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Abstract  

       In this paper we shall discuss when an 

invertible matrix and its inverse are 

similar.We shall give theorems for such 

case. 

1  Introduction 

       The similarity is one of the important 

concept of matrices in most fields.This 

importance yield from the properties of the 

similar matrices where they have the         

same eigenvalues , determinant , trace ,and 

rank.  

 

2  Definition[1] 

      A square matrix A is said to be 

idempotent if A
2

= A. 

3  Example 

      The following matrix is idempotent: 
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4  Definition[2] 

      If A and B are nxn matrices , we say 

that B is similar to A if there is a 

nonsingular matrix P such that B=P
1−

A P. 

 

5  Example 

      The following matrices are similar: 

A= ��
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6  Remark[2] 

The similarity is symmetric relation on 

M
n

(�). 

 

 

 

 

 

 

 

Main Results 

7  Theorem 

  If A is nonsingular idempotent matrix , 

then A is similar to A
1−

. 

 

 

Proof: 

Since A is idempotent , then A
2

= A. Also 

A
1−

exists. 

Now 

A
1−

=(A A
1−

)A
1−

 

       =A(A
1−

 A
1−

) 

       =A(AA)
1−

 

       =A A
1−

  for A is  an idempotent matrix 

       =AA A
1−

 for A is an idempotent 

matrix 

       =( A
1−

)
1−

A A
1−

 

Hence A is similar to A
1−

. 

 

8  Remark 

       The converse of the this theorem is not 

true: 

The matrix 
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is similar to its inverse but it is not an  

idempotent matrix. 

 

9 Theorem 

          If A is similar to a nonsingular 

idempotent matrix B , then A is similar to 

A
1−

. 

Proof: 

Since A is similar to B, then there is a 

nonsingular matrix P such that  

A=P
1−

B P 
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�  A
1−

= P
1−

B
1−

P 

Thus A
1−

 is similar to B
1−

 

Since the similarity is symmetric relation 

and by Theorem 7 ,we have 

B
1−

is similar to B 

�  A
1−

is similar to B 

And since B is similar to A 

Then A
1−

 is similar to A 

Hence A is similar to A
1−

. 
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