On modified approximation properties by q - analogue summation - integral type operators

S.A.Abdul-Hammed ${ }^{1}$ Murtada J. Mohammed ${ }^{2}$
Mathematics Department, Education College, Basrah University, Basrah, Iraq.
${ }^{1}$ E-mail: safaaalrar@yahoo.com
${ }^{2}$ E-mail: murtada04@gmail.com

Abstract

The purpose of this paper is to introduce a summation-integral q-Beta-Szàsz operators denoted by $M_{n, v}^{q}(f(t), x)$. We use the method of Koroviktype statistical approximation to prove our operators is approximate . then, we establish a Voronovkajatype asymptotic formula for the q-operators. Finely,we obtain an error estimate in terms of modulus of continuity being approximated.

Key words: Koroviktheorem, Voronovkaja-type asymptotic formula, modulus of continuity, BetaSzàsz operators.

1. Introduction.

Due to the importance of Beta-Szasz operators a variety of their generalizations and related topics have been studied (see[5])

Then, Gupta and Yadav [6] introduced the family of summation-integral type operators q-Beta-Szàsz type operators for $q \in(0,1)$ as
$B_{n}^{q}(f, x)$
$=\sum_{k=0}^{\infty} p_{n, k}^{q}(x) q^{-k-1} \int_{0}^{q /\left(1-q^{n}\right)} s_{n, k}^{q}(t) f\left(t q^{-k-1}\right) d q t, x$
$\in[0, \infty)$.
Where

$$
\begin{align*}
& p_{n, k}^{q}(x)=\frac{q^{k(k-1) / 2}}{B_{q}(k+1, n)} \frac{x^{k}}{(1+x)_{q}^{n+k+1}}, s_{n, k}^{q}(t) \\
& =E_{q}\left(-[n]_{q} t\right) \frac{\left([n]_{q} t\right)^{k}}{[k]_{q}!}, \tag{1.2}
\end{align*}
$$

$(1+x)_{q}^{n}=$
$\left\{\begin{array}{cl}(1+x)(1+q x) \ldots\left(1+q^{n-1} x\right), & n=1,2, \ldots \\ 1, & n=0\end{array}\right\}$.
For a fixed $v \in N_{0}=\{0,1,2, \ldots\}$ we denote by C_{B}^{v} the set of all $f \in C_{B}$ having derivatives $f^{(k)} \in C_{B}$ such that $k=1,2, \ldots, v$. Rempulska and Walczak defined the new sequence see[3].

We use a similar idea to introduce a generalization for the q-Beta-Szàsz operators as

For $f \in C_{B}^{v}[0, \infty)$ and $q \in(0,1)$, we propose the q -Beta-Szàsz operators as
$M_{n, v}^{q}(f(t), x)$
$=\sum_{k=0}^{\infty} p_{n, k}^{q}(x) \int_{0}^{q /\left(1-q^{n}\right)} s_{n, k}^{q}(t) q^{-k-1} \sum_{j=0}^{v} \frac{f^{(j)}(t)}{[j]!}\left(t q^{-k-1}\right.$
$-x)^{j} d_{q} t$, (1.3)
Where $p_{n, k}^{q}(x)$ and $s_{n, k}^{q}(t)$ is as defined by (1.2).
In the first we recall some notation of q-calculus, which can also be found in [1] and[2]. Throughout the present article q be a real number satisfying the inequality $0<q<1$. For any $n \in N \cup\{0\}$, the qinteger $[n]=[n]_{q}$ is defined by

$$
\begin{aligned}
& {[n]_{q}=1+q+\cdots+q^{n-1},} \\
& {[0]_{q}=0}
\end{aligned}
$$

And the q-factional $[n]!=[n]_{q}!$ by

$$
\begin{aligned}
& {[n]_{q}!=[1][2] \ldots[n]} \\
& {[0]_{q}!=1 .}
\end{aligned}
$$

For integers $0 \leq k \leq n$, the q-binomial is defined by

$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}=\frac{[n]_{q}!}{[k]_{q}![n-k]_{q}!}
$$

Also, from [2] we use the following notation:

$$
(x+a)_{q}^{n}=\sum_{j=0}^{n}\left[\begin{array}{l}
n \\
j
\end{array}\right] q^{(n-j)(n-j-1) / 2} a^{n-j} x^{j}
$$

And the q-derivative $D_{q} f$ of a function f is given by

$$
D_{q}(f(x))=\frac{f(x)-f(q x)}{(1-q) x}, x \neq 0
$$

The q analogue of product rule by defined as
$D_{q}(f(x) g(x))=g(q x) D_{q}(f(x))-$ $f(x) D_{q}(g(x))$.

In this paper, we investigate the rate of convergence for the sequence $M_{n, v}^{q}(f(t), x)$ by the modules of continuity. We discuss Voronovskaja-type theorems for our operators for arbitrary fixed $q>0$. Moreover, we establish the weighted approximation for this operators.

Lemma 1. [6] for $0<q<1, x \in[0, \infty)$, the following equalities are true:

1) $B_{n}^{q}(1, x)=1, \quad$ 2) $B_{n}^{q}(t, x)$

$$
=x\left(1+\frac{1}{q[n]_{q}}\right)+\frac{1}{[n]_{q}}
$$

3) $B_{n}^{q}\left(t^{2}, x\right)=\frac{[n+1]_{q}[n+2]_{q}}{q^{3}[n]_{q}^{2}} x^{2}$

$$
+\frac{[n+1]_{q}}{q^{2}[n]_{q}^{2}}\left(1+2 q+q^{2}\right) x+\frac{[2]_{q}}{[n]_{q}^{2}}
$$

Lemma 2. [6] for all $x \in[0, \infty), n \in N$ and $q \in$ $(0,1)$, the moment of the operators $B_{n}^{q}(f, x)$ are given by
$B_{n}^{q}(t-x, x)=\frac{x}{q[n]_{q}}+\frac{1}{[n]_{q}}$,

$$
\begin{aligned}
B_{n}^{q}\left((t-x)^{2}, x\right) & =\frac{q[n]_{q}+[2]_{q}}{q^{3}[n]_{q}^{2}} x^{2} \\
& +\frac{q\left(1+q^{2}\right)[n]_{q}+(1+q)^{2}}{q^{2}[n]_{q}^{2}} x \\
& +\frac{[2]_{q}}{[n]_{q}^{2}}
\end{aligned}
$$

Lemma 3.[6] for $q \in(0,1), x \in[0, \infty)$, the following identity is true

$$
\begin{aligned}
& \text { 1) } q x(1+x) D_{q} p_{n, k}^{q}(x) \\
& =\left(\frac{[k]}{q^{k-1}[n+1]_{q}}\right. \\
& -q x)[n+1]_{q} p_{n, k}^{q}(q x)
\end{aligned} \begin{aligned}
\text { 2) } t D_{q}\left(s_{n, k}^{q}\left(\frac{t}{q}\right)\right) & =\left([k]_{q}-\frac{[n]_{q} t}{q}\right) q^{-k} s_{n, k}^{q}(t)
\end{aligned}
$$

Lemma 4.if we define the m-th order moment of the operators (1.1) as

$$
\begin{aligned}
& T_{n, m}(x)=B_{n}^{q}\left(t^{m}, x\right) \\
& =\sum_{k=0}^{\infty} p_{n, k}^{q}(x) q^{-k-1} \int_{0}^{q /\left(1-q^{n}\right)} s_{n, k}^{q}(t)\left(\frac{t}{q^{k+1}}\right. \\
& -x)^{m} d q t
\end{aligned}
$$

then we have,

$$
\begin{aligned}
{[n] T_{n, m+1}(q x) } & =x(1+x) D_{q} T_{n, m}(x) \\
& +([n+1]-[n]) x T_{n, m}(q x) \\
& +[m] x(1+x) T_{n, m-1}(x) \\
& +[m+1] T_{n, m}(q x) .
\end{aligned}
$$

Proof. By using Lemma 3, we get
$D_{q}\left(T_{n, m}(x)\right)$

$$
\begin{aligned}
& =-[m] \sum_{k=o}^{\infty} p_{n, k}^{q}(x) q^{-k-1} \int_{0}^{q /\left(1-q^{n}\right)} s_{n, k}^{q}(t)\left(\frac{t}{q^{k+1}}\right. \\
& -x)^{m-1} d q t \\
& +\sum_{k=0}^{\infty} D_{q}\left(p_{n, k}^{q}(x)\right) q^{-k-1} \int_{0}^{q /\left(1-q^{n}\right)} s_{n, k}^{q}(t)\left(\frac{t}{q^{k+1}}\right. \\
& -x)^{m} d q t,
\end{aligned}
$$

$$
q x(1+x) D_{q}\left(T_{n, m}(x)\right)
$$

$$
=-[m] q x(1+x) T_{n, m-1}(x)
$$

$$
+\sum_{k=0}^{\infty}\left(\frac{[k]}{q^{k-1}[n+1]_{q}}\right.
$$

$$
-q x)[n
$$

$$
+1]_{q} p_{n, k}^{q}(q x) q^{-k-1} \int_{0}^{q /\left(1-q^{n}\right)} s_{n, k}^{q}(t)\left(\frac{t}{q^{k+1}}\right.
$$

$$
-x)^{m} d q t
$$

$$
=-[m]_{q} q x(1+x) T_{n, m-1}(x)
$$

$$
-q x[n+1]_{q} T_{n, m}(q x)
$$

$$
+q \sum_{k=0}^{\infty}\left([k]-\frac{[n]_{q} t}{q}+\frac{[n]_{q} t}{q}+[n]_{q} x\right.
$$

$$
\left.-[n]_{q} x\right) q^{-k} p_{n, k}^{q}(q x) q^{-k-1} \int_{0}^{q /\left(1-q^{n}\right)} s_{n, k}^{q}(t)\left(\frac{t}{q^{k+1}}\right.
$$

$$
-x)^{m} d q t
$$

$$
=-[m]_{q} q x(1+x) T_{n, m-1}(x)
$$

$$
-q x[n+1]_{q} T_{n, m}(x)
$$

$$
+q[n]_{q} T_{n, m+1}(q x)
$$

$$
+[n]_{q} x T_{n, m}(q x)
$$

$$
+q \sum_{k=0}^{\infty} p_{n, k}^{q}(q x) q^{-k-1} \int_{0}^{q /\left(1-q^{n}\right)} t D_{q}\left(s_{n, k}^{q}(t)\right)\left(\frac{t}{q^{k+1}}\right.
$$

$$
-x)^{m} d q t
$$

This completes the proof of recurrence relation.
Theorem 1. By applying Koroviktheorem[4] on our operators the following equalities are hold:

1) $M_{n, v}^{q}(1, x)=1$,
2) $M_{n, v}^{q}(t, x)=x+2\left(\frac{x}{q[n]_{q}}+\frac{1}{[n]_{q}}\right)$,
3) $M_{n, v}^{q}\left(t^{2}, x\right)=(2+[2])\left(\frac{[n+1]_{q}[n+2]_{q}}{q^{3}[n]_{q}^{2}} x^{2}\right.$
$\left.+\frac{[n+1]_{q}}{q^{2}[n]_{q}^{2}}\left(1+2 q+q^{2}\right) x+\frac{[2]_{q}}{[n]_{q}^{2}}\right)$
$-\left(2[2] x^{2}\left(1+\frac{1}{q[n]_{q}}\right)+\frac{2[2] x}{[n]_{q}}\right)$

$$
+x^{2}
$$

Proof. By using the definition of the $B_{n}^{q}(f(t), x)$ and Lemma 1, we have

$$
\begin{aligned}
& M_{n, v}^{q}(1, x)=1 \\
& M_{n, v}^{q}(t, x) \\
& =\sum_{k=0}^{\infty} p_{n, k}^{q}(x) \int_{0}^{q /\left(1-q^{n}\right)} s_{n, k}^{q}(t) q^{-k-1} \sum_{j=0}^{v} \frac{\left(t q^{-k-1}-x\right)^{j}}{[j]!} D_{q}^{j}\left(t q^{-k-1}\right) d_{q} t \\
& =\sum_{k=0}^{\infty} p_{n, k}^{q}(x) \int_{0}^{q /\left(1-q^{n}\right)} s_{n, k}^{q}(t) q^{-k-1}\left\{t q^{-k-1}\right. \\
& \left.+\left(t q^{-k-1}-x\right)+0+0+\cdots\right\} d_{q} t \\
& \quad=2 B_{n}^{q}(t, x)-x B_{n}^{q}(1, x)
\end{aligned}
$$

Where $B_{n}^{q}(t, x)$ is the operators defined by (1.1), then we have
$M_{n, v}^{q}(t, x)=x+2\left(\frac{1}{q[n]_{q}}+\frac{1}{[n]_{q}}\right)$.
Now,

$$
\begin{aligned}
& M_{n, v}^{q}\left(t^{2}, x\right) \\
& =\sum_{k=0}^{\infty} p_{n, k}^{q}(x) \int_{0}^{q /\left(1-q^{n}\right)} s_{n, k}^{q}(t) q^{-k-1} \sum_{j=0}^{v} \frac{\left(t q^{-k-1}-x\right)^{j}}{[j]!} D_{q}^{j}\left(t q^{-k-1}\right)^{2} d_{q} t
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{k=0}^{\infty} p_{n, k}^{q}(x) \int_{0}^{q /\left(1-q^{n}\right)} s_{n, k}^{q}(t) q^{-k-1}\left\{t^{2} q^{-2 k-2}\right. \\
& \left.+[2] t q^{-k-1}\left(t q^{-k-1}-x\right)_{q}+\left(t q^{-k-1}-x\right)_{q}^{2}\right\} . \\
& =B_{n}^{q}\left(t^{2}, x\right)(2+[2])-B_{n}^{q}(t, x)(2[2] x) \\
& \\
& +B_{n}^{q}(1, x) x^{2} . \\
& M_{n, v}^{q}\left(t^{2}, x\right)=(2+[2])\left(\frac{[n+1]_{q}[n+2]_{q}}{q^{3}[n]_{q}^{2}} x^{2}\right. \\
& \\
& \left.\quad+\frac{[n+1]_{q}}{q^{2}[n]_{q}^{2}}\left(1+2 q+q^{2}\right) x+\frac{[2]_{q}}{[n]_{q}^{2}}\right) \\
& \\
& \quad-\left(2[2] x^{2}\left(1+\frac{1}{q[n]_{q}}\right)+\frac{2[2] x}{[n]_{q}}\right) \\
&
\end{aligned}
$$

Then we calculate that our operators $M_{n, v}^{q}$ is approximate to $f(x) \in C_{B}^{v}[0, \infty)$ as $n \rightarrow \infty$.

Corollary 1.If we defined the center moment as
$\tilde{T}_{n, m}(x)=M_{n, v}^{q}\left((t-x)^{m}, x\right)$
$=\sum_{k=0}^{\infty} p_{n, k}^{q}(x) \int_{0}^{q /\left(1-q^{n}\right)} s_{n, k}^{q}(t) q^{-k-1} \sum_{j=0}^{v} \frac{\left(t q^{-k-1}-x\right)^{j}}{[j]!} D_{q}^{j}\left(t q^{-k-1}\right.$
$-x)^{m} d_{q} t$,
$x \in[0, \infty)$
Then,
$\tilde{T}_{n, 0}(x)=1$,
$\tilde{T}_{n, 1}(x)=2\left(\frac{x}{q[n]_{q}}+\frac{1}{[n]_{q}}\right)$,
$\tilde{T}_{n, 2}(x)=(2+[2])\left(\frac{q[n]_{q}+[2]_{q}}{q^{3}[n]_{q}^{2}} x^{2}\right.$
$+\frac{q\left(1+q^{2}\right)[n]_{q}+(1+q)^{2}}{q^{2}[n]_{q}^{2}} x$

$$
\left.+\frac{[2]_{q}}{[n]_{q}^{2}}\right)
$$

And for $n>m$, we have the following recurrences relation:
$\tilde{T}_{n, m}(x)=\sum_{j=0}^{m}\left[\begin{array}{c}m \\ j\end{array}\right] B_{n}^{q}\left(\left(t q^{-k-1}-x\right)^{m}, x\right)$.
Proof.By simple computation, we can find the central moments. Now
$\tilde{T}_{n, m}(x)$
$=\sum_{k=0}^{\infty} p_{n, k}^{q}(x) \int_{0}^{q /\left(1-q^{n}\right)} s_{n, k}^{q}(t) q^{-k-1} \sum_{j=0}^{v} \frac{\left(t q^{-k-1}-x\right)^{j}}{[j]!} D_{q}^{j}\left(t q^{-k-1}\right.$
$-x)^{m} d_{q} t$
$=\sum_{k=0}^{\infty} p_{n, k}^{q}(x) \int_{0}^{q /\left(1-q^{n}\right)} s_{n, k}^{q}(t) q^{-k-1} \sum_{j=0}^{m} \frac{\left(t q^{-k-1}-x\right)^{j}}{[j]!} D_{q}^{j}\left(t q^{-k-1}\right.$
$-x)^{m} d_{q} t+0$,
This of completes the proof Lemma.
Theorem 2. Let $f \in C_{B}^{v}[0, \infty)$ be a bounded function and q_{n} denote a sequence such that $0<q_{n}<1$ and $q_{n}=q \rightarrow 1$ as $n \rightarrow \infty$. Then we have for a point $x \in(0, \infty)$
$\lim _{n \rightarrow \infty}[n]_{q}\left(M_{n, v}^{q}(f(x), x)-f(x)\right)$
$=2(1+x) f^{\prime}(x)$
$+(2+[2])\left(\frac{x^{2}}{2}\right.$
$+x) f^{\prime \prime}(x)$
proof. In order to prove this identitywe use Taylor'sexpansion on f,

$$
\begin{aligned}
f(t)-f(x)= & (t-x) f^{\prime}(x) \\
& +(t-x)^{2}\left(\frac{1}{2} f^{\prime \prime}(x)+\vartheta(x ; t)\right)
\end{aligned}
$$

Where, ϑ is bounded and $\lim _{n \rightarrow \infty} \vartheta(t)=0$. By applying the operators $M_{n, v}^{q}$ to the above relation obtains

$$
\begin{aligned}
M_{n, v}^{q}(f(t), x)- & f(x) \\
& =M_{n, v}^{q}((t-x), x) f^{\prime}(x) \\
& +M_{n, v}^{q}\left((t-x)^{2}, x\right)\left(\frac{1}{2} f^{\prime \prime}(x)\right. \\
& +\vartheta(x ; t))
\end{aligned}
$$

$$
\begin{aligned}
=2(1+x) f^{\prime}(x) & +2\left(\frac{x^{2}}{2}+x\right) f^{\prime \prime}(x) \\
& +M_{n, v}^{q}\left(\vartheta(x ; t)(t-x)^{2}, x\right)
\end{aligned}
$$

Now, by using Cauchy- Schwarz inequality, we get
$[n]_{q} M_{n, v}^{q}\left(\vartheta(x ; t)(t-x)^{2}, x\right)$
$\leq\left(M_{n, v}^{q}\left(\vartheta(x ; t)^{2}, x\right)\right)^{1 / 2}\left([n]_{q}^{2} M_{n, v}^{q}((t\right.$
$\left.\left.-x)^{4}, x\right)\right)^{1 / 2}$.
And by application Corollary 1, we can show that
$\lim _{n \rightarrow \infty}[n]_{q}^{2} M_{n, v}^{q}\left((t-x)^{4}, x\right)=0$,
From the above we have desired result.

Theorem 3. Let $f \in C_{B}^{v}[0, \infty)$, then for every $x \in[0, \infty)$ and for $n>1$, we have
$\left|M_{n, v}^{q}(f, x)-f(x)\right| \leq 2 \omega\left(f, \sqrt{\delta_{n}}\right)$,
Where $\delta_{n}=M_{n, v}^{q}\left((t-x)^{2}, x\right)$ and ω the modulus of continuity.

Proof. By the linearity and monotonicity of $M_{n, v}^{q}(f, x)$, we have
$\left|M_{n, v}^{q}(f(t), x)-f(x)\right| \leq M_{n, v}^{q}(|f(t)-f(x)| ; x)$
$\left.=\sum_{k=0}^{\infty} p_{n, k}^{q}(x) \int_{0}^{q /\left(1-q^{n}\right)} s_{n, k}^{q}(t) q^{-k-1} \sum_{j=0}^{v} \frac{\left(t q^{-k-1}-x\right)^{j}}{[j]!} D_{q}^{j} \right\rvert\, f(t)$
$-f(x) \mid d_{q} t$.
The modulus of continuity possesses the following properties
$\forall \lambda, \delta>0, \omega(f, \lambda \delta) \leq(1+\lambda) \omega(f, \delta)$
$\forall \delta>0,|f(t)-f(x)| \leq\left(1+\frac{(t-x)^{2}}{\delta^{2}}\right) \omega(f, \delta)$.
Then by using this properties we have:
$\left|M_{n, v}^{q}(f(t), x)-f(x)\right|$
$\leq \sum_{k=0}^{\infty} p_{n, k}^{q}(x) \int_{0}^{q /\left(1-q^{n}\right)} s_{n, k}^{q}(t) q^{-k-1} \sum_{j=0}^{v} \frac{\left(t q^{-k-1}-x\right)^{j}}{[j]!} D_{q}^{j}((1$
$\left.\left.+\frac{(t-x)^{2}}{\delta^{2}}\right) \omega(f, \delta)\right) d_{q} t$.

$$
\leq \omega(f, \delta)\left(M_{n, v}^{q}(1 ; x)+\frac{1}{\delta^{2}} M_{n, v}^{q}\left((t-x)^{2} ; x\right)\right)
$$

By usingCorollary 1 and choosing $\delta_{n}=$ $M_{n, v}^{q}\left((t-x)^{2}, x\right), \delta=\sqrt{\delta_{n}}$, we get the result.

2.Weighted approximation

Let $B_{x^{2}}[0, \infty)$ be the set of all functions f defined on the interval $[0, \infty)$ satisfying the condition

$$
\mid f(x) \leq \mathcal{M}_{f}\left(1+x^{2}\right)
$$

Where \mathcal{M}_{f} is a constant depending on $f . B_{x^{2}}[0, \infty)$ is a normal space with the norm
$\|f\|_{x^{2}}=\min _{x \in[0, \infty)} \frac{|f(x)|}{1+x^{2}}, f \in B_{x^{2}}[0, \infty)$.
$C_{x^{2}}[0, \infty)$ is the subspace of all continuous function in $B_{x^{2}}[0, \infty)$ and $C_{x^{2}}^{*}[0, \infty)$ denotes the subspace of all function $f \in C_{x^{2}}[0, \infty)$ with $\lim _{x \rightarrow \infty} \frac{|f(x)|}{1+x^{2}}=K$.

Theorem 4. Let $q=q_{n} \in(0,1)$ such that $q_{n} \rightarrow 1$ as $n \rightarrow \infty$, then for each $f \in C_{x^{2}}^{*}[0, \infty)$, we have
$\lim _{n \rightarrow \infty}\left\|M_{n, v}^{q}(f(x), x)-f(x)\right\|_{x^{2}}$
$=0$.
Proof. By theorem (1), and for $f \in C_{x^{2}}^{*}[0, \infty)$.
As,
$\left\|M_{n, v}^{q}(f(x), x)-1\right\|_{x^{2}}=$
0.

By Lemma, for $n>1$,

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \| M_{n, v}^{q}(t, x) & -x \|_{x^{2}} \\
& =\lim _{n \rightarrow \infty} \sup _{x \in[0, \infty)} \frac{\left|M_{n, v}^{q}(t, x)-x\right|}{1+x^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\leq \lim _{n \rightarrow \infty} \frac{\left(1+q^{-k-1}\right)}{[n]_{q}} \\
\\
\quad+\left(\left(1+q^{-k-1}\right)\left(1+\frac{1}{q[n]_{q}}\right)\right. \\
\\
\left.-q^{-k-1}\right) \sup _{x \in[0, \infty)} \frac{x}{1+x^{2}} \\
\leq \lim _{\mathrm{n} \rightarrow \infty} \frac{\left(1+q^{-k-1}\right)}{[n]_{q}}+\left(\left(1+q^{-k-1}\right)\left(1+\frac{1}{q[n]_{q}}\right)-\right. \\
\left.q^{-k-1}\right)
\end{array}
\end{aligned}
$$

Then we have
$\left\|M_{n, v}^{q}(t, x)-x\right\|_{x^{2}}$
$\rightarrow 0$.
Similarly for $n>1$, we have

$$
\begin{aligned}
& \lim _{n \rightarrow \infty}\left\|M_{n, v}^{q}\left(t^{2}, x\right)-x^{2}\right\|_{x^{2}} \\
& =\lim _{n \rightarrow \infty} \sup _{x \in[0, \infty)} \frac{\left|M_{n, v}^{q}(t, x)-x^{2}\right|}{1+x^{2}} \\
& \leq \lim _{n \rightarrow \infty}\left(\left(\left(1+[2]+q^{-k-1}\right)\left(\frac{[n+1]_{q}[n+2]_{q}}{q^{2}[n]_{q}^{2}}\right)\right.\right. \\
& \left.-\left([2]+q^{-k-1}+q^{-k}\right)+q^{-k}\right) \sup _{x \in[0, \infty)} \frac{x^{2}}{1+x^{2}} \\
& -\left(\left(1+2 q+q^{2}\right)\left(\frac{[n+1]_{q}}{q^{2}[n]_{q}^{2}}\right)\right. \\
& \left.+\frac{[2]+q^{-k-1}+q^{-k}}{[n]_{q}}\right) \sup _{x \in[0, \infty)} \frac{x}{1+x^{2}} \\
& \left.+\frac{\left(1+[2]+q^{-k-1}\right)}{q^{2}[n]_{q}^{2}}\right)
\end{aligned}
$$

$$
\begin{aligned}
\leq \lim _{n \rightarrow \infty}(((1+ & {\left.[2]+q^{-k-1}\right)\left(\frac{[n+1]_{q}[n+2]_{q}}{q^{2}[n]_{q}^{2}}\right) } \\
& \left.-\left([2]+q^{-k-1}+q^{-k}\right)+q^{-k}\right) \\
& -\left(\left(1+2 q+q^{2}\right)\left(\frac{[n+1]_{q}}{q^{2}[n]_{q}^{2}}\right)\right. \\
& \left.+\frac{[2]+q^{-k-1}+q^{-k}}{[n]_{q}}\right) \\
& \left.+\frac{\left(1+[2]+q^{-k-1}\right)}{q^{2}[n]_{q}^{2}}\right)
\end{aligned}
$$

Now, we have

$$
\begin{align*}
& \left\|M_{n, v}^{q}\left(t^{2}, x\right)-x^{2}\right\|_{x^{2}} \\
& \rightarrow 0 \tag{2.4}
\end{align*}
$$

By (2.2),(2.3),(2.4) and by Korovkin's theorem, we get the desired result.

References

[1] Gasper G., Rahman M., Basic Hypergeometrik Series, Encyclopedia of Math. of its App.,
Vol35,Cambridge University Press, Cambridge, UK, 1990.
[2] Kas V.G., Cheung P., Quantum Calculus, Universitext, Springer-Verlag, New York,(2002).
[3] L.Rempulska and Z.Walczak. Modified SzãszMirakyanOperator.Math.Balk., New Ser. 18(2004), 53-63.
[4] P.P.Korovkain, Linear Operator And Approximation theory, Hindustan Publ. Corp.Delhi, (1960) (Translated from Russian Edition of 1959).
[5] V.Guptta, G.S. Srivastava, Convergence of derivatives by summation- integral tepe operators, RAevistaColombiana de Mate. 29 (1995) 1-11.
[6] V.Gupta and R.Yadav. Some Approximation Results On q-Beta-Szãsz Operators. Southeat Asian Bulletin of Math.36(2012), 343-352.

