A FUZZY SEMI_ESSENTIAL SUBMODULE OF A FUZZY MODULE

Asst. Prof. Hussein H. Abbas DEPARTMENT OF MATHMATICS ,COLLAGE OF EDUCATION OF GIRLS , UNIVERSITY OF KUFA E-mail: Msc hussien@yahoo.com

SHUKOR NEAMAH AL-AEASHI DEPARTMENT OF MATHMATICS COLLAGE OF EDUCATION OF GIRLS UNIVERSITY OF KUFA E-mail: <u>sh aeashi@yahoo.com</u>

Abstract

In this paper, we introduce the concept of fuzzy semi-essential (large) submodule , and we study a necessary and sufficient condition for a fuzzy submodule of a fuzzy module to be a fuzzy semi-essential (large) submodule , also fuzzy images and fuzzy inverse-images of generalized fuzzy semi-essential (large) submodule are studied.

Index Terms(key words)—Fuzzy set, Fuzzy module , Fuzzy semi-essential (large) submodule.

Introduction

The concept of fuzzy sets was introduced by Zadeh in 1965 [9]. It was first applied to the theory of groups by Rosenfeld in 1971 [8]. Since then, many authors introduced fuzzy subring and fuzzy ideals [5],[2]The concept of fuzzy module was introduced by Negoita and Relescu in 1975 [10]. Since then several authors have studied fuzzy modules. For examples see ([4], [5], [3], [7]). we recall the definitions of fuzzy module, fuzzy submodule with some properties of them, which are needed later . In this paper we give the definition of fuzzy semi-essential (large) submodule of fuzzy module and we study some of its propositions.

1-Fuzzy sets

In this section, we shall give the concept of fuzzy set with some basic definitions and some of its properties .

Definition 1.1 [9] :

Let S be a non-empty set and I be the closed interval [0, 1] of the real line (real numbers). A fuzzy set A of S (a fuzzy subset of S) is a function from S into I.

Definition 1.2 [9] :

A fuzzy set A of a set S is called a fuzzy constant if A (x) = t for all $x \in S$ where $t \in [0, 1]$.

Definition 1.3 [10] :

Let $x_t : S \rightarrow [0, 1]$ be a fuzzy set of S, where $x \in S$, $t \in [0, 1]$ defined by:

$$x_{t}(y) = \begin{cases} t & \text{if } x = y \\ 0 & \text{if } x \neq y \end{cases} , \text{ for all } y \in$$

S.

 x_t is called a fuzzy singleton or fuzzy point in S.

Proposition 1.4[7] :

Let $a_t \mbox{ and } b_k \mbox{ be two fuzzy singletons }$ of a set S. If $a_t = b_k$, then a = b and t = k , where t, $k \in [0, 1].$

Definition 1.5 [11] :

Let A and B be two fuzzy sets in S, then:

(1) A=B if and only if A (x) = B (x), for all $x \in S$.

(2) $A \subseteq B$ if and only if $A(x) \le B(x)$, for all $x \in S$. If $A \subset B$ and there exists $x \in S$ such that A(x) < B(x), then:

A is called a proper fuzzy subset of B and written $A \subset B$.

Definition 1.6 [10] :

Let A and B be two fuzzy sets in S, then :

(1) $(A \cap B)(x) = \min \{A(x), B(x)\},\$ for all $x \in S$.

(2) $(A \cup B)(x) = \max \{A(x), B(x)\},\$ for all $x \in S$.

 $A \cap B$ and $A \cup B$ are fuzzy sets in S,

In general . if $\{A_{\alpha}\,,\,\alpha\in\Lambda\}$ is a family of fuzzy sets in S, then :

$$\left(\bigcap_{\alpha\in\Lambda}A_{\alpha}\right)(x) = \inf \{A_{\alpha}(x), \alpha \in \Lambda\},$$
$$\left(\bigcup_{\alpha\in\Lambda}A_{\alpha}\right)(x) = \sup \{A_{\alpha}(x), \alpha \in \Lambda\},$$

for all $x \in S$.

which are also fuzzy sets in S.

Definition 1.7 [4], [5] :

Let A be a fuzzy set in S, for all $t \in [0, 1]$, the set $A_t = \{ x \in S, A (x) \ge t \}$ is called a level subset of A.

Note that, A_t is a subset of S in the ordinary sense.

Remark 1.8 [9] :

The following properties of level subsets hold for each $t \in [0, 1]$.

(1) $(A \cap B)_t = A_t \cap B_t$,

(2) $(A \cup B)_t = A_t \cup B_t$ and

(3) A = B if and only if $A_t = B_t$, for all $t \in [0, 1]$.

Now, we give the definitions of image and inverse image of fuzzy sets.

Definition 1.9 [9] :

Let f be a mapping from a set M into a set N, let A be a fuzzy set in M and B be a fuzzy set in N.

The image of A denoted by f (A) is the fuzzy set in N defined by:

$$f(A)(y) = \begin{cases} \sup\{A(z) \mid z \in f^{-1}(y)\} & \text{if } f^{-1}(y) \neq \phi, \text{ for all } y \in N, \\ 0 & \text{otherwise} \end{cases}$$

where $f^{-1}(y) = \{ x \in M, f(x) = y \}.$

And the inverse image of B, denoted by $f^{-1}(B)$ is the fuzzy set in M defined by:

 $f^{-1}(B)(x) = B(f(x))$, for all $x \in M$.

Definition 1.10 [2] :

Let f be a function from a set M into a set N. A fuzzy subset A of M is called f-invariant if A(x) = A(y) whenever f(x) = f(y), where x, $y \in M$.

Proposition 1.11 [2] :

If f is a function defined on a set M, A_1 and A_2 are fuzzy subsets of M, B_1 and B_2 are fuzzy subsets of f (M). The following are true:

 $(1) \ A_1 \! \subseteq f^{\!-1}(f(A_1)).$

(2) $A_1 = f^{-1}$ (f (A₁)), whenever A_1 is f-invariant.

- (3) $f(f^{-1}(B_1)) = B_1$.
- (4) If $A_1 \subseteq A_2$, then $f(A_1) \subseteq f(A_2)$.

(5) If $B_1 \subseteq B_2$, then $f^{-1}(B_1) \subseteq f^{-1}(B_2)$.

Proposition 1.12[7] :

Let f be a function from a set M into a set N. If B_1 and B_2 are fuzzy subsets of N,

then
$$f^{-1}(B_1 \cap B_2) = f^{-1}(B_1) \cap f^{-1}(B_2)$$
.

2-Fuzzy Modules and Fuzzy Submodules

In this section, we recall the definitions of fuzzy modules and fuzzy submodules with some fundamental results about them.

Definition 2.1 [8], [5] :Let M be an R-module. A fuzzy set X of M is called fuzzy module of an R-module M if :

- (1) X $(x-y) \ge \min \{ X (x), X (y) \},$ for all x, y $\in M$
- (3) X (0) = 1.

Definition 2.2 [3] :Let X and A be two fuzzy modules of an R-module M. A is called a fuzzy submodule of X if $A \subseteq X$.

Proposition 2.3 [6] :Let A be a fuzzy set of an R-module M. Then the level subset A_t , $t \in [0, 1]$ is a submodule of M if and only if A is a fuzzy submodule of X where X is a fuzzy module of an R-module M.

Now, we shall give some properties of fuzzy submodules, which will be used in the next section.

Definition 2.4 [4] : If A is a fuzzy module of an R-module M, then the submodule A_t of M is called the level submodule of M where $t \in [0, 1]$.

Proposition 2.5 [7]:

Let X be a fuzzy module of an Rmodule M. Let $\{A_{\alpha}, \alpha \in \Lambda\}$ be a family of fuzzy submodules of X, then

(1)
$$\bigcap_{\alpha \in \Lambda} A_{\alpha}$$
 is a fuzzy submodule of X.
(2) If $(A_{\alpha} \in A)$ is a choin then

(2) If $\{A_{\alpha}, \alpha \in \Lambda\}$ is a chain, then $\bigcup_{\alpha \in \Lambda} A_{\alpha} \text{ is a fuzzy submodule of } X.$

Definition 2.6 [10]:

Let A and B be two fuzzy subset of an R-module M. Then $(A + B)(x) = \sup \{\min \{A (a), B (b), x = a + b\}, a, b \in M$, for all $x \in M$. A + B is a fuzzy subset of M.

Proposition 2.7 [10] :

Let A and B be two fuzzy submodules of a fuzzy module X, then A + B is a fuzzy submodule of X.

Definition 2.8 [3] :Let X and Y be two fuzzy modules of R-modules M_1 and M_2 respectively. f: $X \rightarrow Y$ is called a fuzzy homomorphism if $f : M_1 \rightarrow M_2$ is homomorphism and Y (f (x)) = X (x), for each $x \in M_1$.

<u>Proposition 2.9[7]</u>: Let X and Y be two fuzzy modules of R-modules M_1 and M_2 respectively. Let $f : X \rightarrow Y$ be a fuzzy homomorphism.

If A and B are two fuzzy submodules of X and Y respectively, then :

- (1) f (A) is a fuzzy submodule of Y. [13]
- (2) f⁻¹ (B) is a fuzzy submodule of X. [13]
- (3) $f(A \cap A_1) = f(A) \cap f(A_1)$ is a fuzzy submodule of Y, A₁ is a fuzzy submodule of X. [13]

Definition 2.10 [4] :

Let X be a fuzzy module. A proper fuzzy submodule A of X is called a prime fuzzy submodule whenever($r_t a_k$) \subseteq A for fuzzy singleton r_t of R and $a_k \subseteq X$ we have either $r_t \subseteq (A : X)$ or $a_k \subseteq A$ where: (A : X) = { $r_t : r_t X \subseteq A$, r_t fuzzy singleton of R}.

<u>3-A fuzzy semi-essential submodule of a fuzzy module</u>

In this section we give the definition of a fuzzy semi-essential submodule of a fuzzy module and we study its properties about the image or inverse image of any fuzzy semi-essential submodule and we study anther properties about it .

Definition 3.1:-[1] A non-zero Rsubmodule N of an R-module M is called a semi-essential submodule of M if $N \cap P=(0)$ for all a prime submodule P of M then P=(0).

Definition 3.2 Let A be a fuzzy module of an R-module M if B a fuzzy submodule of A then B is called a fuzzy semi-essential submodule of A if for all fuzzy prime submodule P of A and $B \cap P=0_1$ then $P=0_1$

Example 3.3 Let A be a fuzzy module of a Z-module Z^2 with scalar multiplication (a,b)r=(ar,br) defined as:

$$A((a,b)) = \begin{cases} 1 & \text{if } a+b \in \mathbb{Z}_e \\ 1/2 & \text{if } a+b \in \mathbb{Z}_o \end{cases}$$
$$B((a,b)) = \begin{cases} 1 & \text{if } a, b \in \mathbb{Z}e \\ 1/3 & \text{if } a, b \in \mathbb{Z}o \\ 1/4 & \text{otherwise} \end{cases}$$

To prove B is a fuzzy semi-essential submodule of A , Let P be a fuzzy prime submodule of A such that $B \cap P=((0,0))_1$

It is means that

 $\min \{B(a,b), P\{(a,b)\} = \begin{cases} 1 \text{ if } (\varepsilon, \mathbf{b}) = (0,0) \\\\ 0 \text{ if } (\varepsilon, \mathbf{b}) \neq (0,0) \end{cases}$ for all $(a,b) \in \mathbb{Z}^2$

Now if $(a,b)=(0,0) \implies P((a,b))=1$ (since P is a fuzzy submodule)

If $(a,b) \neq (0,0) \Longrightarrow \mathbf{P}(a,b) = 0$

(since B((a,b)) \neq 0 for all $(a,b) \in \mathbb{Z}^2$)

Therefore $P=(0,0)_1$.

Hence B is a fuzzy semi-essential submodule of A Now we recall the definition of a semi-essential submodule .

<u>Proposition 3.4</u> Let A be a fuzzy module of an R-module M . A fuzzy submodule B of A is a fuzzy semi-essential submodule if B_t is semi-essential submodule of A for

all t∈(0,1] .

Proof:-

B is a fuzzy submodule of A (by proposition 2.3)

suppose U is a prime fuzzy submodule of A and $B \cap U=O_1$ this implies

 $(B \cap U)_t = B_t \cap U_t = \{0\}$ for all $t \in (0,1]$ (by proposition 1.8)

 $U_t=(0_1)_t$ (since B_t is a semi-essential submodule of A)

then $U=O_1$ (by proposition 1.8)

Therefore, B is a fuzzy semi-essential submodule of A.

Proposition 3.5 Let X be a fuzzy module of an R-module M if A and B are two fuzzy semi-essential submodule of X then AUB is a fuzzy semi-essential submodule of X whenever A⊆B or B⊆A.

Proof: If $B \subseteq A$,

 $A \cup B$ is fuzzy submodule of X(by proposition 2.5)

If $(AUB) \cap U=0_1$ Where U is a prime fuzzy submodule of X

$$(AUB) \cap U = (A \cap U)$$
 (since

B⊆A).

 $=0_{1}$

(since A is fuzzy semi-essential submodule of X) .

This implies $U=O_1$, hence AUB is a fuzzy semi-essential submodule of X.

Similarly if A⊆B.

Proposition 3.6

Let A be a fuzzy submodule of a module M and B be a fuzzy semi-essential submodule of A then the set $B^* = \{X \in M : B(x) > 0\}$ is a semi-essential submodule of M.

Proof: $B^* = \{X \in M : B(x) > 0\} = \bigcup_t Bt$ where $t \in (0,1]$ (by proposition 3.4, 3.5).

 B^* is semi-essential submodule of M .

Proposition3.7

Let \mathcal{F} be a bijective function from a fuzzy module A into a fuzzy module B (\mathcal{F} :A \rightarrow B). If N be a fuzzy semi-essential submodule of A then $\mathcal{T}(N)$ is fuzzy semi-essential submodule of B.

Proof :

 $\mathcal{F}(N)$ is submodule of B (by proposition 2.9).

Now, Suppose that U be a prime fuzzy submodule of B such that $\mathcal{F}(N) \cap U=0_1$

 $\mathcal{F}^{-1}(\mathcal{F}(N) \cap U) = \mathcal{F}^{-1}(\mathbf{0}_1)$

 $\mathcal{F}^{-1}(\mathcal{F}(N)) \cap \mathcal{F}^{-1}(U) = O_1$ (by proposition 1.11 and \mathcal{F} is a bijective).

N $\cap \mathcal{F}^{-1}(U) = O_1$ (since \mathcal{F} is a bijective)

 $\mathcal{F}^{-1}(U)=O_1$ (since N is a fuzzy semiessential submodule and $\mathcal{F}^{-1}(U)$ is submodule of A)

 $\mathcal{F}(\mathcal{F}^{-1}(U)) = \mathcal{F}(O_1)$ (by proposition 1.11 and \mathcal{F} is a bijective). Thus U=O₁

Then $\mathcal{F}(N)$ is fuzzy semi-essential submodule of B.

Proposition3.8

Let \mathcal{F} be a bijective function from a fuzzy module A into a fuzzy module B (\mathcal{F} :A \rightarrow B) if M be a fuzzy semi-essential submodule of B then $\mathcal{F}^{-1}(M)$ is fuzzy semiessential submodule of A.

Proof:

 $\mathcal{F}^{-1}(M)$ is a fuzzy submodule of A (by proposition 2.9).

Suppose Ube a prime fuzzy submodule of A such that $\mathcal{F}^{-1}(M)\cap U=O_1$

 $\mathcal{F}(\mathcal{F}^{-1}(M)\cap U) = \mathcal{F}(O_1)$

 $\mathcal{F}(\mathcal{F}^{-1}(\mathbf{M})) \cap \mathcal{F}(\mathbf{U}) = \mathcal{F}(\mathbf{0}_1)$ (by proposition 1.11).

 $M \cap \mathcal{F}(U) = O_1$ (since M is fuzzy semiessential of A).

$$\mathcal{F}(\mathbf{U}) = \mathbf{0}_1$$

 $\boldsymbol{\mathcal{F}}^{-1}(\boldsymbol{\mathcal{F}}(\boldsymbol{\mathsf{U}})) = \boldsymbol{\mathcal{F}}^{-1}(\boldsymbol{\mathrm{O}}_1)$

U=O₁ (by proposition 1.11 and \mathcal{F} is a bijective).

Then $\mathcal{F}^{-1}(M)$ is fuzzy semi-essential submodule of A.

Proposition 3.9

Let A and B be two fuzzy semi-essential submodule of a fuzzy module X of an R-module M then A+B is also fuzzy semi-essential submodule of X.

Proof :

A+B is a fuzzy submodule of X (by proposition 2.7).

Since A and B are fuzzy semiessential submodule of X that mean (i.e.)

if $A \cap U = O_1 \Longrightarrow U = O_1$

if $B \cap U=O_1 \Longrightarrow U=O_1$, For all U is a prime fuzzy submodule of X

Now , if $(A+B) \cap U=O_1$ for all a prime fuzzy submodule U of X

Then $(A \cap U)+(B \cap U)=O_1$ (Distribution law).

Therefore $(A \cap U) = O_1$ and $(B \cap U) = O_1$ implies $U=O_1$ (since both A and B are semi-essential submodule of X), Yields A+B is a fuzzy semi-essential submodule of X.

<u>Proposition 3.10</u> Let A,B,M and N are fuzzy module of R-module X such that $A \subseteq B \subseteq M \subseteq N$ and A is fuzzy semi-essential

submodule of N then B is fuzzy semi-essential submodule of M .

Proof: Let U be a fuzzy submodule of M and $B\cap U=O_1$

then $A \cap U = O_1$ (Since $A \subseteq B$).

Since A is fuzzy semi-essential submodule of N and $(U \subseteq M \subseteq N)$ Then U=O₁

Therefore,

B is fuzzy semi-essential submodule of M.

Proposition3.11

Let X be a fuzzy module of an R-module M and let N_1 and N_2 are two fuzzy submodules of X such that N_1 is a fuzzy submodule of N_2 then N_1 is a fuzzy semiessential submodule of X then N_2 is a fuzzy semi-essential submodule of X.

Proof : Suppose that U be a fuzzy prime submodule of X ,

such that UNN2=O1

(since

 $N_1 \subseteq N_2$).

 $U=O_1$ (N₁ is a fuzzy semi-essential submodule of X).

 $U \cap N_1 = O_1$

Then N_2 is a fuzzy semi-essential submodule of X.

REFERENCES

[1] Al-daban. N K,"<u>semi-essential</u> <u>submodules and semi- uniform module</u>", M.Sc. Thesis, University of Tikrit,(2005).

[2] Kumar R., "*Fuzzy Semiprimary Ideals of Rings*", Fuzzy Sets and Systems, Vol. 42, PP. 263-272, (1991).

[3] Majumdar S., "*<u>Theory of Fuzzy</u> <u>Modules</u>", Eull Col. Math. Sce., Vol. 82, PP. 395-399, (1990).*

[4] Martinez L., "<u>Fuzzy Modules Over</u> <u>Fuzzy Rings in Connection with Fuzzy</u> <u>Ideal of Ring</u>", J. Fuzzy Math. Vol. 4, PP. 843-857, (1996).

[5] Mashinchi M. and Zahedi M. M., "<u>On L-Fuzzy Primary Submodules</u>", Fuzzy Sets and Systems, Vol. 49, PP. 231-236, (1992).

[6] Mukhejee T.K., Sen M. K. and Roy D., "<u>On Submodules and their</u> <u>Radicals</u>", J. Fuzzy Math. Vol. 4, PP. 549-558, (1996).

[7] Rabi H. J., "<u>Prime Fuzzy Submodule</u> and Prime Fuzzy Modules", M. Sc. Thesis, University of Baghdad, (2001).

[8] Rosenfeld .A., "Fuzzy groups," J. Math. Anal. Appl., vol. 35, pp. 512-517, 1971

[9] Zadeh L. A., "<u>Fuzzy Sets,</u> <u>Information and control</u>", Vol. 8, PP. 338-353, 1965.

[10] Zahedi M. M., "<u>On L-Fuzzy</u> <u>Residual Quotient Modules and P.</u> <u>Primary Submodules</u>", Fuzzy Sets and Systems, Vol. 51, PP. 33-344, (1992). [11] Zahedi M. M., "<u>A</u> characterization of L-Fuzzy Prime <u>Ideals</u>", Fuzzy Sets and Systems, Vol. 44, 147-160, (1991).

[12] Zhao Jiandi, Shi K. Yue M., "*Fuzzy Modules over Fuzzy Rings*", The J. of Fuzzy Math. Vol. 3, PP. 531-540, (1993).

[13] Zahedi M. M., "<u>Some Results on</u> <u>L- Fuzzy</u> <u>Modules</u>", Fuzzy Sets and Systems, Vol. 55, PP. 355-363, (1993).

الموديول الجزئي الضبابي شبه-الجو هري من الموديول الضبابي

أ.م.حسين هادي النعماني

شكر نعمة مبرد العياشي

جامعة الكوفة/كلية التربية للبنات/قسم الرياضيات

الخلاصة

في هذا البحث قدمنا مفهوم الموديول الجزئي الضبابي شبه-الجوهري من الموديول الضبابي ودرسنا الشرط الكافي والضروري الذي يجعل الموديول الجزئي الضبابي من الموديول الضبابي موديولاً شبه-جوهري كذلك درسنا الصورة الضبابية والصورة العكسية الضبابية للموديول الجزئي شبه الجوهري وخصائص اخرى