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Abstract 

The purpose of  this paper is to introduce a 

summation-integral  q-Beta-Szàsz operators denoted 

by     
 ( (     . We use the method of Korovik-

type statistical approximation to prove our operators 

is approximate . then, we establish a Voronovkaja-

type asymptotic formula for the q-operators. 

Finely,we obtain an error estimate in terms of 

modulus of continuity being approximated. 
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1. Introduction.  

Due to the importance of  Beta –Szasz operators a 

variety of their generalizations and related topics 

have been studied (see[5] ) 

Then, Gupta and Yadav [6] introduced the family of 

summation-integral type operators q-Beta-Szàsz 

type operators for   (     as 
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For a fixed      {       } we denote by   
   

the set of all      having derivatives  (      

such that            Rempulska and Walczak 

defined the new sequence see[3]. 

We use a similar idea to introduce a generalization 

for the q-Beta- Szàsz operators as 

For     
 [    and   (    , we propose the q-

Beta –Szàsz operators as 
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Where     
 

(   and     
 (  is as defined by (1.2). 

In the first we recall some notation of q-calculus, 

which can also be found in [1] and[2]. Throughout 

the present article q be a real number satisfying the 

inequality      . For any     { }, the q-

integer [ ]  [ ]  is defined by 

[ ]              

[ ]                                   

And the q-factional [ ]  [ ]   by 

[ ]   [ ][ ] [ ] 

[ ]                         

For integers        the q-binomial is defined by 
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Also, from [2] we use the following notation: 
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And the q-derivative       of a function   is given 

by 

  ( (  )  
 (    (   

(     
      

The q analogue of product rule by defined as 

  ( (   (  )   (     ( (  )  

 (    ( (  ). 

In this paper, we investigate the rate of convergence 

for the sequence     
 ( (      by the modules  of 

continuity. We discuss Voronovskaja-type theorems 

for our operators for arbitrary fixed q > 0. Moreover, 

we establish the weighted approximation for this 

operators.  

Lemma 1. [6] for         [    , the 

following equalities are true: 
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Lemma 2. [6] for all   [         and   

(      the moment of the operators   
 (     are 

given by 
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Lemma 3.[6] for   (       [      the 

following identity is true 
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Lemma 4.if we define the m-th order moment of the 

operators (1.1 ) as 
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Proof. By using Lemma 3, we get 



Journal of Kufa for Mathematics and Computer                   Vol.3 ,No.1 ,June, 2016, pp 7-12 

 

9 
 

  (    (  )

  [ ]∑     
 

(       ∫     
 (  (

 

    

 (     ⁄

 

 

   

  )
   

   

 ∑  (    
 

(  )     ∫     
 (  (

 

    

 (     ⁄

 

 

   

  )
 

     

  (      (    (  )

  [ ]  (          (   

                         ∑.
[ ]

    [   ] 

 

   

   / [ 

  ]     
 

(        ∫     
 (  (

 

    

 (     ⁄

 

  )
 

     

  [ ]   (          (  

   [   ]     (    

  ∑.[ ]  
[ ]  

 
 

[ ]  

 
 [ ]                          

 

   

 [ ]  /       
 

(        ∫     
 (  (

 

    

 (     ⁄

 

  )
 

     

  [ ]   (          (  

   [   ]     (  

  [ ]       (   

 [ ]      (    

      ∑    
 

(        ∫    (    
 (  ) (

 

    

 (     ⁄

 

 

   

  )
 

     

This completes the proof of recurrence relation. 

Theorem 1. By applying Koroviktheorem[4] on our 

operators the  following equalities are hold: 
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Proof. By using the definition of the   
 ( (      and 

Lemma 1, we have 
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   Where   
 (     is the operators defined by (1.1), 

then we have 

    
 (        .

 

 [ ] 
 

 

[ ] 
/   

Now, 

    
 (     

 ∑    
 

(  ∫     
 

 (     ⁄

 

(       ∑
(          

[ ] 

 

   

 

   

  
 (            



S.A.Abdul-Hammed    Murtada J. Mohammed 

 

01 
 

                      

 ∑     
 

(  ∫     
 

 (     ⁄

 

(       ,        

 

   

 [ ]      (        )
 
 (        )

 

 
-  

                        
 (     (  [ ]    

 (    ( [ ]  

   
 (        

    
 (      (  [ ] .

[   ] [   ] 

  [ ] 
   

 
[   ] 

  [ ] 
 

(          
[ ] 
[ ] 

 /

 . [ ]  .  
 

 [ ] 
/  

 [ ] 

[ ] 
/

    

Then we calculate that our operators      
 

 is 

approximate to  (     
 [    as      

Corollary 1.If we defined the center moment as  
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And for    , we have the following recurrences 

relation: 
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Proof.By simple computation, we can find the 

central moments. Now 
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This  of completes the proof Lemma. 

Theorem 2. Let     
 [     be a bounded 

function and    denote a sequence such that 

       and        as    . Then we 

have for a point   (     
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Where,   is bounded and        (      By 

applying the operators     
 

to the above relation 
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Now, by using Cauchy- Schwarz inequality,  we get 
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And by application Corollary 1, we can show that 
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From the above we have desired result. 

Theorem 3. Let     
 [    , then for every 

  [     and for    , we have 
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Where        
 ((         and    the modulus 

of continuity.  

Proof. By the linearity and monotonicity of 
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The modulus of continuity  possesses the following 

properties 
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By usingCorollary 1 and choosing    

    
 ((           √   ,we get the result. 

2.Weighted approximation 

Let    [     be the set of all functions   defined 

on the interval [    satisfying the condition 
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Now, we have 
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  By (2.2),(2.3),(2.4) and by Korovkinꞌs theorem , we 

get the desired result. 
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