ. 21(3), pp. 14-19, 2001.
[9] Q.Zhang, Y. B. Jun and E. H. Roh, "On the Branch of $\mathcal{B H}$-algebras",Scientiae Mathematicae Japonicae Online,Vol.4, pp.917-921,2001.
[10] Y. B. Jun, E. H. Roh and H. S. Kim, "On $\mathcal{B H}$-algebras", Scientiae Mathematicae 1(1), pp. 347-354, 1998.
[11] Y. B. Jun, H. S. Kim and M. Kondo," On $\mathcal{B H}$-relations in $\mathcal{B H}$-algebras", Scientiae Mathematicae Japonicae Online, Vol.9, pp. 9194, 2003.

