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Abstract 
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ring R, we obtain a derivation d is 
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1 Introduction 
This research has been motivated by the 
work of M.Ashraf[1]and 
M.A.Quadri,M.Shadab Khan and 
N.Rehman[2]. The history of commuting 
and centralizing mappings goes back to 
(1955) when Divinsky [3] proved that a 
simple Artinian ring is commutative if it 
has a commuting nontrivial 
automorphism.Tow years later, Posner [4] 
has proved that the existence of a non- zero 
centralizing derivation on prime ring forces 
the ring to be commutative ( Posner's 
second theorem).Luch [5]generalized the 
Divinsky result, we have just mentioned 
above, to arbitrary prime ring. Mayne [6] 
prove that in case  
there exists a nontrivial centralizing 
automorphism on a prime ring, then the 

ring is commutative (Mayne's theorem). 
Chung and Luh[7] have shown that every 
semicommuting automorphism of a prime 
ring is commuting provided that R has 
either characteristic different from 3 or 
non- zero center and thus they proved the 
commutativity of prime ring having 
nontrivial semicommuting automorphism 
except in the indicated cases Generalized 
derivation of operators on various 
algebraic structures  have been an active 
area of research since the last fifty years 
due to their usefulness in various fields of 
mathematics.Some authors have studied 
centralizers in the general framework of 
semiprime rings 
(see[8,2,10,14,19,20,21,22,23and24]). 
Muhammad A.C.and Mohammed S.S.[16] 
proved,let R be a semiprime ring and 
d:R→ R a mapping satisfy d(x)y=xd(y) for 
all x,y R.Then d is a centralizer.Molnar 
[15] has proved,let R be a 2-torsion free 
prime ring and let d:R →R be an additive 
mapping.If d(xyx)=d(x)yx holds for every 
x,y R,then d is a left 
centralizer.Muhammad A.C.and A. 
B.Thaheem [17] proved ,let d and g be a 
pair of derivations of semiprime ring R 
satisfying d(x)x+xg(x)  Z(R),then cd 
and cg are central for all 
c Z(R).J.Vukman [24] proved,let R be a 
2-torsion free semiprime ring and let 
d:R→R be an additive centralizing 
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mapping on R, in this case,d is commuting 
on R .B.Zalar [24] has proved, let R be a 2-
torsion free semiprime ring and d:R→ R an 
dditive mapping which satisfies d(x 2 )= 
d(x)x for all x R.Then d is a left 
centralizer.Hvala [11] initiated the 
algebraic study of generalized derivation 
and extended some results concerning 
derivation to generalized 
derivation.Majeed and Mehsin [12] 
proved,let R be a 2- torsion free semiprime 
ring, (D,d) and (G,g) be generalized 
derivations of R,if R admits to satisfy 
[D(x),G(x)]=[d(x),g(x)] for all x R and 
d acts as a left centralizer, then (D,d) and 
(G,g) are orthogonal generalized 
derivations of R.Recently,Mehsin Jabel 
[13] proved, let R be a semiprime ring and 
U be a non-zero ideal of R.If R admits a 
generalized derivation D associated with a 
non-zero derivation d such that D(xy) – 
yx Z(R) for all x,y U,then R contains 
a non-zero central ideal.Mehsin Jabel[8] 
proved, let R be a semiprime ring with left 
cancellation proprety,(D,d) and (G,g) be a 
non-zero generalized derivations of R,U a 
non-zero ideal of R,if R admists to satisfy 
[d(x),g(x)]=o for all x U and a non-zero 
d acts as a left centralizer (resp.a non-zero 
g acts as a left centralizer ),then R contains 
a non-zero central ideal,where two a 
dditive maps d,g:R→R are called 
orthogonal if d(x)Rg(y) =o=g(y)Rd(x) for 
all x,y  R.And two generalized 
derivations (D,d) and (G,g) of R are called 
orthogonal if D(x)RG(y)=o=G(y)RD(x) for 
all x,y  R,and  we denote by (D,d) to  a 
generalized derivation D:R→R determined 
by a derivation d of R .In this paper we 
study and investigate some results 
concerning generalized derivation D on 
semiprime ring R,we give some results 
about that. 
2.Preliminaries  
 Throughout this paper,R will represent an 
associative ring with out identity and has a 

cancellation property with the center 
Z(R).We recall that R is semiprime if xRx 
= (o) implies x=o and it is prime if 
xRy=(o) implies x=o or y=o.A prime ring 
is semiprime but the converse is not true in 
general . A ring R is 2-torsion free in case 
2x = o implies that x = o for any x  R 
.An additive mapping d:R → R is called a 
derivation if d(xy)=d(x)y+xd(y) holds for 
all x,y R.A mapping d is called 
centralizing if [d(x),x]  Z(R) for all 
x R, in particular, if [d(x),x] = o for all 
x R,then it is called commuting,and is 
called central if d(x)  Z(R) for all 
x R.Every central mapping is obviously 
commuting but not conversely in 
general.In[10]Q.Deng and H.E.Bell 
extended the notion of commutativity to 
one of n-commutativity,where n is an 
arbitrary positive integer,by defining a 
mapping d to be n-commuting on U if 
[x n ,d(x)]=0  for all x U,where U be a 
non empty subset of R .Following Bresar 
[9] an additive mapping D:R → R is called 
a generalized derivation on R if there exists 
a derivation d:R→R such that 
D(xy)=D(x)y+xd(y) holds for all 
x,y R.However , generalized derivation 
covers the concept of derivation.Also with 
d=o,a generalized derivation covers the 
concept of left multiplier (left centralizer) 
that is,an additive mapping D satisfying 
D(xy) = D(x)y for all x,y R.As usual,we 
write [x,y] for xy–yx and make use of the 
commutator identities [xy,z]=x[y,z]+[x,z]y 
and [x,yz]=y[x,z]+ [x,y]z,and the symbol 
xoy stands for the anti-commutator xy+yx.  
The following Lemmas are necessary for 
the paper 

Lemma 2.1 [ 18,Corollary 9] 

Any anticommutative semiprime ring R is 
commutative,where A ring R is said to be  
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  anticommutative if  xy=-yx (that is, xy + yx 
= 0) for all x,y R. 

  3.The main  results 

   Theorem 3.1 

 Let R be a semiprime ring.If R admits a 
non-zero generalized derivation D 
associated with a non-      zero derivation d 
such that D([x,y])=[x,y] for all x,y  
R.Then d is commuting on R. 

 

Proof: For x,y R ,we have 
D([x,y])=[x,y] for all x,y  R,which gives 

D(x)y+xd(y)-D(y)x-yd(x)-[x,y]=0                                                                                                     
(1) 

Replacing y by yz in (1),we obtain 

D(x)yz+xd(y)z+xyd(z)-D(y)zx-yd(z)x-
yzd(x)-y[x,z]-[x,y]z=0 for all x,y  R.                                    
(2) 

Substituting (1) in (2) gives 

D(y)[x,z]+yd(x)z+xd(y)z+xyd(z)-yd(z)x-
yzd(x)-y[x,z]=0 for all x,y  R.                                         
(3)                                                                                                                            

Replacing z by x in (3),we obtain 

xd(y)x+xyd(x)-yxd(x)=0 for all x,y  R.                                                                                         
(4) 

Replacing y by x in (4),we get 

xd(x)x=0       for all x  R.                                                                                                              
(5)    

By using the cancellation property on x 
,from left,we obtain 

d(x)x=0    for all x  R.                                                                                                                    
(6)  

Again by using the cancellation property 
on x ,from right,we get 

xd(x)=0        for all x  R.                                                                               
(7) 

Subtracting (6) and (7) ,we obtain 

[d(x),x]=o for all x  R.Thus ,d is 
commuting on R,by this we complete our 
proof. 

 

A slight modification in the proof of the 
above theorem yields the following . 

Theorem 3.2 

  Let R be a semiprime ring.If R admits a 
non-zero generalized derivation D 
associated with a non-zero derivation d 
such that D([x,y])+[x,y]=0 for all x,y  
R.Then d is commuting on R.                                                         

Theorem 3.3 

  Let R be a semiprime ring.If R admits a 
non-zero generalized derivation D 
associated with a non-zero derivation d 
such that D(xoy)=(xoy)  for all x,y  
R.Then d is 2- commuting on  R.  

Proof:For any x,y  R,we have  

D(xoy)=(xoy)  for all x,y  R.                                                                                       

This can be written as 

D(x)y+xd(y)+D(y)x+yd(x)-(xoy) =0   for 
all x,y  R.                                                                        
(8)    

Replacing y by yx in above equation ,we 
obtain  

D(x)yx+xd(y)x+xyd(x)+D(y)x 2 +yd(x)x-
(xoy)x=0   for all x,y  R.                                                  
(9)                                                                                                                          

According to (8) the relation above  
reduced to  
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(xoy)d(x)=0   for all x,y  R.   

By using the cancellation property on 
d(x),we get  

(xoy)=0 for all x,y R.                                                                                                                     
(10) 

By Lemma 2.1,we get  

[x,y]=0 for all x,y R.                                                                                                                      
(11)                                                                                                             

Replacing x by x 2 and y by d(x),we get  

[d(x),x 2 ]=0 for all x  R.Thus,d is 2-
commuting on  R.                                                                                                                

 We complete our proof. 

 

A slight modification in the proof of the 
Theorem(3.3)  yields the following                                                   

 Theorem 3.4 

  Let R be a semiprime ring.If R admits a 
non-zero generalized derivation D 
associated with a non-zero derivation d 
such that D(xoy)+(xoy)=0 for all x,y  
R.Then d is 2-commuting on R  . 

Proposition 3.5 

  Let R be a semiprime ring.If R admits a 
non-zero ideal generalized derivation D 
associated with a non-zero derivation d 
such that D([x,y])   (xoy)=0  for all x,y  
R.Then 2- d is commuting on R . 

Proof: For any x,y  R , we have  

D([x,y])-(xoy)=0.Then  

[D([x,y]),r]-[ (xoy),r]=0 for all x,y ,r R. 

Replacing y by x,we obtain  

2[x 2 ,r]=0 for all x,r R.By using the 
cancellation property with replacing r by 
d(x) 

 ,we obtain ,2-d is commuting on R. 

Theorem 3.6 

  Let R be a semiprime ring.If R admits a 
non-zero generalized derivation D 
associated with a non-zero derivation d 
such that d(x)oD(y)=0  for all x,y  
R.Then d is commuting on   R . 

Proof: We have  d(x)oD(y)=0  for all x,y 
 R.                                                                            
(12) 

Replacing y by yr,we obtain 

(d(x)oy)d(r)-y[d(x),d(r)]+(d(x)oD(y))r-
D(y)[d(x),r]=0 for all x,y  U,r R.                                  
(13) 

According to (12),then (13) reduced to 

 (d(x)oy)d(r)-y[d(x),d(r)]-D(y)[d(x),r]=0 
for all x,y  U,r R. 

 Replacing r by d(x),we get 

(d(x)oy)d 2 (x)-y[d(x),d 2 ( x)]=0    for all 
x,y  R.                                                                          
(14) 

Replacing y by zy in (14), with using 
(14),we obtain 

[d(x),z]yd 2 (x)=0 for all x,y,z  R.                                                                                               
(15) 

By using the cancellation property on (15) 
,from right,we obtain 

[d(x),z]y=0 for all x,y,z  R.                                                                                                        
(16) 

Since R is semiprime from above relation 
,we get 
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[d(x),z]=0 for all x,y  R.                                                                                                            
(17) 

Replacing z by x,we obtain, d is 
commuting on R.          

Theorem 3.7 

  Let R be a semiprime ring.If R admits a 
non-zero generalized derivation D 
associated with a non-zero derivation d 
such that [d(x),D(y)]=0  for all x,y  
R.Then d is 2- commuting on   R . 

Proof:  We have [ d(x),D(y)]=0  for all x,y 
 R.                                                                            
(18) 

Replacing y by yz in(18)and using the 
result with (18),we obtain 

D(y)[d(x),z]+y[d(x),d(z)]+[d(x),y]d(z)=0 
for all x,y  R.                                                                 
(19)   

Replacing z by zd(x) in (19)  and using the 
result with (19),we get 

yz[d(x),d 2 (x)]+y[d(x),z]d 2 (x)+[d(x),y]zd
2 (x)=0 for all x,y R.                                               
(20) 

Again replacing y by ry in (20) and using 
the result with (20),we obtain 

[d(x),z]yd 2 (x)=0 for all x,y,z  R.  

By using similar arguments as in the proof 
of Theorem 3.6,we obtain the required 
result.                   

Theorem 3.8 

  Let R be a semiprime ring.If R admits a 
non-zero generalized derivation D 
associated with a non-zero derivation d 
such that  d(x)oD(y)=xoy  for all x,y  
R.Then d is 2-commuting on   R . 

Proof: For any x,y  R,we have 

d(x)oD(y)=xoy  for all x,y  R.Replacing 
y by yr,we get 

(d(x)oy)d(r)-y[d(x),d(r)]+(d(x)oD(y))r-
D(y)[d(x),r]= (xoy)r-y[x,r]  for all x,y ,r 
R.Using our relation ,we obtain 

(d(x)oy)d(r)-y[d(x),d(r)]-D(y)[d(x),r] 
+y[x,r] =0   for all x,y ,r R.                                                       
(21) 

In (21) replacing r by d(x),we obtain 

(d(x)oy)d 2 (x)-y[d(x),d 2 (x)]+y[x,d(x)]=0   
for all x,y  R.                                                                 
(22) 

Replacing y by zy in (22),we obtain 

(z(d(x)oy)+[d(x),z]y)d 2 (x)-
zy[d(x),d 2 (x)]+zy[x,d(x)]=0 for all x,y  
R.                                             (23) 

According to(22),above relation reduced to 

[d(x),z]yd 2 (x)=0 for all x,y,z  R.                                                                                                     
(24) 

By using similar arguments as in the proof 
of Theorem 3.6,we obtain the required 
result.                   

A slight modification in the proof of the 
Theorem(3.8)  , yields the following 

 

Theorem 3.9 

  Let R be a semiprime ring.If R admits a 
non-zero generalized derivation D 
associated with a non-zero derivation d 
such that  d(x)oD(y)+xoy=0  for all x,y  
R.Then d is 2- commuting on   R . 

Theorem 3.10 

  Let R be a semiprime ring.If R admits a 
non-zero generalized derivation D 
associated with a non-zero derivation d 
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such that  d(x)D(y)-xy  Z(R) for all x,y 
 R.Then d is commuting on R. 

Proof: For any x,y  R,we have 

 d(x)D(y)-xy  Z(R),replacing y by yr,we 
obtain 

(d(x)D(y)-xy)r+d(x)yd(r)  Z(R) for all 
x,y,,r R.                                                                   
(25)                                                                        

This implies that 

[d(x)yd(r),r]=0 for all x,y ,r R.                                                                                               
(26) 

Hence it follows that 

d(x)[yd(r),r]+[d(x),r]yd(r) =0    for all x,y 
,r R.                                                                       
(27) 

In (27) replacing y by d(x)y,we obtain 

[d(x),r]d(x)yd(r)=0  for all x,y,r R.                                                                                         
(28) 

By using the cancellation property on 
d(x)yd(r),we obtain 

[d(x),r]=0  for all x,r R.                                                                                                         
(29)  

Replacing r by x in above relation,we 
obtain     

[d(x),x]=0  for all x R.                                                                                                          
(30) 

Then  according to (30),we obtain                                                                                                                                                                         

d is commuting on R. 

By same method in above theorem ,we can 
prove the following  

Theorem 3.11 

  Let R be a semiprime ring.If R admits a 
non-zero generalized derivation D 

associated with a non-zero derivation d 
such that  d(x)D(y)+xy  Z(R) for all x,y 
 R.Then d is commuting on   R .                                        

Theorem 3.12 

  Let R be a semiprime ring.If R admits a  
non-zero generalized derivation D 
associated with a non-zero derivation d 
such that  [d(x),D(y)]=[x,y]  for all x,y  
R.Then d is 2- commuting on   R . 

Proof: For any x,y  R,we have 

[d(x),D(y)]=[x,y]      for all x,y  R.                                                                                             
(31) 

Replacing y by yz in (31),with using the 
result with (31),we obtain 

D(y)[d(x),z]+y[d(x),d(z)]+[d(x),y]d(z)=y[x
,z]    for all x,y  R.                                                     
(32) 

Again replacing z by zd(x) in (32) with 
using the result with (32),we obtain 

y[d(x),z]d 2 (x)+yz[d(x),d 2 (x)]+[d(x),y]zd
2 (x)=yz[x,d(x)] for all x,y  R.                                      
(33) 

Replacing y by ry in(33),we obtain   

ryz[d(x),d 2 (x)]+ry[d(x),z]d 2 (x)+r[d(x),y]z
d 2 (x)+[d(x),r]yzd 2 (x)=ryz[x,d(x)]   

for all x,y,r R.                                                                                                                    
(34)                                                                                                            

According to (33),the relation(34) reduced 
to 

[d(x),r]yzd 2 (x)=0 for all x,y,r R.                                                                                                 
(35) 

Thus by same method in Theorem 3.6,we 
complete our proof. 
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 Proceeding on the same lines with 
necessary variations,we can prove the 
following.            

Theorem 3.13 

  Let R be a semiprime ring.If R admits a 
non-zero generalized derivation D 
associated with a non-zero derivation d 
such that  [d(x),D(y)]+[x,y] =0 for all x,y 
 R.Then d is 2- commuting on   R . 

Remark 2.14 

In general we can not obtain that d is non 
commuting where non satisfy the 
conditions which appear in our theorems 
,the following example explain that . 

Example 2.15 

Let 
 

be a ring with cancellation property , and 
the additive map D define as the following 

 

 

 

 

 

 

 

 

 

 

 


















 00

0000
ogh

,which implies h=g 

with substituting this result in equation (*) 
, we obtaln D is generalized derivation 
.Then we have  

d(x)x=xd(x),where x=








00
00  

 

 

Remark 2.16                                                                              

In our theorems we cannot exclude the 
condition cancellation property , the 
following example explain that . 

Example 2.17 

 

be a ring with cancellation property ,and 
let m be fixed element of Z and the 
additive map D define as the following 

 

 

Then it is easy  that D is generalized 
derivation 

 

 

(*) 
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by using the cancellation property on 
 we obtain  

m = 0 , therefore , by substituting this 
result in (*) give d is commuting . 

Acknowledgements. The authors are 
greatly indebted to the referee for his 
careful reading the paper. 

References 

[1] M. Ashraf ,Asma Ali and Rekha 
Rani,On generalized derivations of prime 
rings , Southeast Asian Bulletin of 
Mathematics , 29(2005),669-675. 

[2] M.A.Quadri,M.Shadab Khan and 
N.Rehman,Generalized derivations and 
commutativity of prime rings,Indian 
Journal PureApply 
Mthathematics,34(9)(2003),1393-1396.  

[3]N.Divinsky,Oncommuting 
automorphisms of rings, Transactions of 
Royal Society of 
Canada,SectionIII.(3)49(1955), 19-22. 

[4]E.C.Posner,Derivations in prime rings. 
Proceedings of the  American 
Mathematical Society,8(1957),1093-1100. 

[5] J.Luch. A note on commuting 
automorphisms of rings,American 
Mathematical. Monthly77(1970),61-62. 

[6] J.H.Mayne, Centraliziting 
automorphisms of prime rings,Canadian  
Mathematical Bulletin19(1976), No.1,113-
115. 

[7] L.O.Chung and J.Luh,On 
semicommuting automorphisms of 
rings,Canadian  Mathematical Bulletin, 
21(1)(1978),13-16. 

[8]H.EBell and,W.S MatindaleIII, 
Centralizing mappings of semiprime rings , 

Canadian  Mathematical Bulletin.,30(1) 
(1987), 92-101. 

[9]M.Bresar,On the distance of the 
composition of two derivation to 
generalized 

derivations,Glasgow Mathematical Journal 
,33(1991), 89-93. 

[10]Q.Deng and H.E.Bell,On derivations 
and commutativity in semiprime rings, 
Communications in Algebra 
,23(1995),3705-3713. 

[11] B.Hvala, Generalized derivations in 
rings,Communications in Algebra, 
26(4)(1998), 1147-1166. 

[12] A.H. Majeed and Mehsin Jabel Attya , 
Some results of orthogonal generalized 

derivations on semiprime rings,1 st   
Scientific Conference of College of 
Sciences , Al-Muthana Univ.,2007,90. 

[13]Mehsin Jabel,On generalized 
derivations of semiprime 
rings,International Journal of 
Algebra,no.12,4(2010),591-598. 

[14] Mehsin Jabel,On orthogonal  
generalized derivations of semiprime 
rings,International Mathematical Forum, 
5( 2010),no. 28, 1377 – 1384. 

[15] L. Moln'ar,On centralizers of H*-
algebra, Publicationes Mathematicae 
Debrecen, 46(1-2)(1995),89-95. 

[16] Muhammad A.C. and S.,S. 
Mohammed , Generalized inverses of 
centralizer of 

semiprime rings , Aequations 
Mathematicae , 71(2006) ,1-7. 

[17]Muhammad A.and A.B. Thaheem 
,Anote on a pair of derivations of 
semiprime rings, International Journal of 



 

Journal of Kufa for Mathematics and Computer                         Vol.1, No.5, may, 2012, pp.22-30 

 

                                                                                

 

30 

Mathematics and Mathematical Sciences, 
39(2004), 2097-2102. 

[18] A.B. Thaheem, On some properties of 
derivations on semiprime rings, Southeast 
Asian Bulletin of Mathematics , 
29(2005),1143-1152. 

[19] J.Vukman, and Kosi–Ulbl,I.,An 
equation related to centralizers in 
semiprime 

rings,Glasnik Matematicki,38(58)(2003), 
253-261. 

[20]J.Vukman,An identity related to 
centralizers in semiprime rings, 
Commentations Mathematicae 
Universitatis Carolinae 40(1999),447-456. 

[21] J.Vukman, Centralizers on semiprime 
rings,Commentations Mathematicae 
Universitatis Carolinae 38(1997),231-240. 

[22] J.Vukman,Centralizers on semiprime 
rings,Commentations Mathematicae 
Universitatis Carolinae ,42(2001), 237-
245. 

[23] J.Vukman,Identities with derivations 
and automorphisms on semiprime 
rings,International Journal of Mathematics 

and Mathematical Sciences ,7(2005) 
,1031-1038. 

[24] B.Zalar,On centralizers of semiprime 
rings,Commentations Mathematicae 
Universitatis Carolinae,32(4)(1991),609-
614.  

 

على الحلقات شبھ الاولیة   2−الابدالیة والابدالیة   
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الغرض الرئیسي من ھذا البحث ھو دراسة :الملخص
وتحري بعض النتائج بخصوص الاشتقاقات العامة 

Ｄ على الحلقات شبھ الاولیةＲ سوف نحصل على
Ｒعلى  2–یكون ابدالي وابدالي ｄالاشتقاق 

 


