Construction of Maximum (k,n)-Arcs
 from(k, m)-Arcs in PG (2,5) for $m<n$

Sawsan Jawad Kadhum / University of Baghdad, College of Education, Ibn Al-Haitham, Dept.of Mathematics.
Rasha Naser Majeed / University of Baghdad, College of Education, Ibn Al-Haitham, Dept.of Mathematics.

Abstract

The purpose of this work is to find maximum (k, n)-arcs from maximum $(\mathrm{k}, 2)$-arcs where $\mathrm{n}=3,4,5$.in the projective plane PG $(2,5)$.

1.Introduction

Mohammed, 1988[7], showed the classification of $(k, 3)$-arcs in $\operatorname{PG}(2,5)$, also Abdul-Hussain, (1997), [1], showed the classification of $(k, 4)$-arcs in PG $(2,5)$, and Faiyad, (2000), [2], constructed and classified $(k, 3)$-arcs in PG $(2,7)$, all of them used the algebraic method. Finally, Ban, (2001), [4], constructed (k,4)-arcs in PG $(2,11)$ by adding two points to each line of the type 2 -secant, this means that the addition is horizontally.

In this work we introduce a method to find maximum (k, n)-arcs in $\operatorname{PG}(2,5)$, by adding points of index zero to the union of the maxim ($k, 2$)-arcs, this means that the addition is vertically.

2. preliminaries

2.1 Definition [6]

A Projective plane PG $(2,5)$ over GF (5) consists of 31 points, 31 lines, each line contains 6 points and through every point there are 6 lines. Let P_{i} and $L_{i}, i=1,2, \ldots, 31$
be the points and the lines of PG $(2,5)$ respectively.
(where $\mathrm{P}^{2}+\mathrm{P}+1$ is the equation which gives the numbers of points and lines in PG $(2,5)$ over GF $(5)[2,8])$

Let i stands for the points P_{i}. The points and lines of $P G(2,5)$ are given in table (1).

2.2 Definition [6]

A (k,n)-arc in PG $(2, P)$ is a set of K points no $n+1$ of them are collinear.

A $(k, 2)$-arc is called k-arc which is a set of K points no three of them are collinear.

A (k,n)-arc is complete if it is not contained in a $(k+1, n)-\operatorname{arc}$. The maximum number of points that a $(k, 2)$-arc can have is $m(2, p)$, and this arc is an oval.

2.3 Theorem [6]

$m(2, p)=\left\{\begin{array}{llll}p+1 & \text { for } & p & \text { odd } \\ p+2 & \text { for } & p & \text { even }\end{array}\right.$

2.4 Definition [3,5]

A line L in $\mathrm{PG}(2, \mathrm{P})$ is an i-secant of $\mathrm{a}(\mathrm{k}, \mathrm{n})$-arc if $|\mathbf{L} \cap \mathbf{K}|=\mathrm{i}$.
A 2-secant is called a bisecant line.

2.5 Definition [3]

A variety $\mathrm{V}(\mathrm{F})$ of $\mathrm{PG}(2, \mathrm{P})$ is a subset of $\mathrm{PG}(2, \mathrm{P})$ s.t.
$\mathrm{V}(\mathrm{F})=\{\mathrm{P}(\mathrm{A}) \in \mathrm{PG}(2, \mathrm{P}) \mid \mathrm{F}(\mathrm{A})=0\}$

2.6 Definition [6]

Let $\mathrm{Q}(2, \mathrm{P})$ be the set of quadrics in $\mathrm{PG}(2, \mathrm{P})$, that is the varieties $\mathrm{V}(\mathrm{F})$, where:
$F=a_{11} x_{1}{ }^{2}$
$+a_{22} x_{2}{ }^{2}+a_{33} x_{3}{ }^{2}+a_{12} x_{1} x_{2}+a_{13} x_{1} x_{3}+a_{23} x_{2} x_{3}$
If $V(F)$ is non singular, then the quadric is a conic.

2.7 Theorem [5]

Every conic in PG $(2, \mathrm{P})$ is a $(\mathrm{P}+1)$ arc.

2.8 Theorem [5]

In PG (2, P), with P odd, every oval is a conic.

2.9 Definition [3]

A point N which is not on a (k, n)-arc has index if there are exactly i
(n -secants) of the arc through N , we denote the number of points N of index i by N_{i}.

2.10 Remark [5]

The (k, n)-arc is complete iff $\mathrm{N} 0=0$. Thus the arc is complete iff every point of PG (2,p) lies on some n-secant of the arc.
3.The Construction of ($\mathbf{k}, \mathbf{2}$)-Arcs in PG(2,5)

Let $A=\{1,2,7,13\}$ be the set of reference and unit points where:-

A is a $(4,2)$-arc since no three points of A are collinear. There are six points of index zero for A , which are:
20,21,24,26,29,30.Hence A is incomplete (4,2)-arc.

3.1 The Conics in PG $(2,5)$ Through The Unit and Reference Points [6]

The general equation of the conic is:
$a_{1} x_{1}{ }^{2}+a_{2} x_{2}{ }^{2}+a_{3} x_{3}{ }^{2}+a_{4} x_{1} x_{2}$
$+a_{5} x_{1} x_{3}+a_{6} x_{2} x_{3}=0$ \qquad
(1)

By substituting the points of A in (1), we
get:
$\mathrm{a}_{1}=\mathrm{a}_{2}=\mathrm{a}_{3}=0$
And
$a_{4}+a_{5}+a_{6}=0$
so (1) becomes:
$a_{4} x_{1} x_{2}+a_{5} x_{1} x_{3}+a_{6} x_{2} x_{3}=0 \ldots \ldots$.

If $\mathrm{a}_{4}=0$, Then the conic is degenerated. Therefore $a_{4} \neq 0$, similarly $a_{5} \neq 0$ and $\mathrm{a}_{6} \neq 0$.
Dividing equation (2) by a_{4}, we get:
$\mathrm{x}_{1} \mathrm{x}_{2}+\alpha \mathrm{x}_{1} \mathrm{x}_{3}+\beta \mathrm{x}_{2} \mathrm{x}_{3}=0$
Where $\alpha=\frac{a_{5}}{a_{4}}$ and $\beta=\frac{a_{6}}{a_{4}}$, then $\beta=-$ $(1+\alpha)$ since $1+\alpha+\beta=0(\bmod 5)$.
$\alpha \neq 0$ and $\alpha \neq 4$ for if $\alpha=0$ or $\alpha=$ 4,we get a degenerated conic, i.e., $\alpha=1,2,3$ and (2) can be written as:
$\mathrm{x}_{1} \mathrm{x}_{2}+\alpha \mathrm{x}_{1} \mathrm{x}_{3}-(1+\alpha)$
$\mathrm{x}_{2} \mathrm{x}_{3}=0$
......(3)

$$
1=(1,0,0), 2=(0,1,0), 7=(0,0,1), 13=
$$ (1,1,1).

3.2The Equations and The Points of PG(2,5) Through The Unit and Reference Points [6]

For any value for α there is a unique conic contains six points.

1. If $\alpha=1$,then the equation of the conic C_{1} is $x_{1} x_{2}+x_{1} x_{3}+3 x_{2} x_{3}=0$

The points of C_{1} are
$\{1,2,7,13,20,26\}$ which is a complete arc.
2. If $\alpha=2$, then equation of the conic C 2 is $\mathrm{x} 1 \times 2+2 \times 1 \times 3+2 \times 2 \times 3=0$ and
$\mathrm{C}_{2}=\{1,2,7,13,21,29\}$ which is a complete arc.
3. If $\alpha=3$, then the equation of the conic C_{3} is $\mathrm{x}_{1} \mathrm{x}_{2}+3 \mathrm{x}_{1} \mathrm{x}_{3}+\mathrm{x}_{2} \mathrm{x}_{3}=0$ and $C_{3}=\{1,2,7,13,24,30\}$ which is a complete arc. Thus we found three maximal

$$
(\mathrm{k}, 2)-\operatorname{arcs} \mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3} .
$$

4.The Construction of Maximum (K, 3)Arcs in PG $(3,5)$

We will try to get maximum ($\mathrm{K}, 3$)arcs through the following steps:
a-We take the union of every two maximum (K, 2)-arcs. We see that each set is incomplete (K, 3)-arc. Since there exist points of index zero for every arc, i.e., $\mathrm{C}_{0} \neq 0$.
b -We get complete arcs by adding the points of index zero to every incomplete arc.
c-We take only the maximum arcs, as the
Let $\boldsymbol{D}_{\boldsymbol{I}}=\boldsymbol{C}_{\boldsymbol{I}} \cup \boldsymbol{C}_{2}$

$$
=\{1,2,7,13,20,26,21,29\} \mathrm{is}
$$

incomplete.

We add to D_{1} three points of index zero, which are $\{3,9,12\}$.
Then $\boldsymbol{D}_{\boldsymbol{1}}{ }^{\prime}=\{1,2,7,13,20,26,21,29,3,9,12\}$
is a complete $(11,3)$-arc, since $\mathrm{C}_{0}=0$.
Let $\boldsymbol{D}_{2}=\boldsymbol{C}_{\boldsymbol{1}} \cup \boldsymbol{C}_{3}$

$$
=\{1,2,7,13,20,26,24,30\} \mathrm{is}
$$

incomplete.
We add to D_{2} three points of index zero, Which are $\{4,8,12\}$.
Then $\boldsymbol{D}_{\boldsymbol{2}}{ }^{\prime}=\{1,2,7,13,20,26,24,30,4,8,12\}$
is a complete $(11,3)$-arc, since $\mathrm{C}_{0}=0$.

$$
\text { Let } \quad \begin{aligned}
D_{3} & =C_{2} \cup C_{3} \\
& =\{1,2,7,13,21,29,24,30\} \mathrm{is}
\end{aligned}
$$

incomplete.
We add to D_{3} three points of index zero, which are $\{3,8,15\}$.
Then $\boldsymbol{D}_{\mathbf{3}}{ }^{\prime}=\{1,2,7,13,21,29,24,30,3,8,15\}$
is a complete $(11,3)-\operatorname{arc}$, since $\mathrm{C}_{0}=0$.
Then the maximum $(11,3)$-arcs in PG $(2,5)$ are :

$$
\begin{aligned}
& \boldsymbol{D}_{\boldsymbol{I}}^{\prime}=\{1,2,7,13,20,26,21,29,3,9,12\} \\
& \boldsymbol{D}_{2}^{\prime}=\{1,2,7,13,20,26,24,30,4,8,12\} \\
& \boldsymbol{D}_{3}^{\prime}=\{1,2,7,13,21,29,24,30,3,8,15\}
\end{aligned}
$$

5.The Construction of Maximum (K, 4)Arcs in PG $(2,5)$

We will try to get maximum (K, 4)arcs through the following step:
a-We take the union of every two maximum (K, 3)-arcs. We see that each set is incomplete ($\mathrm{K}, 4$)-arcs. Since there exist points of index zero for every arc, i.e., $\mathrm{C}_{0} \neq 0$.
b -We get complete arcs by adding the points of index zero to every incomplete arc.
c-We take only the maximum arcs, as the following:

Let $\boldsymbol{G}_{\boldsymbol{I}}=\boldsymbol{D}_{\boldsymbol{I}}{ }^{\prime} \cup \boldsymbol{D}_{2}{ }^{\prime}$
$=\{1,2,7,13,20,26,21,29,3,9,12,24,30,4,8\}$ is incomplete.
We add to G_{1} one point of index zero,
Which is $\{15\}$.
Then $\boldsymbol{G}_{\boldsymbol{1}}{ }^{\prime}=$
$\{1,2,7,13,20,26,21,29,3,9,12,24,30,4,8,15\}$
is a incomplete $(16,4)$-arc since $\mathrm{C}_{0}=0$.
Let $\boldsymbol{G}_{\mathbf{2}}=\boldsymbol{D}_{\boldsymbol{I}} \cup^{\prime} \cup \boldsymbol{D}_{\boldsymbol{3}}{ }^{\prime}$
$=\{1,2,7,13,20,26,21,29,3,9,12,24,30,8,15\}$
is incomplete.
We add to G_{1} one point of index zero,
Which is $\{4\}$.
Then
$\boldsymbol{G}_{\mathbf{2}}{ }^{\prime}=\{1,2,7,13,20,26,21,29,3,9,12,24,30$,
$8,15,4\}$ is a incomplete $(16,4)$-arc since
$\mathrm{C}_{0}=0$.

Let $\boldsymbol{G}_{\boldsymbol{3}}=\boldsymbol{D}_{\mathbf{2}}{ }^{\prime} \cup \boldsymbol{D}_{\boldsymbol{3}}{ }^{\prime}$
$=\{1,2,7,13,20,26,24,30,4,8,12,21,29,3,15\}$
is incomplete.
We add to G_{3} one point of index zero, Which is $\{9\}$.
Then $\boldsymbol{G}_{\mathbf{3}}{ }^{\mathbf{\prime}}=$
$\{1,2,7,13,20,26,24,30,4,8,12,21,29,3,15,9\}$
is a incomplete $(16,4)$-arc since $\mathrm{C}_{0}=0$.
We notice that the $\operatorname{arcs} \boldsymbol{G}_{\boldsymbol{1}}{ }^{\prime}, \boldsymbol{G}_{\mathbf{2}}{ }^{\prime}$ and
$\boldsymbol{G}_{3}{ }^{\prime}$ are the same set denoted by G_{9}.
i.e , $\boldsymbol{G}_{\boldsymbol{4}}=\boldsymbol{G}_{\boldsymbol{1}}{ }^{\prime}=\boldsymbol{G}_{\mathbf{2}}{ }^{\boldsymbol{}}=\boldsymbol{G}_{\mathbf{3}}{ }^{\boldsymbol{}}$

Then the maximum $(16,4)$-arc in PG $(2,5)$ is $\mathrm{G}_{4}=\left\{\mathrm{G}_{1}\right\}$.

6-The Construction of Maximum (K, 5)Arcs in PG $(2,5)$

We take from (5) the maximum $(16,4)$-arc G_{4} which is incomplete ($\mathrm{K}, 5$)arc, Since there exist points of index zero for G_{4} which are
$\{5,6,10,11$,
$14,16,17,18,19,22,23,25,27,28,31\}$ i.e.,
$\mathrm{C}_{0} \neq 0$.
We add to G_{4} five points of index zero, Which are $\{5,10,14,17,22\}$.
Then
$\boldsymbol{G}_{5}=\{1,2,7,13,20,26,21,29,3,9,12,24,30,4$, $8,15,5,10,14,17,22\}$ is a maximum (21,5)arc since $\mathrm{C}_{0}=0$.

Conclusion

1. We can get the maximum $(k, n+1)$ arcs from the maximum (k , arcs by taking the union of every two maximum (k, n)-arcs, $\mathrm{n}=2,3$.
2. We get a maximum ($k, 5$)-arc from maximum ($k, 4$)-arc.
3. We add the points of index zero for each incomplete arc.
4. Notice, when constructing the maximum (k, n)-arcs where
$2 \leq \mathrm{n} \leq 4$
That the difference between the lengths of maximum ($k, n+1$)-arcs and maximum (k, n)-arcs is five points, i.e., $\mathrm{p}=5$ [the characteristic of PG $(2,5)]$.
5. We see when the maximum $(k, n)-$ arcs exist ,then $\mathrm{k}=(\mathrm{n}-1) \mathrm{p}+1$, when $\mathrm{n}=2,3,4,5$

Table (1)
Points and lines of PG $(\mathbf{2}, \mathbf{5})$

i	P_{i}			\mathbf{L}_{1}					
1	1	0	0	2	7	12	17	22	27
2	0	1	0	1	7	8	9	10	11
3	1	1	0	6	7	16	20	24	28
4	2	1	0	4	7	14	21	23	30
5	3	1	0	5	7	15	18	26	29
6	4	1	0	3	7	13	19	25	31
7	0	0	1	1	2	3	4	5	6
8	1	0	1	2	11	16	21	26	31
9	2	0	1	2	9	14	19	24	29
10	3	0	1	2	10	15	20	25	30
11	4	0	1	2	8	13	18	23	28
12	0	1	1	1	27	28	29	30	31
13	1	1	1	6	11	15	19	23	27
14	2	1	1	4	9	16	18	25	27
15	3	1	1	5	10	13	21	24	27
16	4	1	1	3	8	14	20	26	27
17	0	2	1	1	17	18	19	20	21
18	1	2	1	5	11	14	17	25	28
19	2	2	1	6	9	13	17	26	30
20	3	2	1	3	10	16	17	23	29
21	4	2	1	4	8	15	17	24	31
22	0	3	1	1	22	23	24	25	26
23	1	3	1	4	11	13	20	22	29
24	2	3	1	3	9	15	21	22	28
25	3	3	1	6	10	14	18	22	31
26	4	3	1	5	8	16	19	22	30
27	0	4	1	1	12	13	14	15	16
28	1	4	1	3	11	12	18	24	30
29	2	4	1	5	9	12	20	23	31
30	3	4	1	4	10	12	19	26	28
31	4	4	1	6	8	12	21	25	29

$$
\begin{aligned}
& \text { بناء الأقو اس-(k,n) العظمى من الاقواس-(k,m) }
\end{aligned}
$$

$$
\begin{aligned}
& \text { سوسن جو اد كاظم/ جامعة بغداد - كلية التربية ابن الهيثّم - قسم الرياضيات } \\
& \text { رشا ناصر مجيد / جامعة بغداد - كلية التربية ابن الهيثم - قسم الرياضيات } \\
& \text { الغرض من هذا البحث هو لإيجاد أقواس-(k,n)عظمى من أقـواس-(k,2)(عظمى،حيث أن n=3,4,5 فـي } \\
& \text { المستوى الاسقاطي }
\end{aligned}
$$

REFERENCES

[1]. Abdul-Hussain, M.A.,(1997),"Classification of (k, 4)-Arcs in the Projective Plane of Order Five ", M.Sc.Thesis, University of Basrah, Iraq .
[2]. Faiyad ,M.S.,(2000)," Classification and Construction of (k, 3)-Arcs on Projective Plane Over Galois Field GF(7) ",M.Sc.Thesis, University of Baghdad, Iraq .
[3]. Hassan ,A.S.,(2001),"Construction of (k,3)-Arcs in Projective Plane Over Galois Field GF(q), $q=p^{h}$, when $P=2$ and $h=2,3,4 ", M . S c$.Thesis, University of Baghdad, Iraq .
[4]. Kassim, B.A, (2001)" Upper bound for (k, n)-Arcs ", M.Sc.Thesis, University of Mosul, Iraq .
[5]. Kadhum ,R.,S.,(1997),"Classification of K-Arcs in Projective Plane Over Galois Field ",M.Sc.Thesis, Saddam University, Baghdad, Iraq.
[6]. Kadhum, S.J.,(2001),"Construction of (k,n)-Arcs in PG (2,p) for $\mathbf{2} \leq \boldsymbol{m}<\boldsymbol{n}$ " M.Sc.Thesis, University of Baghdad, Iraq .
[7]. Mohammed, M.,J., (1988),"Classification of (k, 3)-Arcs and (k, 4)- Arcs in Projective Plane Over Galois Field ",M.Sc.Thesis, University of Baghdad .
[8]. Yasin, A.L., (1986), "Cubic Arcs in the Projective Plane of Order Eight ", Ph.D. Thesis , University f Sussex , England .

