Some Combinatorial Results on the Factor Group $\boldsymbol{K}(\boldsymbol{G})$

Manal Najy Yaqoob
manal.najy@yahoo.com
Department of Applied Sciences, University of Technology, Baghdad, Iraq

cnaracter matrix $=\left(L_{\dot{p}}\right)$ irom the cnaracter table of Z_{p} and finding the invariant factors of this matrix, the primary decomposition of the factor group $K(G)$, where $p \geq 2$ is determined. Also, we found the general form of this decomposition for $p \geq 2$.

Keywords: factor group, character table, rational valued character matrix.

1. Introduction

Let G be a finite group, two elements of G are said to be Γ - conjugate if the cyclic subgroups they generate are conjugate in G, and this defines an equivalence relation on G. Its classes are called Γ - classes.

The Z - valued class function on the group G, which is constant on the Γ - classes forms a finitely generated abelian group $c f(G, Z)$ of a rank equal to the number of Γ - classes.
The intersection of $c f(G, Z)$ with the group of all generalized characters of G, is a normal subgroup of $c f(G, Z)$ denoted by $R(G)$,then $c f(G, Z) / R(G)$ is a finite abelian factor group which is denoted by $K(G)$.
Each element in $R(G)$ can be written as
$v_{1} \phi_{1}+v_{2} \phi_{2}+\cdots \ldots+u_{s} \phi_{s}$, where l is the

Ahmed Abed Ali Omran

a.a_omran@yahoo.com

Department of Mathematics, College of he Education for Pure Science, Babylon University, ${ }^{\text {os }}$ Babylon, Iraq
its
rows correspond to the ϕi 's and its columns correspond to the Γ-classes of G.
The matrix expressing $R(G)$ basis in terms of the $c f(G, Z)$ basis is $\equiv^{*}(G)$. We can use the theory of invariant factors to obtain the direct sum of the cyclic Z-module of orders the distinct invariant factors of $\equiv^{*}(G)$ to find the primary decomposition of $K(G)$.
M.S. Kirdar [6]studied the factor group $c f(G, Z) / \bar{R}(G)$ for the group of type $Z_{2}^{(n)}$. M.N.AL-Harere[1] studied the factor group $c f(G, Z) / \bar{R}(G)$ for the group of type $Z_{3}^{(n)}$. M.N.AL-Harere and Fuad A.AL-Heety[2] studied the factor group $c f(G, Z) / \bar{R}(G)$ for the group of type $Z_{5}^{(n)}$.

Here, we determine the primary decomposition of the group $K\left(Z_{p}^{(n)}\right)$ and find a general solution for it when $p \geq 2$.

2. Basic Concepts

In this section, we will present an introduction to concepts, representation, characters and characters table of finite group.

2.1 Matrix representation of characters

Definition 2.1.1,[4]
A matrix representation of a group G is a homomorphism $\quad A: G \rightarrow G L(n, F)$
n is called the degree of the matrix representation A.

Definition 2.1.2,[4]

Two matrix representations $A_{1(X)}$ and $A_{2(X)}$ are said to be equivalent, if they have the same
degree, and if there exists a fixed invertible matrix $T \in G L(n, F)$ such that:

$$
A_{1(X)}=T^{-1} A_{2(X)} T \quad \forall x \in G .
$$

Definition 2.1.3, [7]

A matrix representation A of a group G is a reducible representation if it is equivalent to a matrix representation of the form

$$
\left[\begin{array}{cc}
A_{1(x)} & T(x) \\
0 & A_{2(x)}
\end{array}\right] \text {, for all } x \in G
$$

where $A_{1}(x)$ and $A_{2}(x)$ are representations of G their degree is less than the degree of A.

A reducible representation A is called completely reducible if it is equivalent to a matrix representation of the form

$$
\left[\begin{array}{cc}
A_{1(x)} & 0 \\
0 & A_{2(x)}
\end{array}\right] \text {, For all } x \in G
$$

If A is not reducible, then A is said to be an irreducible representation.

Definition 2.1.4,[5]

Let G be a finite group and let $\rho: G \rightarrow$ $G L(n, C)$ be a matrix representation of G of degree n given by $\rho(x)=A(x) \quad \forall x \in G$, associated with ρ there is a function $\chi_{\rho}: G \rightarrow C$ defined by

C_{α}	1	x	x^{2}	\ldots	x^{n-1}
$\left\|C_{\alpha}\right\|$	1	1	1	\ldots	1
χ_{1}	1	1	1		1
χ_{2}	1	χ_{2}^{1}	χ_{2}^{2}		χ_{2}^{n-1}
\vdots	\vdots	\vdots	\vdots	\ldots	\vdots
χ_{n}	1	χ_{n}^{1}	χ_{n}^{2}	\ldots	χ_{n}^{n-1}

$\chi_{\rho}(x)=\operatorname{tr}(A(x))$. We call the function χ_{ρ} the character of the representation ρ.

Proposition 2.1.5,[8]

The characters of G are class functions on G, that is, conjugate elements have the same character.

Definition 2.1.6,[4]

Characters associated with irreducible representations are called irreducible (or simple) characters, and those of reducible representations are compound.

Definition 2.1.7,[4]

A class functions on G of the form ϕ $=v_{1} \chi_{1}+v_{2} \chi_{2}+\cdots+v_{k} \chi_{k} \quad$ where $\left\{\chi_{1}, \chi_{2}, \ldots \chi_{k}\right\}$ is the complete set of irreducible characters of G, and $v_{1}, v_{2}, \ldots, v_{k}$ are integers, which is called the generalized characters of G.

Theorem 2.1.8,[4]

The number k of distinct irreducible characters of G is equal to the number of its conjugacy classes.

2.2 Character of finite Abelian group: [4]

For a finite $\operatorname{group} G$ of order n, complete information about the irreducible characters of G is displayed in a table called the character table of G.
We list the elements of G in the $1^{\text {st }}$ row, we put $\quad \chi_{i}\left(x^{j}\right)=\chi_{i}^{j} \quad, \quad 1 \leq i \leq n, 1 \leq j \leq n-1$. Denoting the number of elements in C_{α} by $\left|C_{\alpha}\right|$ $(\alpha=1, \ldots, n)$, we have the class equation $\left|C_{1}\right|+\ldots+\left|C_{n}\right|=|G|$.

$$
\equiv G=
$$

Table (1)
If $G=Z_{n}$ the cyclic group of order n, and $\omega=e^{2 \pi i / n}$ is a primitive n-th root of unity, then
the general formula of the character table of Z_{n} is :
$\equiv Z_{n}=$

C_{α}	1	z	z^{2}	\ldots	z^{n-1}
$\left\|C_{\alpha}\right\|$	1	1	1	\ldots	1
χ_{1}	1	1	1		1
χ_{2}	1	ω	ω^{2}	\ldots	ω^{n-1}
χ_{2}	1	ω^{2}	ω^{4}	\ldots	ω^{n-2}
\vdots	\vdots	\vdots	\vdots	\vdots	\vdots
χ_{n}	1	ω^{n-1}	ω^{n-2}	\ldots	ω

Table (2)

3. The factor group $K(G)$

In this section we study the factor group $K(G)$, for a finite group G.

Definition 3.1,[3]

A rational valued character θ of G is a character whose values are in Z, that is $\theta(x) \in Z$, for all $x \in G$.

Definition 3.2,[6]

Two elements of G are said to be Γ-conjugate if the cyclic subgroups they generate are conjugate in G. This defines an equivalence relation on G, its classes are called Γ-classes of G.

Let G be a finite group and let $\chi_{1}, \chi_{2}, \ldots \chi_{k}$ be its distinct irreducible characters. A class function on G is a character if and only if it is a linear combination of the χ_{i} with non-negative integer coefficients. We will denote $R^{+}(G)$ the set of these functions, the group generated by $R^{+}(G)$ is called the group of the generalized characters of G and is denoted by $R(G)$, we have:

$$
R(G)=Z \chi_{1} \oplus Z \chi_{2} \oplus Z \chi_{3} \oplus \ldots Z \chi_{k}
$$

An element of $R(G)$ is called a virtual character. Since the product of two characters is
a character, $R(\mathrm{G})$ is a subring of the ring $c f(G)$ of C -valued class functions on G.

Let $c f(G, Z)$ be the group of all Z-valued class functions of G which are constant on Q classes and let $\bar{R}(G)$ be the intersection of $c f(G, Z)$ with $R(G), \bar{R}(G)$ be a ring of Z-valued generalized characters of G.

Let ε_{m} be a complex primitive m-th root of unity. We know that the Galois group
$\operatorname{Gal}\left(F\left(\varepsilon_{m}\right) / F\right)$ is a subgroup of the multiplicative group $(Z / m Z)^{*}$ of invertible elements of $Z / m Z$.

More precisely, if $\sigma \in \operatorname{Gal}\left(F\left(\varepsilon_{m}\right) / F\right)$, there exists a unique element $t \in(Z / m Z)^{*}$ such that $\sigma\left(\varepsilon_{m}\right)=\varepsilon_{m}^{t}$ if $\varepsilon_{m}=1$

We denote by Γ_{F} for the image of $\operatorname{Gal}\left(\mathrm{F}\left(\varepsilon_{m}\right) / \mathrm{F}\right)$ in $(Z / m Z)^{*}$, and if $t \in \Gamma_{F}$, we let σ_{t} denote the corresponding element of $\operatorname{Gal}\left(\mathrm{F}\left(\varepsilon_{m}\right) / \mathrm{F}\right)$.

Take as a ground field F the field Q of rational numbers, the Galois group of $Q\left(\varepsilon_{m}\right)$ over Q is the group denoted by Γ.

Proposition 3.3.,[7]

The characters $\phi_{1}, \phi_{2}, \ldots, \phi_{m}$ form a basis of $\bar{R}(\mathrm{G})$ and their number is equal to the number of conjugate classes of cyclic subgroups of G, where
$\phi_{i}=\sum_{\phi \in \operatorname{Gal}\left(Q\left(\chi_{i}\right)\right.} \chi_{i}^{\sigma} \quad$, and χ_{i} are irreducible Ccharacters of G, for all $i=1,2, \ldots m$.

Theorem 3.4,[8]

Let M, X, Y be matrices with entries in a principal domain R. Let P and Q be invertible matrices. Then $\quad D_{k}(Q M P)=D_{k}(M)$.

Theorem 3.5,[8]

Let M be an $m \times n$ matrix with entries in a principal domain R.

Then there exist matrices X, Y, D such that:

1. X and Y are invertible.
2. $Y M X=D$.
3. D is diagonal matrix.
4. If we denote $D_{i i}$ by d_{i}, then there exists a natural number $r, 0 \leq r \leq \min (m, n)$ such that $j>r$ implies $d_{j}=0$ and $j \leq r$ implies $d_{j} \neq 0$ and $1 \leq j<r$ implies d_{j} divides d_{j+1}.

Definition 3.6,[6]

Let M, be a matrix with entries in a principal R, equivalent to a matrix
$D=\operatorname{diag}\left\{d_{1}, d_{2}, \ldots d_{r}, 0, \ldots, 0\right\}$ such that d_{j} / d_{j+1} for $1 \leq j<r$, we call D the invariant factor matrix of M and $d_{1}, d_{2}, \ldots, d_{r}$ the invariant factors of M.

Theorem 3.7.,[6]

Let M be a finitely generated module over a principal domain R, then M is the direct sum of cyclic submodules with annihilating ideals
$\left\langle d_{1}\right\rangle,\left\langle d_{2}\right\rangle, \ldots\left\langle d_{r}\right\rangle, d_{j} / d_{j+1}$ for $j=1,2, \ldots, m-$ 1.

Theorem 3.8,[6]
$K(G)=\oplus_{i=1}^{r} Z_{d i}$
$d_{i= \pm} D_{i}\left(\equiv^{*} G\right) / D_{i-1}\left(\equiv^{*} G\right)$.

Lemma 3.9, [8]

Let P and Q be two non-singular matrices of degree n and m respectively, over a principal domain R, and let
$X_{1} P Y_{1}=D(P)=$
$\operatorname{diag}\left\{d_{1}(P), d_{2}(P), \ldots, d_{n}(P)\right\}$,
$X_{2} Q Y_{2}=D(Q)=$
$\operatorname{diag}\left\{d_{1}(\mathrm{Q}), d_{2}(\mathrm{Q}), \ldots, d_{n}(\mathrm{Q})\right\}$, be the invariant factor matrices of P and Q . Then
$\left(X_{1} \otimes X\right)(P \otimes Q)\left(Y_{1} \otimes Y_{2}\right)=D(P) \otimes D(Q)$, from this lemma, the invariant factor matrix of $P \otimes Q$ can be written as follows:
Let H and L be p_{1} and p_{2} groups respectively, where p_{1} and p_{2} are distinct primes, we know that

$$
\equiv(H \times L)=\equiv(H) \otimes \equiv(L)
$$

Since $\operatorname{gcd}\left(p_{1}, p_{2}\right)=1$, we have the next proposition.

Proposition 3.10, [6]

$$
\equiv^{*}(H \times L)=\equiv^{*}(H) \otimes \equiv^{*}(L) .
$$

We consider the case when the order of G is prime; the number of rational valued characters are two which is equal to the number of Γ-classes.
We have

$$
\equiv^{*} G=\left[\begin{array}{cc}
1 & 1 \\
P-1 & -1
\end{array}\right]
$$

Theorem 3.11,[6]

Let G be a cyclic p-group, then $\quad K(G)=Z_{p}$.

4. $K(G)$, For G cyclic $\&$ elementary abelian group

This section is dedicated to study the rational valued characters table of the group Z_{p} and to determine the primary decomposition of the finite abelian group $K(G)$ where G is cyclic group and the case when G is elementary abelian group.

4.1 The primary decomposition of

 $K\left(Z_{p}^{(n)}\right)$:In this section we will determine the primary decomposition of $K\left(Z_{p}^{(n)}\right)$ according to Lemma 3.9 and the Theorem 3.5 when $n=1$.

Let $X=\left[\begin{array}{cc}1-p & 1 \\ 1 & 0\end{array}\right], \quad Y=\left[\begin{array}{cc}-1 & 1 \\ 1 & 0\end{array}\right] \quad$ and according to Proposition 3.10, [6]

When $n=3$

$$
\equiv^{*} G=\begin{array}{|c|cr|}
\hline \Gamma \text {-classes } & {[1]} & {[z]} \\
\hline \theta_{1} & 1 & 1 \\
\hline \theta_{2} & p-1 & -1 \\
\hline
\end{array}
$$

and

$$
\begin{gathered}
\equiv^{*} Z_{p}=\left[\begin{array}{cc}
1 & 1 \\
p-1 & -1
\end{array}\right] \text {, so } \\
X \equiv^{*} Z_{p} Y=\left[\begin{array}{cc}
-p & 0 \\
0 & 1
\end{array}\right]
\end{gathered}
$$

, by Theorem 3.11 $K\left(Z_{p}\right)=Z_{p}$.
When $n=2$

$$
\begin{aligned}
& X \otimes X=\left[\begin{array}{cccc}
(1-p)^{2} & 1-p & 1-p & 1 \\
1-p & 0 & 1 & 0 \\
1-p & 1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right] \\
& Y \otimes Y=\left[\begin{array}{cccc}
1 & -1 & -1 & 1 \\
-1 & 0 & 1 & 0 \\
-1 & 1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right] \\
& \equiv^{*}\left(Z_{p}^{2}\right)= \\
& \equiv^{*} Z_{p} \otimes \equiv^{*} Z_{p}= \\
& {\left[\begin{array}{lccc}
1 \\
p-1 & 1 & 1 & 1 \\
p-1 & p-1 & p-1 & -1 \\
(p-1)^{2} & 1-p & 1-p & 1
\end{array}\right]}
\end{aligned}
$$

According to Lemma 3.9 we get
$X \otimes X \equiv\left(Z_{p}^{2}\right) Y \otimes Y=\left[\begin{array}{cccc}p^{2} & 0 & 0 & 0 \\ 0 & -p & 1 & 0 \\ 0 & 0 & -p & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$
$\equiv\left(Z_{p}^{2}\right) \sim \operatorname{diag}\left\{p^{2},-p,-p, 1\right\}$
Therefore, $K\left(Z_{p}^{2}\right)=Z_{p^{2}} \oplus Z_{p}^{2}$

Let
$X \otimes X \otimes X=$
$\left[\begin{array}{cccccccc}-p^{3} & p^{2} & p^{2} & -p & p^{2} & -p & -p & 1 \\ p^{2} & 0 & -p & 0 & -p & 0 & 1 & 0 \\ p^{2} & -p & 0 & 0 & -p & 1 & 0 & 0 \\ -p & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ p^{2} & -p & -p & 1 & 0 & 0 & 0 & 0 \\ -p & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ -p & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right]$
$Y \otimes Y \otimes$
$Y=\left[\begin{array}{rccccccc}-1 & 1 & 1 & -1 & 1 & -1 & -1 & 1 \\ 1 & 0 & -1 & 0 & -1 & 0 & 1 & 0 \\ 1 & -1 & 0 & 0 & -1 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 1 & -1 & -1 & 1 & 0 & 0 & 0 & 0 \\ -1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ -1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right]$
$\equiv^{*}\left(Z_{p}^{3}\right)=$
$\equiv^{*} Z_{p} \bigotimes \equiv{ }^{*} Z_{p} \bigotimes \equiv^{*} Z_{p}=$
$\left[\begin{array}{lccccccc}1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ p-1 & -1 & p-1 & -1 & p-1 & -1 & p-1 & -1 \\ p-1 & p-1 & -1 & -1 & p-1 & p-1 & -1 & -1 \\ (p-1)^{2} & 1-p & 1-p & 1 & p^{2} & 1-p & 1-p & 1 \\ p-1 & p-1 & p-1 & p-1 & -1 & -1 & -1 & -1 \\ (p-1)^{2} & 1-p & (p-1)^{2} & 1-p & 1-p & 1 & 1-p & 1 \\ (p-1)^{2} & (p-1)^{2} & 1-p & 1-p & 1-p & 1-p & 1 & 1 \\ (p-1)^{3} & -(p-1)^{2} & -(p-1)^{2} & p-1 & -(p-1)^{2} & p-1 & p-1 & -1\end{array}\right]$

And we obtain
$X \otimes X \otimes X \equiv^{*}\left(Z_{p}^{3}\right) Y \otimes Y \otimes Y=$

$$
\left[\begin{array}{cccccccc}
p^{3} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & -p^{2} & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & -p^{2} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & p & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & -p^{2} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & p & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & p & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & -1
\end{array}\right]
$$

$\equiv^{*}\left(Z_{p}^{3}\right) \sim \operatorname{diag}\left\{p^{3},-p^{2},-p^{2}, p,-p^{2}, p, p,-1\right\}$
Hence

$$
K\left(Z_{p}^{3}\right)=Z_{p^{3}} \oplus Z_{p^{2}}^{3} \oplus Z_{p}^{3} .
$$

When $n=4$, we repeat the same method, we get
$X \otimes X \otimes X \otimes X \equiv^{*}\left(Z_{p}^{4}\right) Y \otimes Y \otimes Y \otimes Y=$

$$
\left[\begin{array}{cccccccccccccccc}
p^{4} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & -p^{3} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & -p^{3} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & p^{2} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & -p^{3} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & p^{2} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & p^{2} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & -p & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -p^{3} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & p^{2} & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & p^{2} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -p & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & p^{2} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -p & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -p & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

Hence,

$$
\mathrm{K}\left(Z_{p}^{4}\right)=Z_{p^{4}} \oplus Z_{p^{3}}^{4} \oplus Z_{p^{2}}^{6} \oplus Z_{p}^{4} .
$$

The general case for p is given by the following.

Theorem 4.1. The primary decomposition of the factor group $K(G)$ for the Z_{p}^{n}, wher p is a prime number is
$\mathrm{K}\left(Z_{p}^{n}\right)=\oplus_{i=0}^{(n-1)} Z_{p^{n-i}}^{\left(\begin{array}{c}n \\ n-i\end{array}\right.}$,
Where p is a prime number, $\binom{n}{i}=\frac{n!}{i!(n-i)}$.
Proof: By induction method assume the statement holds for r factors then,

$$
\begin{aligned}
& \equiv^{*}\left(Z_{p}^{r}\right) \sim \\
& \operatorname{diag}\{ \pm p^{r} ; \pm \underbrace{p^{r-1}, \ldots, \pm p^{r-1}}_{\left(\begin{array}{r}
r-1
\end{array}\right)} ; \underbrace{ \pm p^{r-2}, \ldots, \pm p^{r-2}}_{\binom{r}{r-2}} ; \\
& \ldots ; \pm \underbrace{p^{2}, \ldots, \pm p^{2}}_{\binom{r}{2}} ; \underbrace{ \pm p, \ldots 1\} .}_{\left(\begin{array}{c}
\binom{r}{1}
\end{array} \pm \pm p\right.}
\end{aligned}
$$

And according to Proposition 3.10

$$
\equiv^{*}\left(Z_{p}^{r+1}\right)=\equiv^{*}\left(Z_{p}^{r}\right) \otimes \equiv \equiv^{*}\left(Z_{p}\right) .
$$

Hence, by Lemma 3.9 we have

$$
\begin{aligned}
& \equiv^{*}\left(Z_{p}^{r+1}\right) \sim \\
& \operatorname{diag}\{ \pm p^{r+1} ; \pm \underbrace{p^{r}, \ldots, \pm p^{r}}_{\binom{r}{r-1}} ; \underbrace{r}_{(r-2}): \pm p^{r-1}, \ldots, \pm p^{r-1} ; \\
& ; \pm \underbrace{p^{3}, \ldots, \pm p^{3}}_{\binom{r}{2}} ; \pm \underbrace{p^{2}, \ldots p^{2}}_{\binom{r}{1}} ; \pm p ; \pm p^{r} ; \\
& \pm \underbrace{r}_{(r-1}): \underbrace{p^{r-1}, \ldots . \pm p^{r-1}}_{\binom{r}{2}} ; \ldots ; \underbrace{2}, \ldots, p^{2} ; \\
& \underbrace{p, \ldots, p}_{\substack{r \\
1 \\
1}} ; \mp 1\}
\end{aligned}
$$

$\binom{r}{i}+\binom{r}{i-1}=\binom{r+1}{i}$ when, $0 \leq i \leq r$, which means p^{i} appears $\binom{r+1}{i}$ times in the matrix above.
Therefore, $K\left(Z_{p}^{r+1}\right)=\oplus_{i=1}^{(r+1)} Z_{p^{i}}^{\left(\begin{array}{c}r+1\end{array}\right)}$.

Example 4.2.

For $n=4, K\left(Z_{7}^{4}\right)=\oplus_{i=0}^{3} Z_{p^{4-i}}^{\left({ }_{4}^{4}\right)}$
$=Z_{p^{4}}^{\binom{4}{4}} \oplus Z_{p^{3}}^{\binom{4}{3_{2}}} \oplus Z_{p^{2}}^{\binom{4}{2}} \oplus Z_{p}^{\binom{n}{1}}$
$=Z_{2401} \oplus Z_{343}^{4} \oplus Z_{49}^{6} \oplus Z_{7}^{4}$

6. References:

[1] Al-Harere. M.N., " The primary decomposition of the factor group $c f(G, Z)$ / $\overline{\mathrm{R}}(G)$ ", Eng.
\&Tech.Journal,Vol 29, No. 5, 2010.
[2] Al-Harere .M.N. and Al-Heety F. A., " The primary decomposition of the factor group $K\left(Z_{p}^{n}\right)$ ", Eng. \&Tech.Journal, Vol 29, No. 9, 2011.
[3] Burrow. M. , " Representation Theory of Finite Groups", Academic Presses, New York,1965.
[4] Gehles K.E., " Ordinary Characters of Finite Special Linear Groups ", School of Mathematics and Statistics, University of Andreuss, 2002.
[5] Isaacs. I. M., "On Character Theory of Finite Groups ", Academic Press, New York, 1976.
[6] Kirdar .M.S., " The Factor Group of the ZValued Class Function Modulo the Group of The

Generalized Characters" , Ph.D . thesis ,University of Birmingham, 1982.
[7] Lederman .W., " Introduction to the Group Characters", Cambrige University, 1977.
[8] Serre.J.P, "Linear Representations Of Finite Group ", Springer-verlag, 1977

