On Almost T*l*-m- continuous Multifunctions

Muayad G.Mohsin

Dept. Math., Faculty of computer science and mathematics,Kufa University

Abstract

We introduce and study the concept of almost $T\ell$ -m- continuous multifunctionsby using the concept of T- open set and minimal spaces, which is stronger than the concept of almost $T\ell$ - continuous multifunctions. Several properties and characterizations of this new concept are proved.

1. Introduction:

The notions ofalmost continuous multifunctions. mcontinuous multifunctionsand their properties are studied by ValeriuPopa, and Takashi Noiri[7],[9],[10], Whileat 2006,A. Kanibir and I.L. Reilly [2]investigate the conceptof Almost ℓ -continuous multifunctions. After thatHadiJaber Mustafa and Muayad G. Mohsen [6] introduced a stronger concept than almost ℓ -continuous multifunctions, between topological spaces namely almost $T\ell$ -continuous multifunctions (briefly, a.*Tℓ*-c.mf.).

In this paper we shall focus on a new class of functions, lies between almost continuous multifunctions Almost T ℓ -continuous multifunctions. By using the concepts of Topensets[4],m_X_open sets[10] and T-Lindelöf[5] we shall introduce the concept of almost T ℓ -m continuous multifunction (briefly, a.T ℓ -m-c.mf.) which is stronger than the concept of almost T ℓ -continuous multifunctions (a. ℓ -c.m.f.). Throughout this paper , the closure (resp. interior) of a subset B in a topological space (Y, τ) is denoted by clB (resp. intB), while B is called regular open if B = int(clB).

2. Preliminiries:

In this section, we introduce and recall the basic definition and facts needed in this work.

2.1 Definition:

Let (X, τ, T) be an operator topological space [3], and let $A \subseteq X$. Then,

- A is calledT- open if given x ∈ A ,then there exist V ∈ τ such that x ∈ V ⊆ T(V) ⊆ A. The complement of a T-open set is called T-closed[4].
- 2) A is called T-regular open[6] (briefly TRO) if and only if A is regular open and T- open. The set of all T-regular open is denoted by TRO (X, τ , T). The complement of T- regular open set is T-regular closed (briefly TRC).
- 3) X is called T-Lindelöf if every T-open cover of X has a countable subcover .

2.2 <u>Remark :</u>

The family of all T- open subsets of X does not form in general a topology on X [4].

2.3Definition:[10]

Let X be a non-empty set and let $m_X \subseteq P(X)$, where P(X) denoted to power set of X. Then m_X is called an *m*-structure (or a minimal structure) on X, if \emptyset and X belong to m_X .

2.4Remark:

- 1) The members of the minimal structure m_X are called $m_X open$ sets, and the pair (X, m_X) is called an m space.
- 2) The complement of $m_X open$ sets is said to be $m_X closed$ sets.
- It's clear that if (X, τ) is a space then the topology τ on X is a minimal space but the convers is not true in general.

2.5Definition:[8]

By a multifunction $F: (X, \sigma) \to (Y, \tau)$, we mean a point –to-set correspondence from (X, σ) to (Y, τ) , and we always assume that $F(x) \neq \emptyset, \forall x \in X$.

2.6Definition:[8]

Let $F: (X, \sigma) \rightarrow (Y, \tau)$ be a topological multifunction, $A \subseteq X$, and $B \subseteq Y$. Then,

- i) $F^+(B) = \{x \in X : F(x) \subseteq B\}$ is called the upper inverse of B.
- ii) $F^-(B) = \{x \in X : F(x) \cap B \neq \emptyset\}$ is called the lower inverse of the set B.
- iii) $F(A) = \bigcup_{x \in A} F(x)$ is called the image of the set A.

2.7Definition:[11]

The multifunction F: $(X, \sigma) \rightarrow (Y, \tau)$ is called upper semicontinuous briefly u.s.c.(resp. lower semicontinuous briefly l.s.c.) if F⁺(B) (resp.F⁻(B) is open in(X, σ) for every V open set of (Y, τ) .

2.8Definition[6]

i) The almost co T- Lindelöf topology τ on Y is denotedby $q(\tau, T)$ and it has abase $q'(\tau, T) = \{U \in$

 $TRO(Y, \tau, T)$: U^cis T – Lindelöf}

3. AlmostTℓ-m-continuous multifunctions(simplya.Tℓ-mc.mf.):

We now introduce a new class of multifunctionsthat related between two topological spaces with the following definition .

3.1 Definition :

A multifunction $F: (X, m_X) \rightarrow (Y, \tau, T)$

is defined to be

i) Upper Almost $T\ell$ -m-continuous or $u.a.T\ell$ -m-c. at a point $x \in X$, if for each T-regular open subset V(briefly

TRO) of Y with $F(x) \subseteq V$ and having T-Lindelöf complement, there exist an m_X -open neighbourhood U of x such that $F(U) \subseteq V$.

- ii) Lower Almost $T\ell$ -m-continuous or $l.a.T\ell$ -m-c. at a point $x \in X$, if for each T-regular open subset V of Y with $F(x) \cap V \neq \emptyset$ and having T-Lindelöf complement, there exist an m_X -open neighbourhood U of x such that $F(z) \cap V \neq \emptyset$ for every point $z \in U$.
- iii) Almost $T\ell$ -m-continuous, at a point $x \in X$, if it is both $u.a.T\ell$ -m-c. and $l.a.T\ell$ -m-c. at $x \in X$.
- iv) Almost $T\ell$ -m-continuous (*resp. u. a. T* ℓ -m-c. , *l. a. T* ℓ -m-c.) if it is Almost $T\ell$ -m-continuous (*resp. u. a. T* ℓ -m-c. , *l. a. T* ℓ -m-c.) at each point of *X*.

3.2Example:

Consider(X, m_X) be minimal space s.t.X = $\{a, b, c\}$ and m_X = $\{\emptyset, X, \{a\}, \{a, b\}, \{a, c\}\}$, and let (Y, τ , T) be operator topological space s.t.Y = $\{1,2,3,4\}$ with the topology $\tau = \{\emptyset, Y, \{1\}, \{2\}, \{1,2\}\}$, and the operator T: P(Y) \rightarrow P(Y) defined as T(A) = int(cl(A)), A \subseteq Y.

Define $F: (X, m_X) \rightarrow (Y, \tau, T)$ as follows:

 $F(a) = F(b) = \{1\}, F(c) = \{1,2\}.$

Then F is continuous, almost continuous and almost $T\ell$ -m-continuous multifunction.

3.3Example

let \mathbb{R} be the set of real number with minimal structure $m_X = \{\emptyset, \mathbb{R}, \mathbb{Q}^c\}$, and let . $Y = \{a, b\}$ equipped with the topology $\tau = \{\emptyset, Y, \{a\}\}$, and let T: P(Y) \rightarrow P(Y) be the identity operator , then the function F: $(\mathbb{R}, m_X) \rightarrow (Y, \tau, T)$ which is defined bellow is almost continuous and almost T ℓ m-continuous but not continuous at $x \in \mathbb{R}$ if it's rational.

$$F(x) = \begin{cases} \{a\}, & \text{if } x \in \mathbb{Q}, \\ \{b\}, & \text{if } x \notin \mathbb{Q} \end{cases}$$

3.4 Example

Let $X = \mathbb{R}$ with minimal space $m_X = \{\emptyset, \mathbb{R}, (-\infty, -r), (\infty, r), (-r, r)\}$

and let $Y = \mathbb{R}$ with usual topology. Define $F(x) = \begin{cases} \frac{1}{x-2} & \text{if } x \neq 2\\ \frac{1}{2} & \text{if } x = 2 \end{cases}$

And define the operator $T: P(Y) \rightarrow P(Y)$ as T(A) = int(cl(A))

Then the function $F: (X, m_X) \rightarrow (Y, \tau, T)$ is almost $T\ell$ -m-continuous at the point 2.

3.5Remark

It's clear from the definition that:

Almost $T\ell$ -m-continuous multifunction \Rightarrow almost $T\ell$ -continuous

3.6 Theorem:

The following conditions are equivalent for a multifunctions $F: (X, m_X) \rightarrow (Y, \tau, T)$.

- a) F is upper almost $T\ell$ -m-continuous.
- b) $F^+(V)$ is m_X —open for any T-regular open set V having T-Lindelöf complement in Y.
- c) $F^+(V)$ is m_X -open for any $V \in q'(\tau, T)$.
- d) $F^{-}(V)$ is m_X -closed for any T-regular closed Lindelöf set *V* of *Y*.
- e) For each $x \in X$, and each net (x_{α}) which converges to x in X, and for each T-regular open subset V with T-Lindelöf complement V^{C} , such that $x \in F^{+}(V)$, the net (x_{α}) is eventually in $F^{+}(V)$.

Proof:

(a) \Rightarrow (b)

Let $V \in \text{TRO}(Y, T, \tau)$, having T- Lindelöf complement.Let $x \in F^+(V)$.Then there

exist an m_X -open set U containing x, such that $F(U) \subseteq V$ hence $x \in U \subseteq F^+(V)$. This show that $F^+(V)$ is m_X -open.

(b) \Rightarrow (a) . Let $x \in X$ and V be any TRO subset of Y having T- Lindelöf complement with $F(x) \subseteq V$, then $x \in F^+(V)$ and $F^+(V)$ is m_X – open. Put $U = F^+(V)$. Hence U is an m_X – open nbh. of x and $F(U) \subseteq V$.

(b) \Rightarrow (c) . Let $V \in q'(\tau, T)$. hence V is TRO subset in Y, V^c is T- Lindelöf by (b) $F^+(V)$ is m_X -open.

(c) \Rightarrow (b) . let V is TRO subset of Y , hence T-Lindelöf in Y. $\therefore V \in q'(\tau, T)$. $\therefore F^+(V)$ is m_X -open.

(b) \Rightarrow (d) . Let V be any TRC- Lindelöf subset of Y.consider V^c is TRO subset of Y having T- Lindelöf complement, by (b) we have $F^{-}(V^{c})$ is m_{X} -open. Hence by the fact $F^{+}(V^{c}) = (F^{-}(V))^{c}$, we have $F^{-}(V)$ is m_{X} -closed.

(d) \Rightarrow (b). Let V be any TRO subset of Y having T- Lindelöf complement. consider V^c is TRC- Lindelöf, by(d) $F^-(V^c)$ is closed ,hence $(F^-(V^c))^c$ is m_X -open, hence $F^+(V)$ is m_X -open.

(a) \implies (e). Let $J = (x_{\alpha})$ be a net which converge to $x \in X$ and let V be any TRO subset of Y having T- Lindelöf complement V^c such that $x \in F^+(V)$, then there exist an m_X -open set $U \subseteq X$ containing x such that $U \subseteq F^+(V)$

Since (x_{α}) converge to *x* it follows that there exist $\alpha_0 \in \Omega$ such that $x_{\alpha} \in U$ for all $\alpha \ge \alpha_0$. Therefore $x_{\alpha} \in F^+(V)$ for all $\alpha \ge \alpha_0$. Hence the net (x_{α}) is eventually in $F^+(V)$.

(d) \Rightarrow (a) Suppose that (a) is not true .then there exist $x \in X$ and a TRO subset V of Y having T- Lindelöf complement with $F(x) \subseteq V$ such that $F(U) \nsubseteq V$ for each m_X —open set $U \subseteq X$ containing x.Therefore the nbh net $(x_U), x_U \to x$, but (x_U) is not eventually in $F^+(V)$.This is a contradiction.

Similarly, we can obtain the following conditions for the lower almost continuous multifunctions.

3.7 Theorem :

The following conditions are equivalent for a multifunctions $F: (X, m_X) \rightarrow (Y, \tau, T)$

- a) F is lower almost $T\ell$ -m-continuous.
- b) $F^{-}(V)$ is m_X -open for any T-regular open set V having T-Lindelöf complement in Y.
- c) $F^{-}(V)$ is m_X -open for any $V \in q'(\tau, T)$.
- d) $F^+(V)$ is m_X -closed for any T-regular closed T-Lindelöf set *V* of *Y*.
- e) For each $x \in X$, and each net (x_{α}) which converges to x in X, and for each T-regular open subset V with T-Lindelöf complement V^c , such that $x \in F^-(V)$, the net (x_{α}) is eventually in $F^-(V)$.

<u>3.8Remark :</u>

Let $F: (X, \sigma) \to (Y, \tau, T)$ be a multifunction then we have:

i) If *F* is upper semi continuous (brieflyu.s.c.) then *F* is u.a. $T\ell$ -m-continuous.

ii) If *F* is lower semicontinuous (briefly l.s.c.) then *F* is l.a. $T\ell$ -m-continuous.

These implications are not reversible in general as the following examples shows:

3.9 Example:

Consider the minimal space $(\mathbb{R}, m_{\mathbb{R}})$ such that:

 $m_{\mathbb{R}} = \{ \emptyset, \mathbb{R}, (a, b): a, b \in \mathbb{R} \}$, where \mathbb{R} the set of real numbers.

and $(\mathbb{R}, \tau_{CC}, T)$ be operator topological spaces , τ_{CC} is the co-countabletopology on \mathbb{R} and, T is the identity operator on $P(\mathbb{R})$,(the power set of \mathbb{R}).

Define $F: (\mathbb{R}, m_{\mathcal{R}}) \rightarrow (\mathbb{R}, \tau_{CC}, T)$ as follow:

$$F(x) = \begin{cases} \{x\}, & \text{if } x \text{ is irrational} \\ Q, & \text{if } x \text{ is rational} \end{cases}$$

Then the multifunction F is u.a. $T\ell$ -mcontinuous, since $q'(\tau_{CC}, T) = \{\mathbb{R}, \emptyset\}$. In fact F is a. $T\ell$ -m-continuous. However F is not u.s.c. or l.s.c., since $V = Q^c$ is open in (\mathbb{R}, τ_{CC}) , but $F^+(V)$ and $F^-(V)$ are not $m_{\mathbb{R}}$ - open in $(\mathbb{R}, m_{\mathcal{R}})$.

3.10 Theorem :

Let $F: (X, m_X) \rightarrow (Y, \tau, T)$ be a multifunction then, it is l.a. $T\ell$ -mcontinuous iff $F_q: (X, m_X) \rightarrow$ $(Y, q(\tau, T), T)$ is l.s.c.(*where* $F_q = F$).

Proof⇒:

Assume *F* is 1.a. $T\ell$ -m-continuous. Let $V \in q(\tau, T)$ we can write $V \in \bigcup_{\alpha \in \Omega} V_{\alpha}$ where V_{α} is a TRO set having T-Lindelöf complement in *Y* for $\alpha \in \Omega$. Where $F_q^-(V) = F_q^-(\bigcup_{\alpha \in \Omega} V_{\alpha}) = \bigcup_{\alpha \in \Omega} F_q^-(V_{\alpha}) = \bigcup_{\alpha \in \Omega} F^-(V_{\alpha})$ but $F^-(V_{\alpha})$ is an $, m_X$ -open set for $\alpha \in \Omega$ by theorem (3.3), so $F_q^-(V)$ is an $, m_X$ -open set . Hence $F_q: (X, m_X) \rightarrow (Y, q(\tau, T), T)$ is 1.s.c. \leftarrow abvious. 1.s.c. \rightarrow 1.a. $T\ell$ -m-continuous

The theorem (3.6) does not hold for upper almost continuous multifunctions as the following example shows .

3.11 Example :

Consider X = N with the topology

 $m_X = \{\emptyset, N, \{1\}, \{2, 3, 4, ...\}\},$ and

 $Y = \{1,2,3,4\}$ with the topology $\tau = \{\emptyset, Y, \{1\}, \{2\}, \{1,2\}\}$. let F be defined as

 $F(1) = \{4\}, F(2) = \{1,2\}, F(\{3,4,...\}) = \{3\}.$

Let T= identity operator then $q'(\tau, T) = q'(\tau) = \{\emptyset, Y, \{1\}, \{2\}\}.$

The family $q'(\tau, T)$ is abase consisting of TRO sets having T-Lindelöf complement in Y for $q(\tau, T) = \tau$. Then for any $V \in q'(\tau)$ we have $F^+(V) \in \sigma$, therefore $F: (X, m_X) \rightarrow (Y, \tau, T)$ is u.a. $T\ell$ -m-continuous. The topology $q(\tau)$ contains the set $\{1,2\}$ but $F_q^+(\{1,2\}) = \{2\} \notin m_X$. Hence $F_q: (X, m_X) \rightarrow (Y, q(\tau, T), T)$ is not u.s.c.

In the next theorem we shall relate three different kinds of multifunction, m-continuous multifunction[10], almost T ℓ continuous multifunction almost T ℓ -m-continuous multifunction.

3.12 Theorem :

Let $F: (X, m_X) \rightarrow (Y, \tau)$ and $G: (Y, \tau) \rightarrow (Z, \sigma, T)$ be a multifunctions then, if F is 1.m-continuous and G 1.a. $T\ell$ continuous then $G \circ F$ is 1.a. $T\ell$ -m-continuous.

Proof

Let *V* be a TRO open set having T-Lindelöf complement in *Z*, since *G* 1.a. $T\ell$ continuous $G^-(V)$ is an open in *Y*. since *F* is 1.m-continuous, then $F^-(G^-(V)) = (G \circ F)^-(V)$ is an m_X -open in *X*, therefore $G \circ F$ is 1.a. $T\ell$ -mcontinuous.

In the next theorem we have the same result for upper almost $T\ell$ -m continuous multifunction ,between minimal space (X, m_X), topological space (Y, τ), and operator topological space(Z, σ , T).

3.13 Theorem :

Let $F: (X, m_X) \rightarrow (Y, \tau)$ and $G: (Y, \tau) \rightarrow (Z, \sigma, T)$ be a multifunctions then, if F is u. m-continuous and Gu.a. T ℓ continuous then $G \circ F$ is u.a. T ℓ -m-continuous.

<u>References</u>

[1] Gauld, D. B., MrševiĆ, M., Reilly, I. L., and Vamanamurthy,M.K., "*CoLindelöf* topology and ℓ - continuous functions", Glasnik mat. Vol.19(39)(1984), 297-308.

[2] Kanibir, A., and Reilly, I. L., "On almost ℓ - continuous multifunctions", Hacettepe Journal of math. and statistics. Vol. 35(2)(2006), 181-188.

[3] Mustafa, Hadi J., and Alhindawe, A. L., "*Operator topological space*", Journal of the college of Education, Almustansiriyah Univ. 2010.

[4] Mustafa, Hadi J., and Hassan, Ali A., "T- open sets", M. Sc. Thesis, Muta'ah University, Jordan, 2004.

[5] Mustafa ,Hadi J., and Kasim, Ali A., "The operator 'T' and new types of open sets and spaces", M. Sc. Thesis , Muta'ah University, Jordan , 2004.

[6] Mustafa ,Hadi J., and Mohsin,Muayad G., "*Certain types of almost continuous multifunctions*", M. Sc. Thesis , Kufa University, Iraq , 2012.

[7] Noiri, T., and Popa, V., "*On upper and lower M-continuous multifunctions*", Filomat (Nis)14, 2000, 77-83.

[8] Orhan, Ozer, "A note on Multifunctions", Acta. Sci., Math. 46, (1983), 121-129.

[9] Popa, Valeriu, " *On almost continuous multifunctions*", Faculty of Sci. Univ. of Noivisadm Math. Series 15,1(1985).

[10]Popa, Valeriu, and Noiri, Takashi, "*On M*- *continuous multifunctions*", Bull. St. Univ. Politeh. Ser. Mat. Fiz. 46(50), 2001, 1-12.

[11] Sakalova , K. , "*Continuity Properties of Multifunction*" Acta Math. Univ. Com. 56-57 , (1989) , 159-165 .