Some Combinatorial Results on the Factor Group K(G)

Manal Najy Yaqoob

manal.najy@yahoo.com

Department of Applied Sciences, University of Technology, Baghdad, Iraq

character matrix = (Z_p) from the character table of Z_p and finding the invariant factors of this matrix, the primary decomposition of the factor group K(G), where $p \ge 2$ is determined. Also, we found the general form of this decomposition for $p \ge 2$.

Keywords: factor group, character table, rational valued character matrix.

1. Introduction

Let *G* be a finite group, two elements of *G* are said to be Γ - conjugate if the cyclic subgroups they generate are conjugate in *G*, and this defines an equivalence relation on *G*. Its classes are called Γ - classes.

The *Z* - valued class function on the group *G*, which is constant on the Γ - classes forms a finitely generated abelian group cf(G,Z) of a rank equal to the number of Γ - classes.

The intersection of cf(G,Z) with the group of all generalized characters of G, is a normal subgroup of cf(G,Z) denoted by R(G), then cf(G,Z)/R(G) is a finite abelian factor group which is denoted by K(G).

Each element in R(G) can be written as

 $v_1\phi_1 + v_2\phi_2 + \dots + u_s\phi_s$, where *l* is the

Ahmed Abed Ali Omran

a.a omran@yahoo.com

Department of Mathematics, College of ^{he} Education for Pure Science, Babylon University, ^{los}

Babylon, Iraq

its

rows correspond to the $\phi i's$ and its columns correspond to the Γ - classes of G.

The matrix expressing R(G) basis in terms of the cf(G,Z) basis is $\equiv^*(G)$. We can use the theory of invariant factors to obtain the direct sum of the cyclic Z-module of orders the distinct invariant factors of $\equiv^*(G)$ to find the primary decomposition of K(G).

M.S. Kirdar [6]studied the factor group $cf(G,Z)/\bar{R}(G)$ for the group of type $Z_2^{(n)}$. M.N.AL-Harere[1] studied the factor group $cf(G,Z)/\bar{R}(G)$ for the group of type $Z_3^{(n)}$. M.N.AL-Harere and Fuad A.AL-Heety[2] studied the factor group $cf(G,Z)/\bar{R}(G)$ for the group of type $Z_5^{(n)}$.

Here, we determine the primary decomposition of the group $K(Z_p^{(n)})$ and find a general solution for it when $p \ge 2$.

2. Basic Concepts

In this section, we will present an introduction to concepts, representation, characters and characters table of finite group.

2.1 Matrix representation of characters

Definition 2.1.1,[4]

A matrix representation of a group G is a homomorphism $A: G \to GL(n, F)$

n is called the degree of the matrix representation *A*.

Definition 2.1.2,[4]

Two matrix representations $A_{1(X)}$ and $A_{2(X)}$ are said to be equivalent, if they have the same degree, and if there exists a fixed invertible matrix $T \in GL(n, F)$ such that:

$$A_{1(X)} = T^{-1}A_{2(X)}T \quad \forall \ x \in G.$$

Definition 2.1.3,[7]

A matrix representation A of a group G is a reducible representation if it is equivalent to a matrix representation of the form

$$\begin{bmatrix} A_{1(x)} & T(x) \\ 0 & A_{2(x)} \end{bmatrix}, \text{ for all } x \in G,$$

where $A_1(x)$ and $A_2(x)$ are representations of *G* their degree is less than the degree of *A*.

A reducible representation *A* is called completely reducible if it is equivalent to a matrix representation of the form

$$\begin{bmatrix} A_{1(x)} & 0 \\ 0 & A_{2(x)} \end{bmatrix}$$
 , For all $x \in G$

If A is not reducible, then A is said to be an irreducible representation.

Definition 2.1.4,[5]

Let *G* be a finite group and let $\rho: G \rightarrow GL(n,C)$ be a matrix representation of *G* of degree *n* given by $\rho(x) = A(x) \quad \forall \quad x \in G$, associated with ρ there is a function $\chi_{\rho}: G \rightarrow C$ defined by

C_{α}	1	x	<i>x</i> ²	 x^{n-1}
$ C_{\alpha} $	1	1	1	 1
χ_1	1	1	1	1
χ_2	1	χ^1_2	χ^2_2	χ_2^{n-1}
•••	:	•••	•••	 :
χ_n	1	χ^1_n	χ^2_n	 χ_n^{n-1}

 $\chi_{\rho}(x) = tr(A(x))$. We call the function χ_{ρ} the

character of the representation ρ .

Proposition 2.1.5,[8]

The characters of G are class functions on G, that is, conjugate elements have the same character.

Definition 2.1.6,[4]

Characters associated with irreducible representations are called irreducible (or simple) characters, and those of reducible representations are compound.

Definition 2.1.7,[4]

A class functions on *G* of the form $\phi = v_1 \chi_1 + v_2 \chi_2 + \dots + v_k \chi_k$ where $\{\chi_1, \chi_2, \dots, \chi_k\}$ is the complete set of irreducible characters of *G*, and v_1, v_2, \dots, v_k are integers, which is called the generalized characters of *G*.

Theorem 2.1.8,[4]

The number k of distinct irreducible characters of G is equal to the number of its conjugacy classes.

2.2 Character of finite Abelian group: [4]

For a finite group G of order n, complete information about the irreducible characters of G is displayed in a table called the character table of G.

We list the elements of *G* in the 1st row, we put $\chi_i(x^j) = \chi_i^j$, $1 \le i \le n, 1 \le j \le n - 1$. Denoting the number of elements in C_α by $|C_\alpha|$ $(\alpha=1,...,n)$, we have the class equation $|C_1|+...+|C_n| = |G|$.

 $\equiv G =$

Table (1)

If $G = Z_n$ the cyclic group of order *n*, and $\omega = e^{2\pi i/n}$ is a primitive *n*-th root of unity, then

the general formula of the character table of Z_n is :

≡	Z_n	=
_	-n	

C_{α}	1	Ζ	z^2		z^{n-1}
$ C_{\alpha} $	1	1	1		1
χ_1	1	1	1		1
X ₂	1	ω	ω^2		ω^{n-1}
χ_2	1	ω^2	ω^4		ω^{n-2}
:	:	:	:	:	:
χ_n	1	ω^{n-1}	ω^{n-2}		ω

Table (2)

3. The factor group K(G)

In this section we study the factor group K(G), for a finite group G.

Definition 3.1,[3]

A rational valued character θ of *G* is a character whose values are in *Z*, that is $\theta(x) \in Z$, for all $x \in G$.

Definition 3.2,[6]

Two elements of *G* are said to be Γ -conjugate if the cyclic subgroups they generate are conjugate in *G*. This defines an equivalence relation on *G*, its classes are called Γ -classes of *G*.

Let *G* be a finite group and let $\chi_1, \chi_2, ..., \chi_k$ be its distinct irreducible characters. A class function on *G* is a character if and only if it is a linear combination of the χ_i with non-negative integer coefficients. We will denote $R^+(G)$ the set of these functions, the group generated by $R^+(G)$ is called the group of the generalized characters of *G* and is denoted by R(G), we have:

 $R(G) = Z\chi_1 \oplus Z\chi_2 \oplus Z\chi_3 \oplus \ldots Z\chi_k.$

An element of R(G) is called a virtual character. Since the product of two characters is

a character, R(G) is a subring of the ring cf(G) of C-valued class functions on G.

Let cf(G,Z) be the group of all Z-valued class functions of G which are constant on Qclasses and let $\overline{R}(G)$ be the intersection of cf(G,Z) with R(G), $\overline{R}(G)$ be a ring of Z-valued generalized characters of G.

Let ε_m be a complex primitive *m*-th root of unity. We know that the Galois group

Gal($F(\varepsilon_m)/F$) is a subgroup of the multiplicative group $(Z/mZ)^*$ of invertible elements of Z/mZ.

More precisely, if $\sigma \in \text{Gal}(F(\varepsilon_m)/F)$, there exists a unique element $t \in (Z/mZ)^*$ such that $\sigma(\varepsilon_m) = \varepsilon_m^t$ if $\varepsilon_m = 1$.

We denote by Γ_F for the image of $\operatorname{Gal}(F(\varepsilon_m)/F)$ in $(Z/m Z)^*$, and if $t \in \Gamma_F$, we let σ_t denote the corresponding element of $\operatorname{Gal}(F(\varepsilon_m)/F)$.

Take as a ground field *F* the field *Q* of rational numbers, the Galois group of $Q(\varepsilon_m)$ over *Q* is the group denoted by Γ .

Proposition 3.3.,[7]

The characters $\phi_1, \phi_2, ..., \phi_m$ form a basis of $\overline{R}(G)$ and their number is equal to the number of conjugate classes of cyclic subgroups of G, where

 $\phi_i = \sum_{\phi \in Gal(Q(\chi_i))} \chi_i^{\sigma}$, and χ_i are irreducible Ccharacters of *G*, for all i = 1, 2, ..., m.

Theorem 3.4,[8]

Let M, X, Y be matrices with entries in a principal domain R. Let P and Q be invertible matrices. Then $D_k(QMP) = D_k(M)$.

Theorem 3.5,[8]

Let *M* be an $m \times n$ matrix with entries in a principal domain *R*.

Then there exist matrices *X*, *Y*, *D* such that:

1. X and Y are invertible.

2. YMX = D.

3. D is diagonal matrix.

4. If we denote D_{ii} by d_i , then there exists a natural number r, $0 \le r \le \min(m, n)$ such that j > r implies $d_j = 0$ and $j \le r$ implies $d_j \ne 0$ and $1 \le j < r$ implies d_j divides d_{i+1} .

Definition 3.6,[6]

Let M, be a matrix with entries in a principal R, equivalent to a matrix

 $D = diag\{d_1, d_2, \dots, d_r, 0, \dots, 0\}$ such that d_j/d_{j+1} for $1 \le j < r$, we call D the invariant factor matrix of M and d_1, d_2, \dots, d_r the invariant factors of M.

Theorem 3.7.,[6]

Let M be a finitely generated module over a principal domain R, then M is the direct sum of cyclic submodules with annihilating ideals

 $\langle d_1 \rangle, \langle d_2 \rangle, \dots, \langle d_r \rangle, d_j/d_{j+1}$ for $j = 1, 2, \dots, m-1$.

Theorem 3.8,[6]

$$K(G) = \oplus_{i=1}^r Z_{di}$$

$$d_{i=\pm}D_i(\equiv^* G)/D_{i-1}(\equiv^* G).$$

Lemma 3.9, [8]

Let *P* and *Q* be two non-singular matrices of degree *n* and *m* respectively, over a principal domain *R*, and let $X_1PY_1 = D(P) =$ $diag\{d_1(P), d_2(P), ..., d_n(P)\},$ $X_2 Q Y_2 = D(Q) =$

 $diag\{d_1(Q), d_2(Q), \dots, d_n(Q)\}\)$, be the invariant factor matrices of P and Q. Then

 $(X_1 \otimes X)(P \otimes Q)(Y_1 \otimes Y_2) = D(P) \otimes D(Q)$, from this lemma, the invariant factor matrix of $P \otimes Q$ can be written as follows:

Let *H* and L be p_1 and p_2 groups respectively, where p_1 and p_2 are distinct primes, we know that

$$\equiv (H \times L) \equiv \equiv (H) \otimes \equiv (L)$$

Since gcd $(p_1, p_2) = 1$, we have the next proposition.

Proposition 3.10, [6]

 $\equiv^* (H \times L) \equiv \equiv^* (H) \otimes \equiv^* (L).$

We consider the case when the order of G is prime; the number of rational valued characters are two which is equal to the number of Γ -classes.

We have

$$\equiv^* G = \begin{bmatrix} 1 & 1 \\ P - 1 & -1 \end{bmatrix}$$

Theorem 3.11,[6]

Let G be a cyclic p-group, then $K(G) = Z_p$.

4. K(G), For G cyclic & elementary abelian group

This section is dedicated to study the rational valued characters table of the group Z_p and to determine the primary decomposition of the finite abelian group K(G) where G is cyclic group and the case when G is elementary abelian group.

4.1 The primary decomposition of $K(Z_p^{(n)})$:

In this section we will determine the primary decomposition of $K(Z_p^{(n)})$ according to Lemma 3.9 and the Theorem 3.5 when n = 1.

Let $X = \begin{bmatrix} 1-p & 1 \\ 1 & 0 \end{bmatrix}$, $Y = \begin{bmatrix} -1 & 1 \\ 1 & 0 \end{bmatrix}$ and according to Proposition 3.10, [6]

 $\equiv^* G = \frac{\begin{array}{c|c} \Gamma - \text{classes} & [1] & [z] \\ \hline \theta_1 & 1 & 1 \\ \hline \theta_2 & p-1 & -1 \end{array}$

and

$$\equiv^* Z_p = \begin{bmatrix} 1 & 1\\ p-1 & -1 \end{bmatrix}, \text{ so}$$

$$X \equiv^* Z_p \ Y = \begin{bmatrix} -p & 0 \\ 0 & 1 \end{bmatrix}$$
, by Theorem 3.11 $K(Z_p) = Z_p$

When
$$n = 2$$

$$X \otimes X = \begin{bmatrix} (1-p)^2 & 1-p & 1-p & 1\\ 1-p & 0 & 1 & 0\\ 1-p & 1 & 0 & 0\\ 1 & 0 & 0 & 0 \end{bmatrix}$$

$$Y \otimes Y = \begin{bmatrix} 1 & -1 & -1 & 1\\ -1 & 0 & 1 & 0\\ -1 & 1 & 0 & 0\\ 1 & 0 & 0 & 0 \end{bmatrix}$$

$${ { = } { } { { } { } { { { Z } _ { { p } } } } } = } \\ { { = } { { { { = } { } { { Z } _ { p } } \otimes } } = } \\ { { { { 1 } { 1 } { 1 } 1 } \\ { { p - 1 } { 1 } { - 1 } { p - 1 } - 1 \\ { p - 1 } { p - 1 } { - 1 } - 1 \\ { ({ p - 1 }) ^ { 2 } { 1 - p } { 1 - p } 1 } } } \\ } } } } }$$

According to Lemma 3.9 we get

$$X \otimes X \equiv (Z_p^2) Y \otimes Y = \begin{bmatrix} p^2 & 0 & 0 & 0 \\ 0 & -p & 1 & 0 \\ 0 & 0 & -p & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
$$\equiv (Z_p^2) \sim diag \{ p^2, -p, -p, 1 \}$$

Therefore, $K(Z_p^2) = Z_{p^2} \oplus Z_p^2$

When
$$n = 3$$

Let								
$X \otimes$	$X \otimes X$	X =						
$\left[-p^{3}\right]$	p^2	p^2	-p	p^2	-p	-p	ן1	
p^2	0	-p	0	-p	0	1	0	
p^2	-p	0	0	-p	1	0	0	
-p	0	0	0	1	0	0	0	
p^2	-p	-p	1	0	0	0	0	
-p	0	1	0	0	0	0	0	
-p	1	0	0	0	0	0	0	
L ₁	0	0	0	0	0	0	01	

$Y \otimes Y \otimes$												
	г—1	1	1	-1	1	-1	-1	ן1				
Y =	1	0	-1	0	-1	0	1	0				
	1	-1	0	0	-1	1	0	0				
	-1	0	0	0	1	0	0	0				
	1	-1	-1	1	0	0	0	0				
	-1	0	1	0	0	0	0	0				
	-1	1	0	0	0	0	0	0				
	L 1	0	0	0	0	0	0	0				

And we obtain $X \otimes X \otimes X \equiv^* (Z_p^3) Y \otimes Y \otimes Y =$

[p ³	0	0	0	0	0	0	ך 0
0	$-p^2$	0	0	0	0	0	0
0	0	$-p^2$	0	0	0	0	0
0	0	0	р	0	0	0	0
0	0	0	0	$-p^2$	0	0	0
0	0	0	0	0	р	0	0
0	0	0	0	0	0	р	0
Γ0	0	0	0	0	0	0	_1J

 $\equiv^{*} (Z_{p}^{3}) \sim diag \{p^{3}, -p^{2}, -p^{2}, p, -p^{2}, p, p, -1\}$ Hence

 $K(Z_p^3) = Z_{p^3} \oplus Z_{p^2}^3 \oplus Z_p^3.$

When n = 4, we repeat the same method, we get

 $X \otimes X \otimes X \otimes X \equiv^* \left(Z_p^4 \right) \, Y \otimes Y \otimes Y \otimes Y =$

$\lceil p^4 \rceil$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	ן0
0	$-p^3$	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	$-p^3$	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	p^2	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	$-p^3$	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	p^2	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	p^2	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	-p	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	$-p^3$	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	p^2	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	p^2	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	-p	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	p^2	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	-p	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	-p	0
Γ0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1

Hence,

 $\mathbf{K} (Z_p^4) = Z_{p^4} \oplus Z_{p^3}^4 \oplus Z_{p^2}^6 \oplus Z_p^4.$

The general case for p is given by the following.

Theorem 4.1. The primary decomposition of the factor group K(G) for the Z_p^n , wher p is a prime number is

K
$$(Z_p^n) = \bigoplus_{i=0}^{(n-1)} Z_{p^{n-i}}^{\binom{n}{n-i}}$$
,
Where p is a prime number, $\binom{n}{i} = \frac{n!}{i!(n-i)}$

Proof: By induction method assume the statement holds for r factors then,

$$\begin{split} & \equiv^* \left(Z_p^r \right) \sim \\ & diag \left\{ \pm p^r; \pm \underbrace{p^{r-1}, \dots, \pm p^{r-1}}_{\binom{r}{r-1}}; \underbrace{\pm p^{r-2}, \dots, \pm p^{r-2}}_{\binom{r}{r-2}}; \\ & \dots; \pm \underbrace{p^2, \dots, \pm p^2}_{\binom{r}{2}}; \underbrace{\pm p, \dots, \pm p}_{\binom{r}{1}}; \mp 1 \right\}. \end{split}$$

And according to Proposition 3.10

$$\equiv^* (Z_p^{r+1}) = \equiv^* (Z_p^r) \otimes \equiv^* (Z_p).$$

Hence, by Lemma 3.9 we have

$$\begin{split} & \equiv^{*} \left(Z_{p}^{r+1} \right) \sim \\ & diag \left\{ \pm p^{r+1}; \pm \underbrace{p^{r}, \dots, \pm p^{r}}_{\binom{r}{r-1}}; \underbrace{\pm p^{r-1}, \dots, \pm p^{r-1}}_{\binom{r}{r-2}}; \right. \\ & ; \pm \underbrace{p^{3}, \dots, \pm p^{3}}_{\binom{r}{2}}; \pm \underbrace{p^{2}, \dots, \pm p^{2}}_{\binom{r}{1}}; \pm p; \pm p^{r}; \\ & \pm \underbrace{p^{r-1}, \dots, \pm p^{r-1}}_{\binom{r}{r-1}}; \dots; \underbrace{p^{2}, \dots, p^{2}}_{\binom{r}{2}}; \\ & \underbrace{p, \dots, p}_{\binom{r}{1}}; \mp 1 \rbrace \end{split}$$

 $\binom{r}{i} + \binom{r}{i-1} = \binom{r+1}{i}$ when $0 \le i \le r$, which means p^i appears $\binom{r+1}{i}$ times in the matrix above.

Therefore, $K(Z_p^{r+1}) = \bigoplus_{i=1}^{(r+1)} Z_{p^i}^{\binom{r+1}{i}}$.

Example 4.2.

For n = 4, K (Z₇⁴) = $\bigoplus_{i=0}^{3} Z_{p^{4-i}}^{\binom{4}{4-i}}$

$$= Z_{p^4}^{\binom{4}{4}} \oplus Z_{p^3}^{\binom{4}{3}} \oplus Z_{p^2}^{\binom{4}{2}} \oplus Z_p^{\binom{n}{1}}$$
$$= Z_{2401} \oplus Z_{343}^4 \oplus Z_{49}^6 \oplus Z_7^4$$

6. References:

[1] Al-Harere. M.N., " The primary decomposition of the factor group $cf(G,Z)/\overline{\mathbb{R}}(G)$ ", Eng. &Tech.Journal,Vol 29, No. 5, 2010.

[2] Al-Harere .M.N. and Al-Heety F. A., " The primary decomposition of the factor group $K(Z_p^n)$ ", Eng. &Tech.Journal, Vol 29, No. 9, 2011.

[3] Burrow. M., "Representation Theory of Finite Groups", Academic Presses, New York,1965.

[4] Gehles K.E., "Ordinary Characters of Finite Special Linear Groups ", School of Mathematics and Statistics, University of Andreuss, 2002.

[5] Isaacs. I. M., "On Character Theory of Finite Groups ", Academic Press, New York, 1976.

[6] Kirdar .M.S., " The Factor Group of the Z-Valued Class Function Modulo the Group of The

Generalized Characters", Ph.D. thesis, University of Birmingham, 1982.

[7] Lederman .W., " Introduction to the Group Characters", Cambridge University, 1977.

[8] Serre.J.P, "Linear Representations Of Finite Group ", Springer-verlag, 1977