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Abstract

The purpose of this paper is to introduce a
summation-integral g-Beta-Szasz operators denoted
by Mﬁw (f (), x). We use the method of Korovik-
type statistical approximation to prove our operators
is approximate . then, we establish a VVoronovkaja-
type asymptotic formula for the g-operators.
Finely,we obtain an error estimate in terms of
modulus of continuity being approximated.
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1. Introduction.

Due to the importance of Beta —Szasz operators a
variety of their generalizations and related topics
have been studied (see[5] )

Then, Gupta and Yadav [6] introduced the family of
summation-integral type operators g-Beta-Szasz
type operators for g € (0,1) as

Bi(f,x)
. q/(1-q™)
= Z Pl g * T f sp ©f (tg7*1)dgt, x
k=0 0
€ [0, ). (1.1
Where
k(k—1)/2 Kk

1 - s4.(0)
By(k+1,n) (1 + x)g“““1 Tk

pz,k(x) =

k
= Eq(~[nlqt) “§3+? (1.2)
X

1 +x)0 =
{(1 +x)(1+gx)..(1+q™x), n=1,2, }
1, n=20 '

For a fixed v € Ny = {0,1,2, ... } we denote by C}
the set of all f € Cy having derivatives f ) € Cj
such that k = 1,2, ..., v. Rempulska and Walczak
defined the new sequence see[3].

We use a similar idea to introduce a generalization
for the g-Beta- Szasz operators as

For f € C§[0,)and q € (0,1), we propose the g-
Beta —Szasz operators as

My (f (), %)

q/(1-q™)

N OO,
_ q q k—1 k-1
= kZO P (X) f Sni (0)q ]ZO 1! (tq

0

—x)d,t,(1.3)
Where p)! , (x) and 5], ()is as defined by (1.2).

In the first we recall some notation of g-calculus,
which can also be found in [1] and[2]. Throughout
the present article q be a real number satisfying the
inequality 0 < g < 1. Forany n € N U {0}, the g-
integer [n] = [n], is defined by

[nlg=1+q+-+q"",
[0], = 0
And the g-factional [n]! = [n],! by
[nlg! = [1][2] ... [n]
[0],! = 1.

For integers 0 < k < n, the g-binomial is defined by
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[el, n—k]

Also, from [2] we use the following notation:

n
n_ M (-pHn-j-1)/2 n—j,.j
(x+a)q—ZO[j]q a- "X
J:

And the g-derivative D, f of a function f is given
by

f (x) f(ax)

Da(f)) == —x

,x # 0.

The g analogue of product rule by defined as
Dg(f(x)g(x)) = g(qx)Dg(f(x)) —
f(x)Dg(g(®)).

In this paper, we investigate the rate of convergence
for the sequence M,!,(f(t), x) by the modules of

continuity. We discuss Voronovskaja-type theorems

for our operators for arbitrary fixed g > 0. Moreover,

we establish the weighted approximation for this

operators.

Lemma 1. [6] for0 < g < 1,x € [0, o), the
following equalities are true:

1D BI(1,x)=1, 2)Bl(t,x)

_< 1 >+L
ST AT

[n+1]4[n + 2],
q3[nl?

[n+ 1],
e 2

Lemma 2. [6] forall x € [0,0),n € Nand q €
(0,1), the moment of the operators B,! (f, x) are
given by

3) BI(t?,x) = 2

Bl(t—x,x) =

(1 +2q+q2)x+ﬁ.
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alnl, +121,

q3[nl
+q(1 +q*)[nlg+ (1 +q)2
q?[n];

B ((t — %)% x) =

121,
+ -

Lemma 3.[6] for g € (0,1), x € [0, =), the
following identity is true

1)qx(1 + x)Dgpy ;. ()
_ [k]
- \g*n+1],

- qx) [n+ 11405 (%)

2)tD, (sik (2)) = <[k]q - %) g*s8,.(0)

Lemma 4.if we define the m-th order moment of the
operators (1.1) as

Tn,m(x) = Bg (tm' x)
q/(1-q™)

= i Pﬁ,k(x)q‘k‘l f nk(t) ( kt+1
k=0

0
m
— x) dqt,

then we have,

[n]Tn,m+1(qx) = x(l + x)Dan,m(x)
+(n+1] - [n])xTn,m(qx)
+ [m]x(1 + 1) Tyym-1 (%)
+ [m + 1]T;, 1 (gx).

Proof. By using Lemma 3, we get
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Dy (Tam(®))

q/(1-q™)

—[m] i Pg,k(x)q_k_l f nk(t)( k+1
k=0

0
m
— x) dqt
q/(1-q™)

+ i Dq(pg,k(x))q_k_l f
k=0

0

s340) (e

m
— x) dqt,

qx(1+x)D, (Tn,m (x))
_[m]qx(1 + x)Tn,m—l(x)

Z( k= 1n+1
k=0
—qx)[n

+1gp}  (qx)g 71

q/(1-q™)

[ECIE=

0
m
— x) dqt,

= —[m]gqx(1 + )Ty 1 (x)
— qx[n + 1]4Tm(qx)

+qz <[k] — %+% + [n]gx
k=0

q/(1-q™)

[ECIE=

0

- [n]qx> q *p]  (gx)g7*?
m
— x) dqt,

= —[m]yqx(1 + x)Ty 1 (x)
—qx[n+ 1] nm(x)
+q[n]Tnm+1(qx)

+ [n]qxTm (%)

q/(1-q™)

+q Z Py (gx)g * ! f
k=0

0

Dq (s nk(t))( o

m
— x) dqt,

This completes the proof of recurrence relation.

Theorem 1. By applying Koroviktheorem[4] on our
operators the following equalities are hold:

DM, (1,%) =1,

2)M;§v(t,x)=x+2< ad +L>,
' qlnly  [nlq

[n+1]4[n + 2],

q3[nlz

2

)My, (t% %) = 2+ [2])<

Proof. By using the definition of the B, (f(t), x) and
Lemma 1, we have

M, (1,x)=1

MZ’,, (t,x)
q/(1-q™)

- —x)J
:Zpg'k(x) f nk(t)q_k 1zqu( —k—l)dqt
k=0

0

o q/(1-q™)

=Y @ [ sl ©a g

k=0 0
+(t g —x)+ 0+ 0+ }dgt
= 2B (t,x) — xB] (1, x)

Where B/ (t, x) is the operators defined by (1.1),
then we have

a 11
My, (t,x) = x + 2 +—.

Now,

M, (£2,%)
q/(1-q™)

s —x)/
= z pzlk(x) f nk (t)q_k 1 ZuD](tq—k 1)2d t
k=0

0
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m
~ m
o a/(1-q™) Tym(x) = Z [j ] By ((t(l_""_1 - x)m,x).
=Y @ [ sl @a T g =
=0 0 ) Proof.By simple computation, we can find the
+ [2]eq * " (eqg7* 1t - x)q + (tqg7F 1 = x)q}. central moments. Now
= B(t%,)(2 + [2]) - BY(t, ) 2[2]) T
q 2 > S (tg el —x)
+ BJ(1,x)x>. _ Zpg‘k(x) f S0, (t)q—k—lz q - = pl(tq
k=0 0 j=0
n+1|,[n+2 — )™
' q*[nlg o
+—[n+1]q(1+2q+q2)x+—[2]q> =§:p” (x)q fq Gl 1Z(q _x)JD J(tq™F
qz[n]é [n]é k=0 " 0 e
1 2121x —x)™d,t + 0,
—(2[2]x2<1+ []>+[[]]> !
, qinlq Ttlq This of completes the proof Lemma.
+Xx
. Theorem 2. Let f € CE[0, ) be a bounded
Then we calculate that our operators My, is function and gq,, denote a sequence such that
approximate to f(x) € Cg[0,)asn — co. 0<q,<1landq, =q— 1asn — oo. Then we

Corollary 1.If we defined the center moment as have for a point x € (0, o)

Tom () = ME, (€ = 2™, %) 1im [n]g (M, (f (O, %) = £()
= aea Y (k-1 — ) =21 +x0)f"(x
— z pz,k(x) f Sz,k (t)q_k_l Z wl)é(tq_kfl ( )f )EZ)
k=0 0 Jj=0 ' + (242 -
RS 2+ [2]) ( .
€ [0, ) + x) f(x). (1.4)
Then proof. In order to prove this identitywe use
Taylor'sexpansion on f,
T ,O(x) = 1'
i f&) = F) = (£ = 0)f' ()
_ X 1 Y (l " . )
Tha(x) =2 <q[n]q + @); + (—x) 2f )+ I(x0)),
qlnl, + 2] Where, 9 is bounded and lim,,_,, 9(t) = 0. By
Th2(x) = (2 +[2]) <W x? applying the operators M,! ,to the above relation
q .
L A0+ I, + A+ obtains
q*[nlg ML, (F(£), %) — £ ()
N %) = M2, ((t —x),%)f' (%)
e M (020 (570
And for n > m, we have the following recurrences
relation: + 9(x t))

10
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=21+ x)f'"(x)+2 <xz_2 + x)f"(x)
+ ML (90x; 0)(t — x)2, ).
Now, by using Cauchy- Schwarz inequality, we get
[nlgMl, (90 0)(t — x)%,x)
< (M2, (90 0%,0)"" (Ml (e
- x)4,x))1/2.
And by application Corollary 1, we can show that
lim,opco [1]2 My, ((t = )%, %) = 0,
From the above we have desired result.

Theorem 3. Let f € CZ[0, =), then for every
x € [0,0) and for n > 1, we have

M7, (f, ) = FOO] < 20(f,/8y),

Where 8, = M;! ,((t —x)%,x) and w the modulus
of continuity.

Proof. By the linearity and monotonicity of
M;,(f,x), we have

ML (F(©),x) = FO] < M2, UF®) = G5 x)
1% q/(1-q™) v (a1 —x)i
=D [ sty Ee )i
k=0 0 j=0 ’
- f(0)ld,t.

The modulus of continuity possesses the following
properties

V4,8 > 0,w(f,A8) < (1 + Da(f,s)

(t—x)?
52

V8> 0,1f(0) — F(x)] < (1 + )a)(f, 8).

Then by using this properties we have:

11

M, (f (), %) = f ()]

™ q/(1-q™) N
< 1 (x t)g k1 1
Yot [ st z“q oy (

+(t—X)

52 ) (fé))dt

< w(f,6) (M,‘ivu )+ M, (- 2% x))

By usingCorollary 1 and choosing &,, =
M, ((t — x)?,%),8 = /8, ,we get the result.

2.Weighted approximation

Let B,z[0, ) be the set of all functions f defined
on the interval [0, co)satisfying the condition

|f(x) < Mp(1+x2),|

Where M is a constant depending on f.B,2[0, c)
is a normal space with the norm

|f (Ol

Iflles = min 725 .f €B,2[0,00).

C,2[0, o) is the subspace of all continuous function
in B,2[0,) and C,2[0, o) denotes the subspace of

If (0l —
1+x2

all function f € C,2[0, 0)with lim,_,,

Theorem 4. Let g = q,, € (0,1) such that gq,, = 1as
n — oo, then for each f € C>[0, ), we have

lim M3, (F ), = F @]

= 0. (2.1)
Proof. By theorem (1), and forf € C [0, o).

As,

ML, (FC0 0 — 1], =

0 (2.2)

By Lemma, forn > 1,
i [[M2, (6.0 = x|

|Mg,,,(t, x) — x|

= lim sup 1+ 22

N—=% xe[0,0)
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1
+{(1+q7F? <1+—>
(( ) q[nlq
X
—qg7* 1) sup ——
1 )xe[ogo)1+x2

<(1 +a™) (1 * q[n]q> -

Then we have

M7 () = x] .

- 0. (2.3)

Similarly for n > 1, we have
: q 2
Jim [, (2%, 200 = 2|,

|M, (¢, x) — x?|
1+ x2

= lim sup

N—=00 xe[0,0)
((1 +[2] +

s 1)(n+1 qln +2], >
[l
— (21 + g7 +q7%) + q"‘)

2
[n+ 1],
- ((1 +2q +q%) < pETE )

< lim

n—-oo

X

Ssu
xe[o,rt)m) 1+ x2

2] +q* 1 +q x
+ sup >
[n]q x€[0,00) 1+x
(1 + [2] + 7% 1)
qz[n]?,

12
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< lim ((1+[2] —k- 1)<Tl+1 Tl+2]>
n—oo n]q
— ([2] + q—k—l + q—k) + q—k>
[n+ 1],
- ((1 +2q+q?) ( PEIE )
P
[n]q
(1 +[2]+q7* 1)
qz[n]?,
Now, we have

1M, (62,2 — %2,

- 0. (2.4)

By (2.2),(2.3),(2.4) and by Korovkin's theorem , we
get the desired result.
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