Anti Fuzzy k-Ideal of Ternary Semiring

Alaa Hussein Mohammed Al- Qadisiy University

College of Education

Department of Mathematics

Abstract

In this paper, we introduce the notion of anti fuzzy k-ideal of ternary semi ring and study some properties of it.

Introduction

The notion of fuzzy subset of a set was introduced by Zadeh in 1965 [4]. The notion of fuzzy subgroup was made by Rosenfeld in 1971[1].Fuzzy ideal in a ring were introduced by W.Liu in 1982 [9].In 1996, Kim and Park studied fuzzy ideal in semirings[2]. The notion of ternary semi rings introduced by Dutta and Kar in 2003[8].In 2007, J.kavikumar and Azme Bin khamis introduced The notion of fuzzy ideals in ternary semirings[3]. R. Biswas given the notion of anti fuzzy in 1999 [5]. The notion of fuzzy k-ideals in ternary semirings was introduced by Sathinee Malee and Ronnason Chinram in 2010[7].

The main purpose of the paper is to introduce the notion of anti fuzzy k-ideal of ternary semiring and study some properties of it.

<u>1- Preliminaries</u>

In this section we review some basic definition which will be used in this paper.

Definition (1.1) [6] A non empty set R together with a binary operation, called addition and ternary multiplication, is said to be a ternary semi ring if R is an additive commutative semigroup satisfying the following conditions

- (i) (abc)de=a(bcd)e=ab(cde),
- (ii) (a+b)cd=acd+bcd,
- (iii) a(b+c)d=abd+acd,
- (iv) ab(c+d)=abc+abd, for all
- $a,b,c,d,e \in R$

Definition (1.2) [6] Let R be a ternary semiring .If there exists an element $0 \in R$ such that 0 + x = x and 0xy = x0y = xy0, forall $x, y \in R$ then "0" is called the zero element or simply the zero of ternary semirings .In this case we say that R is a ternary semiring with zero

Definition (1.3) [6] An additive subsemigroup I of ternary semiring R is called a left (resp.,right and lateral) ideal of R if $s_1s_2i(resp.,is_1s_2,s_1is_2) \in I \quad \forall s_1s_2 \in R \text{ and } i \in I$ If I is both left and right ideal of R, then I is called a two sided ideal of R. If I is a left ,a right and a lateral ideal of R, then I is called an ideal of R.

Definition (1.4) [4] A function μ from a non empty set X to the interval [0,1] is called a fuzzy subset of X.

Definition (1.5) [4] The complement of a fuzzy subset μ of a set X is denoted by

 μ^c and defined as

 $\mu^{c}(x) = 1 - \mu(x), \forall x \in X$

Definition (1.6)[3] Let v and μ be any two fuzzy subsets of X then $v \cap \mu$ and $v \cup \mu$ are fuzzy subset of X and defined by $(v \cap \mu)(x) = \min\{v(x), \mu(x)\}$ $(v \cup \mu)(x) = \max\{v(x), \mu(x)\}, \forall x \in X$

Definition (1.7) [3] A fuzzy

subsemigroup μ of a ternary semiring R is called a fuzzy ideal of R if the function $\mu: R \rightarrow [0,1]$ satisfying the following conditions:

- (i) $\mu(x+y) \ge \min\{\mu(x), \mu(y)\}, \forall x, y \in R$
- (*ii*) $\mu(xyz) \ge \mu(z)$
- (*iii*) $\mu(xyz) \ge \mu(x)$
- (*iv*) $\mu(xyz) \ge \mu(y), \quad \forall x, y, z \in \mathbb{R}$

A fuzzy set μ with conditions (i)and (ii) is called an fuzzy left ideal of R. If a fuzzy set μ satisfies (i) and (iii) then it is called a fuzzy right ideal of R. Also if μ satisfy (i) and (iv) then it is called a fuzzy lateral ideal of R.

If μ is fuzzy left ideal, fuzzy right ideal and fuzzy lateral ideal then it is called fuzzy ideal of a ternary semiring R. **Definition (1.8)[7]** A fuzzy ideal μ of a ternary semiring R is said to be a fuzzy k-ideal of R if $\mu(x) \ge \min\{\mu(x+y), \mu(y)\}, \forall x, y \in R$

Definition(1.9)[7] Let S and R be two ternary semirings.a mapping $f: S \rightarrow R$ is said to be a homomorphism if f(x+y)=f(x)+f(y) and f(xyz)=f(x)f(y)f(z), $\forall x, y, z \in S$ If S and R are ternary semirings with zero 0, then f(0)=0.

Definition (1.10)[7] Let $f: S \to R$ be a homomorphism of ternary semirings and μ be a fuzzy subset of S, we define a fuzzy subset $f(\mu)$ of R by

$$f(\mu)(y) = \begin{cases} \sup_{x \in f^{-1}(y)} & \text{if } f^{-1}(y) \neq \phi \\ 0 & \text{other wise} \end{cases}$$

We call $f(\mu)$ the image of μ under f. **Definition (1.11)[7]** Let R_1 and R_2 be two ternary semirings and f be a function of R_1 into R_2 . If μ is a fuzzy subset of R_2 , then the preimage of μ under f is a fuzzy subset of R_1 defined by $f^{-1}(\mu)(x) = \mu(f(x)) \quad \forall x \in R_1$.

Definition (1.12)[9] Let $\phi : R_1 \to R_2$ be any function. An anti fuzzy ideal μ of R_1 is called ϕ -invariant if $\phi(x) = \phi(y)$ implies $\mu(x) = \mu(y)$ where $x, y \in R_1$.

2-The Main Results

Definition (2.1) A fuzzy subset μ of a ternary semiring R is said to be an anti fuzzy left (right, lateral) ideal of R if $1 - \mu(x + y) \le max \{\mu(x), \mu(y)\}, 2 - \mu(xyz) \le \mu(z), \quad [\mu(xyz) \le \mu(x), \mu(xyz) \le \mu(y)], \text{ for all } x, y, z \in R$

 μ is an anti fuzzy ideal of R if it is anti fuzzy left ideal, anti fuzzy right ideal and anti fuzzy lateral ideal of R.

Definition (2.2) An anti fuzzy ideal μ of a ternary semiring R is said to be an anti fuzzy k-ideal of R if $\mu(x) \le max \{\mu(x+y), \mu(y)\}, \text{ for all } x, y \in R$

Example (2.3) Let R be the set of nonpositive integer with zero. R is ternary semiring with the usual addition and ternary multiplication,

Let μ a fuzzy subset of R defined by

 $\mu(x) = \begin{cases} 0 & \text{if } x \text{ is an even } or \ 0 \\ 1 & \text{if } x \text{ is an } odd \end{cases}$

Then μ is an anti fuzzy k-ideal of R.

<u>Proposition (2.4)</u> Let R be a ternary semiring and μ be a fuzzy subset of R. Then μ is an anti fuzzy k-ideal of R if and only if μ^c is a fuzzy k-ideal of R. **Proof:**

Suppose μ be an anti fuzzy k-ideal of R.

Let x, y, $z \in \mathbb{R}$, $\mu^{c} (x + y) = 1 - \mu (x + y)$, since μ is an anti fuzzy k-ideal of \mathbb{R} $\geq 1 - max\{\mu(x), \mu(y)\}$

$$\geq 1 - \max\{\mu(x), \mu(y)\}\$$

= min{1 - $\mu(x), 1 - \mu(y)$ }

 $= min\{ \mu^{c}(x), \mu^{c}(y) \},\$ $\mu^{c}(xyz) = 1 - \mu(xyz)$ since μ is an anti fuzzy left k-ideal of R $\geq 1 - \mu(z)$ = μ^c (z). Hence μ^c is fuzzy left ideal of R $\mu^{c}(xyz) = 1 - \mu(xyz)$ $\geq 1 - \mu(x)$ $= \mu^{c}$ (x). Hence μ^{c} is fuzzy right ideal of R $\mu^{c}(xyz) = 1 - \mu(xyz)$ $\geq 1 - \mu(y)$ = μ^c (y). Hence μ^c is fuzzy lateral ideal of R Then μ^c is a fuzzy ideal of R Let $x, y \in R$ Then $\mu^{c}(x) = 1 - \mu(x)$ $\geq 1 - max \{\mu(x+y), \mu(y)\}$ $= \min \{1 - \mu(x+y), 1 - \mu(y)\}$ $= min\{ \mu^{c} (x+y), \mu^{c} (y) \}.$ Hence μ^c is a fuzzy k-ideal of R. Conversely, let μ^c be a fuzzy k-ideal of R For $x, y, z \in R$, we have $\mu(x+y) = l - \mu^c (x+y)$ $\leq 1 - \min\{\mu^{c}(x), \mu^{c}(y)\}$ $= max\{\mu(x), \mu(y)\}$ $\mu(xyz) = 1 - \mu^c (xyz)$ $\leq l - \mu^c (z)$ $= \mu(z)$. Hence μ is an anti fuzzy left ideal of R Similarly we can prove that μ is an anti fuzzy right and lateral ideal of R then μ is an anti fuzzy ideal of R Let $x, y \in R$ Then

 $\mu(x) = l - \mu^c (x)$

 $\leq 1 - \min\{\mu^{c} (x+y), \mu^{c} (y)\}$ $= max\{\mu(x+y), \mu(y)\}$ Hence μ is an anti fuzzy k-ideal of R.

Proposition (2.5) Let μ and ν are anti fuzzy k- ideal of ternary semiring R. Then $\mu \cup v$ is also an anti fuzzy k- ideal of ternary semiring R. Proof Let μ and ν be two anti fuzzy k- ideals of a ternary semiring R and x, y, $z \in R$. Then we have $(\mu \cup \nu)(x + y) = \max\{\mu(x + y), \nu(x + y)\}$ $\leq \max\{\max\{\mu(x), \mu(y)\}, \max\{\nu(x), \nu(y)\}\}$ $= \max\{\max\{\mu(x), \nu(x)\}, \max\{\mu(y), \nu(y)\}\}\$ $= \max\{(\mu \cup v)(x), (\mu \cup v)(y)\}$

$$(\mu \cup v)(xyz) = \max\{\mu(xyz), v(xyz)\}$$
$$\leq \max\{\mu(z), v(z)\}$$
$$= (\mu \cup v)(z),$$

Hence $\mu \cup v$ is an anti fuzzy left ideal of R similarly we can prove that $\mu \cup v$ is an anti fuzzy right and lateral ideal of R

then $\mu \cup v$ is an anti fuzzy ideal of R Let $x, y \in \mathbb{R}$, since μ and ν are anti fuzzy k- ideal Then $\mu(x) \le \max \{\mu(x+y), \mu(y)\} \text{ and } v (x) \le$ $max \{ v (x+y), v (y) \},\$

 $(\mu \cup \nu)(x) = \max\{\mu(x), \nu(x)\}$

<u>Theorem (2.6)</u> Let $f: R_1 \to R_2$ be an onto homomorphism of ternary semirings R_1 and R_2 . If μ is an anti fuzzy k-ideal of R_2 , then $f^{-1}(\mu)$ is an anti fuzzy k-ideal of R_1 .

<u>Proof</u> Let μ be an anti fuzzy k-ideal of R_2 and let $x, y, z \in R_1$, Then we have $f^{-1}(\mu)(x + y) = \mu(f(x+y))$, since f is a homomorphism then $= \mu(f(x) + f(y))$ $\leq max\{\mu(f(x)), \mu(f(y))\}$ $= max\{ f^{-1}(\mu) (x),$ $f^{-1}(\mu)(y)$

$$f^{-1}(\mu) (xyz) = \mu(f(xyz)) \\ \leq \mu(f(z)) \\ = f^{-1}(\mu) (z),$$

Hence $f^{-1}(\mu)$ is an anti fuzzy left ideal of R_1

Similarly we $f^{-1}(\mu)$ is an anti fuzzy right and lateral ideal of R_1 then $f^{-1}(\mu)$ is an anti fuzzy ideal of R_1

Then

$$\begin{array}{l} \text{Let } x, y \in R_1 \text{ Then} \\ f^{-1}(\mu)(x) = \mu(f(x)) \\ (x + y), \mu(y)\} \text{ and } v(x) \leq f^{-1}(\mu)(x) = \mu(f(x)) \\ (x + y), \mu(y), x \leq \max\{\mu(f(x) + f(y)), \mu(f(y))\}, \\ (x + y), \mu(x) \leq \max\{\mu(f(x) + f(y)), \mu(f(y))\} \\ (x + y), \mu(x) \leq \max\{\mu(x + y), \mu(y), \max\{\nu(x + y), \nu(y)\}\} \\ = \max\{\max\{\mu(x + y), \nu(x + y)\}, \max\{\mu(y), \nu(y)\}\} \\ \end{array}$$

$$= \max\{\max\{\mu(x+y), \nu(x+y)\}, \max\{\mu(y)\}$$
$$= \max\{(\mu \cup \nu)(x+y), (\mu \cup \nu)(y)\}$$

then $\mu \cup v$ is an anti fuzzy k-ideal of R.

 $max\{ f^{-1}(\mu)(x+y), f^{-1}(\mu)(y) \}$ Hence $f^{-1}(\mu)$ is an anti fuzzy k-ideal of R_1 .

Lemma (2.7)[7] Let R_1 and R_2 be two ternary semirings and $\phi : R_1 \rightarrow R_2$ be a homomorphism. Let μ be a ϕ invariant anti fuzzy ideal of R_1 if $x = x \in R_2$ such that $x = \phi(a), a \in R_1$ then $\phi(\mu)(x) = \mu(a)$. **Proof** If $r \in \phi^{-1}(x)$, then $\phi(r) = x = \phi$ (a) Since μ is a ϕ - invariant $\mu(r) = \mu(a)$, then by definition (1.10), we have $\phi(\mu)(x) = \sup_{r \in \phi^{-1}(x)} \mu(r) = \mu(a)$ Hence $\phi(\mu)(x) = \mu(a)$

<u>Theorem (2.8)</u> Let $\phi : R_1 \to R_2$ be an onto homomorphism of ternary semirings R_1 and R_2 . If μ is a ϕ invariant anti fuzzy k-ideal of R_1 , then $\phi(\mu)$ is an anti fuzzy k-ideal of R_2 . **<u>Proof</u>**: Let $\phi : R_1 \to R_2$ be an onto homomorphism and μ is ϕ - invariant anti fuzzy k-ideal of R_1 , Let x, y, $z \in R_2$.Since ϕ is surjective then there exist $a, b, c \in R_1$ such that ϕ (a) = x, ϕ (b) = y and ϕ (c) = z since ϕ is a homomorphism then $x + y = \phi(a) + \phi(b) = \phi(a + b)$ and xyz = $\phi(a)\phi(b) \phi(c) = \phi (a bc)$. Then we have $\phi(\mu)(x+y) = \mu(a+b)$ $\leq max\{\mu(a), \mu(b)\}$ Since μ is ϕ -invariant by lemma (2.9) $= max(\phi (\mu)(x), \phi (\mu)(y)),$

 $\phi \ (\mu)(xyz) = \mu(abc)$ $\leq \mu(c) \qquad \text{Since } \mu \text{ is } \phi \text{-}$ invariant by lemma (2.9) $= \phi (\mu)(z).$

Hence $\phi(\mu)$ is an anti fuzzy left ideal of R_2 Similarly $\phi(\mu)$ is an anti fuzzy right and lateral ideal of R_2 then $\phi(\mu)$ is an anti fuzzy ideal of R_2 Let $x, y \in R_2$ since ϕ is onto then there exists $a, b \in R_1$ such that $\phi(a) = x$ and $\phi(b) = y$

 $\phi \ (\mu)(x) = \mu(a) \le \max\{\mu(a+b), \mu(b)\}$ $= \max\{\phi \ (\mu)(x+y), \phi$ $(\mu)(y)).$ Hence $\phi(\mu)$ is an anti fuzzy k-ideal of R_2 .

Definition (2.9) An anti fuzzy k-ideal μ of a ternary semiring R is said to be normal if μ (0) = 1.

Theorem (2.10) Let μ be an anti fuzzy k- ideal of a ternary semiring Rand μ^* be a fuzzy subset of R defined by $\mu^*(x) = \mu(x) + 1 - \mu(0)$ for all $x \in R$. Then μ^* is a normal anti fuzzy k-ideal of R.

Proof. Let $x, y, z \in R$. Then $\mu^* (x + y) = \mu(x + y) + 1 - \mu(0)$, since μ be an anti fuzzy k- ideal $\leq max\{\mu(x), \mu(y)\} + 1 - \mu(0)$ $= max\{\mu(x) + 1 - \mu(0), \mu(y) + 1 - \mu(0)\}$ $= max\{\mu^*(x), \mu^*(y)\},$ $\mu^* (xyz) = \mu(xyz) + 1 - \mu(0)$, since μ be an anti fuzzy left k- ideal then $\leq \mu(z) + 1 - \mu(0)$ $= \mu^{*} (z).$ Hence μ^{*} is an anti fuzzy left ideal of R similarly we can prove that μ^{*} is an anti fuzzy right and lateral ideal of R then μ^{*} is an anti fuzzy ideal of R $\mu^{*} (x) = \mu(x) + 1 - \mu(0)$ $\leq max\{\mu(x+y), \mu(y)\} + 1 - \mu(0)$ $= max\{\mu(x+y), \mu(y)\} + 1 - \mu(0)$ $= max\{\mu^{*}(x+y), \mu^{*}(y)\}.$ Hence μ^{*} is an anti fuzzy k-ideal of R. Since $\mu^{*} (x) = \mu(x) + 1 - \mu(0)$ $\mu^{*} (0) = \mu(0) + 1 - \mu(0) = 1$ Hence μ^{*} is a normal anti fuzzy k-ideal of R

References

[1] A. Rosenfeld, "Fuzzy groups", J. Math. Anal. Appl. 35 (1971), 512-517 [2] Chang Bum Kim and Mi-AePark,"k-fuzzy ideals in semrings",Fuzzy set and systems ,v88,(1996)pp.281-286.

[3] J.Kavikumar and Azme BinKhamis "fuzzy ideals and Quasi ideals in ternary semiging", LAENG Int. j. Math(2006). [4] L.A.Zadeh ."Fuzzy sets".Inform.and controle,v8,(1965)pp.338-353. [5] R. Biswas, "Fuzzy subgroups ", Fuzzy Sets and Syst. 44(1990) 121-124. [6] S.Kar, "On quasi – ideals and biideals in ternary semirings" ,International journal of mathematics and mathematical sciences (2005),3015-3023. [7] Sathinee Malee and Ronnason Chinram, "k-fuzzy ideals of ternary semirings", International journal of computational and mathematical sciences ,(2010). [8] T.K.Dutta and S.Kar, "On regular ternary semiring", Advances in Algebras, Proceedings of the ICM satellite Conference in Algebra and Related Topics, world scientific pupl, Singapore(2003)pp.205-213. [9] W.Liu,"Fuzzy invariant subgroups and fuzzy ideal", Fuzzy Sets and

Systems, V8, (1982) pp. 133-1394.

ضد المثالي -k الضبابي على شبه الحلقة ذات الضرب الثلاثي

الاء حسين محمد جامعة القادسية كلية التربية قسم الرياضيات

الخلاصة