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Abstract
Our aim in this paper is to find the
general solution of the beloved

equation which its general form is
given by u” (x)+3u(x)u’(x)+u’(x)=0
by using suitable substitution .

1-INTRODUCTION .

The beloved  equation arises in
many areas. Some of these are the
analysis of the fusion of pellets, the
theory of univalent functions, the
stability of gaseous spheres, operator
Yang-Baxter equations, motion of a
free particle in a space of constant
curvature, the stationary reduction of
the second member of the Burgers
hierarchy [1],[6].

The beloved equation is linearizable
by a point transformation [ 6 ], and by
a generalized Sund-man transformation
[ 6 ], into the equation y"=0 and
y"+3y+2y= 0, respectively.

The beloved equation Possesses both
Left Painleve Series (LPS) and Right
Painleve Series (RPS) [ 4] .

In this paper , we shall find the general
solution of the beloved equation

by using the reduction of order and
the suitable substitution u?(x)=tp |,

du

dx

Deffinitions and Basic concepts .

where p =

82

Definition [ 4 ] : The general form of
the Right Painleve Series (RPS) is

0 T
givenby: u= 3% a;X P+

1I=0
And the Left Painleve Series (LPS) is

. x —p-i
givenby: u= 3% a;X
1I=0

Definition [ 4 ]: the general form of
Riccati transformation is given by
u=aX

w

where u and w are function of x .

2- The general solution of the
beloved equation by using (RPS) and
(LPS)[4]:

The beloved equation is given by :
u” (x)+3u(x)u’(x)+u’(x)=0
To find the general solution of it , get
the leading order behaviour

U=a x P

ofpEp-¢ P2 Pk P =0

If p=1 = o is given as
a2—3a+2:0<:>a:L2
...(3)

Resonances
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1,
U= pI

2 43 -1r+3a% —6a+2=0 by
[4].

o121 3@-Yr+aa-3)=0
..(5)

When (3) is taken into account. Hence

r=—a , 3-28=-11-2-1by[4]

...(6)
So , the general solution of beloved
equation is given by

(7

2A1x+281

2
Alx + 281x+ C1

u =

where Aq,
constants .

Biand C; are arbitrary

Note : In fact the above solution yields
under especial conditions for the
and by getting the first term of the (R P
S).p and o valuesof p,

3- Solution of beloved equation by
Riccati transformation [ 6] :

Consider the beloved equation
u”(x)H3u)u’x)+u’(x)=0 _

By using Riccati transformation [2],[3],

!

w
U=a—
w

...(8)
We get

..(9)

m /3
DI o AL PP L
W w2 w3

...(10)

=0

83

fa=1 =
Wm — O
..(12)
w’3
The coefficient of — is the same as

w
for the Painleve analysis. a =1 leads
the RPS and ¢ =2 tothe LP S

ww"” +3w'w” =0 ...(12)
W2 integrati
grating factor
—w =X ..(13)
w3
Equation (13) Ermakov-Pinney

equation [5]

WoaW W oW WA g
O(Vv 7 ?) +3d2Vv (Vv T\?') +a3v\7q’ =0

The beloved equation possesses eight
Lie point symmetries and is
linearisable to U"=0 by a point
transformation [4 ] .

Note : In fact the Riccati
transformation transform the beloved
equation to the nonlinear third order
ordinary differential equation and its
solution yields .o  under some
conditions of values of

4-Solution of beloved equation by
using a nonlocal symmetry [1] :

To solve the beloved equation
u” (x)+3u(x)u’(x)+u’(x)=0 ,
e We illustrate the procedure of
reduction of order on the first
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member of the system ( the
beloved equation ) using the
nonlocal symmetry X;. The
associated Lagrange’s system is

o _du_
0 u u/_u2
(14

after one has removed the common

factor of exp[- [xdt]. The
characteristics are t and
w=" 4y
u
...(15)

The reduced equation, an elementary
Riccati equation, is
aw_ 2
dx
which is easily solved to give

1

K+x -

When we combine this with (15) we
obtain the linear first-order differential
equation

Ly (=1

dx u K+xu
which has the solution

u(x) = &

c+—(x+ K)2
2
Where K and c are arbitrary constants .

Note : we saw at the three above
methods for finding the solution of the
beloved equation , there are some
conditions to find the solution . Now
we introduce method to solve the
beloved equation without using any
conditions and we will transform it to
first order ordinary differential
equation .
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5- The general solution of the
beloved equation:
u” (x)+3u(x)u’(x)+u’(x)=0

To solve the beloved equation
u”(x) +3u(x)u’(x) + u3(x) =0
Let u’(x) = p(x) S0
u'(x)= p@: p%+3u(x)p+u3(x) =0

du " du
Suppose U*(X)=pt = 2u(x)du = pdt +
tdp =

3

pdf tf p:pdm(3p2t2 + pztz)

tdp+ pdt

du= =0

dp @B+)dt

(2+3+t )dp+(3+t)pdt:0 5
P 2+3+t

=0=
f f (3+t)dt

S rvrice = odt=sInp-+In{+)?-In+2) =gy

I P+ 12
T_Incljp(t +2+]) = cl(t+2)

u?(x)
p

Since, t=

u (X) ZUZ(X) 1) C12(X)_2C1:0

p p P
,then

=P~

u4(x) +2u2(x)p+ p2 —cluz(x) —201p=0
,then
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P2 +(2u2(x) - 2¢)p+ut(x) —cu?(x) =0
,then

p= l—uz(x)J_r,lcl2 - 1u2(x)

,then

Now;let

u(x)=\/c>lsina:>3i= pz\/czcow(:;:
do . 2 2.
\/gcowaﬂlsw? GZﬁiw/fl - siffo =

1 1 1-
(CS(D'—COb')=X+CZ :—(1 il

E \/g sinc )=x+G)

! (1—\/1—sin 2 5
\/q sino

85

Since
R
. u(x) 1 !

G

2
TRCIN
¢
u2(x)203

l—2(x+c2)u(x)+(x+c2)2u2(x)=1—

(x+c2)2u2(x)—2(x+c2)u(x)+

u(x)[(x+c2) u(x)— 2(x+c2)+Q] 0

“

Either u(x)=0 is trivial solution
Or

(x+c2) u(x) — 2(x+c2)+ (i() 0=

[(x+cy)? +%]u(x) =2(x+cy) >

2(x+02)
)2

u(x) = =0

v G

(x+c2 + =

1

where ¢; and c, are arbitrary

constants . .
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