On Almost contra T*-continuous functions

Dr. Hadi .Jaber.mustafa and Layth .Muhsin.Habeeb

Department of Mathematics,

Faculty of Mathematics and computer Sciences, University of Kufa

Abstract:

Using the concept of T^* -open set, we introduce and study Almost contra $-T^*$ -continuous functions Several properties and characterizations of these function are given.

<u>1 – Introduction:</u>

In 1996, Dontchev[2] introduced contracontinuous functions .Jafariand Noiri[4] introduced and studied anew form of function called contra -precontinuous functions. In this paper, we introduce and study Almost contra T*-continuous functions generalization of almost contraas а precontinuous functions.

Throughout this paper, all spaces X and Y (or (X,τ) and (Y,δ) are topological spaces.

2- Basic definitions

In this section, weintroduce and recall the basic definition needed in this work.

<u>2.1Definition[10]</u>: A subset A of a spaces X is said to be regular open if A = int (cl (A)) where cl (A) and int (A) denoted the closure and interior of A. a subsetA of X is called regular closed if A = cl (int(A)).

<u>2.2Definition[6]</u>: A subset A of a space is said to be pre open if $A \subset int(cl(A))$, the complement of a pre open set is said to

be pre closed the family of all regular open (respectively regular closed ,pre open ,pre

(respectively regular closed , pre open , pre closed) set of X is denoted by RO(X) (respectively RC(X), PO(X), PC(X)).

<u>2.3Definition [1]</u>: A subset A of a space X is said to be semi open if $A \subset cl$ (int (A)). The complement of a semi open set is called semi closed.

<u>2.4Definition[10]</u>: Let (X, τ) be a topological space and let $T:p(X) \rightarrow p(X)$ be a function (where p(X) is the power set of X) we say that T is an operator associated with the topology τ on X if $W \subseteq T(W)$ ($W \in \tau$) and the triple (X, τ , T) is called an operator topological space.

<u>2.5Definition</u> [10]: Let (X, τ, T) be an operator topological space, let $A \subseteq X$

i) A is called T-open if given $x \in A$, then there exists $V \in \tau$ there exists $x \in V \subseteq T$ $(V) \subseteq A$.

ii) A is called T*-open if $A \subseteq T$ (A) (A is not necessarily open)

.2.6 Examples:

i) Let (X,τ) be space and T:p(X) \rightarrow p(X)be define as follows :T(A) =Cl(Int(A)),A \subseteq X now if w is open , then w= Int(w) \subseteq Cl (Int(w)) = T(w) hence T is an operator associated with the topology τ on X, consider A =[0,1) in (R, t_u). Notice that A \subseteq Cl(Int(A)) hence A is T*-open), so if T(A) = Cl(Int(A)) the T*-open sets are exactly the semi-open sets.

ii) Let (X,τ) be space and $T:p(X) \rightarrow p(X)$ be define as follows T(A)=Int(Cl(A)) now if w is open

then $w \subseteq Cl(A)$ hence $w \subseteq IntCl(w)$

hence T is an operator associated with the topology $\boldsymbol{\tau}$ on

X , consider Q in $(R,\!t_{u})$.

Notice that $Q \subseteq IntCl(Q)$ (Q is not open)

hence Q is T*-open so if T(A) = Int(Cl(A))the T*-open sets

are exactly the pre-open sets .

3- Almost contra T*-continuous function

In this section, we introduce the concept of Almost contra $-T^*$ -continuous functions **3.1Definition[9]**: A functionf $:X \rightarrow Y$ is called contra per-continuous if $f^1(V)$ is pre

closed in X for each open set V of Y.

Now, we generalize this definition as follows:

<u>3.2Definition</u>: A function $f :(X, \tau, T) \rightarrow (Y, \delta)$ from an operator topological space (X, τ, T) into a topology space (Y, δ) is called contra-T*-continuous if $f^{-1}(V)$ is T*-closed for each open set V of Y.

<u>3.3Definition[2]</u>:Afunction $f:X \rightarrow Y$ is called contra –continuous if $f^{-1}(V)$ is closed in X for each open set V of Y.

<u>3.4Definition[8]</u>:A function f: $X \rightarrow Y$ is called perfectly continuous if f^1 (V) is clopen in X for every open set V of Y.

<u>3.5Definition</u>: A function $f :(X, \tau, T) \rightarrow (Y,\delta)$ from an operator topological space (X, τ, T) into a topology space (Y,δ) is called T*-perfectly function if $f^{-1}(V)$ is T*-clopen (T-closed and T-open) for every open set $V \in Y$.

<u>3.6Definition[3]</u>: A function f: $X \rightarrow Y$ is called almost perfectly-function iff⁻¹(V) is clopen for every $V \in RO(Y)$.

<u>3.7Definition</u>: A function $f :(X, \tau, T) \rightarrow (Y, \delta)$ from an operator topological space (X, τ, T) into a topology space (Y, δ) is called almost T*-perfectly function if $f^{-1}(V)$ is T*-clopen for every V∈RO(Y).

<u>3.8Definition[7]</u>: A function f: $X \rightarrow Y$ is said to be almost pre continuous if $f^{1}(V)$ is pre open in X for every regular open set V of Y. Now we generalize this definition as follows:

<u>3.9Definition</u>: A function f: $(X,\tau, T) \rightarrow (Y,\delta)$ is said to be almost T*-continuous if $f^{-1}(V)$ is T*-open in X for every regular open set V in Y.

<u>3.10Definition[5]</u>: A function f: $X \rightarrow Y$ is said to be pre-continuous if $f^{-1}(V)$ is pre open in X for every open set V of Y.

<u>3.11Definition</u>: A function f: $(X,\tau,T) \rightarrow (Y,\delta)$ is said to be T*-continuous if $f^{-1}(V)$ is T*-open in X for every open set V in Y.

<u>3.12Definition[7]</u>:A function f: $X \rightarrow Y$ is said to be almost contra –pre-continuous iff ${}^{1}(V) \in PC(X)$ for each $V \in RO(Y)$.

Now we generalize this definition as follow:

<u>3.13Definition:</u> A function f: $(X,\tau,T) \rightarrow (Y,\delta)$ is said to be almost contra $-T^*$ -continuous if $f^1(V) \in T^*$ -closed (X) for each $V \in RO(Y)$.

<u>3.14Theorem[10]</u>: Let (X, τ) and (Y,δ) be topological spaces. The following statements are equivalent for a function f: $X \rightarrow Y$:

(1) f is almost contra pre-continuous;
(2) f⁻¹(F) PO(X) for every F RC(Y);
(3)For each x X and each regular closed set F in Y
Containing f(x), there exists apreopen set U in X containing x
Such that f (U) F;
(4)For each x X and each regular open set V in Y non-containing f(x), there exists a pre-closed set K in X non-containing x such

That $f^{-1}(V)$ K; (5) $f^{-1}(int(cl (G)))$ PC(X) for every open subset G of Y; (6) $f^{-1}(cl(int (F)))$ PO(X) for every closed subset F of Y.

<u>3.15Propositions</u>: Let (X,τ,T) be an operator topological space then the union of any family of T*-open is also T*-open .

Proof:

Let $\mathcal{F} = \{ W_{\alpha} \mid \alpha \in \Lambda \}$ be any family of T*-open sets, Let $W = U_{\alpha}W_{\alpha}$ Now $W_{\alpha} \subseteq T(W_{\alpha})$ Hence $W = U_{\alpha}W_{\alpha} \subseteq U_{\alpha}T(W_{\alpha})$ $= T(U_{\alpha}W_{\alpha})$ $\subseteq T(W)$ $W \subseteq T(W)$

Hence W is T*-open.

Now we generalize the above theorem as follows:

<u>3.16Theorem:</u>Let f: $(X, \tau, T) \rightarrow (Y,\delta, L)$ from an operator topology space (X, τ, T) into topological space (Y,δ) then the following statements are equivalent: (1) f is almost contra-T*continuous; (2) f⁻¹(F) T*-open in X for every F RC(Y); (3) for each x X and each regular closed set F in Y containing f (x), there exists a T*-open set U in X containing x such thatf (U) F; (4) for each x X and each regular open set V in Y non-containing f (x), there exists a T*-closed set K in X non-containing x such that f⁻¹(V) K

; (5) $f^{-1}(int (cl (G)))$ T*-C(X) for every open

subset G of Y; $(G)E^{-1}$ (cl (int (E))) T* O(X) for every elected

(6) F^{-1} (cl (int (F))) T*-O(X) for every closed subset F of Y.

<u>Proof:</u>(1)⇒ (2) Let $F \in RC(Y)$. Then $F^c \in RO(Y)$. By (1), $f^{-1}(F^c) = (f^{-1}(F^c) \text{ is } T^*-C(X)$. Which mean that $f^{-1}(F)$ is $T^*-O(X)$. (2)⇒ (1) the proof is similar.

(2)⇒(3)let F be any regular closed set in Y containing f (x). By (2), f $^{-1}(F)$ is T*-Open in X and x ∈ f $^{-1}(F)$. Take U=f $^{-1}(F)$. Then f (U) ⊂ F.

(3)⇒(2) Let F be regular closed in Y and x ∈f ⁻¹(F) from (3),then there exists a T*-open set U_x in X containing x such that U_x⊂f ⁻¹(F). We have

 $f_{x \in f^{-1}(F)}^{1} = U_x$ thus $f^{-1}(F)$ is T*-Open.

(Notice that the union of any family of T*-open is T*-open**propositions (3.15**))

(3)⇒(4) Let V be any regular open set in Y non –containing f(x) .then V^c is a regular closed set containing f(x) .By (3) then there exists a T*-open set U in X containing x such that $f(U)\subseteq V^c$.hence U⊆ $f^1(V^c)=f^1(V)^c$,then U⊆ $f^1(V)^c$ then $f^1(V) \subseteq U^c$. Take k= U^c, we obtain that k is a T*-open in X non– containing x such that $f^1(V)\subseteq k$.

(4) \Rightarrow (3) Let V=F^c then V is a regular open set non -containing f(x) then there exists a T*-closed set k in X non -containing x ,f¹(V) \subseteq k ,let U= k^c then (where U is T*-open containing x),

$$k^{c} \subseteq (f^{1}(V))^{c} = f^{1}(V^{c}) \Rightarrow U \subseteq = f^{1}(V^{c}),$$

$$f(U) \subseteq V^{c} = F.$$

(1) \Rightarrow (5) let G be open subset of Y. Since int (cl (G)) is regular open, then by (1), it follows that f⁻¹ (int (cl (G))) is T*-Closed in X.

(2)⇒ (6)Let F closed in Y we will show that f-1(cl intF)is T*-open in X , c lint F is regular closed in Y then by (2), $f^{-1}(c \text{ lint F})$ is T*-open.

(6) \Rightarrow (2) Let F be regular closed in Y, then F =Clint F then $f^{-1}(ClintF)$ is T*-open. i.e. $f^{-1}(F)$ is T*-open.

1) For function f: $X \rightarrow Y$ we have the following diagram[**9**]

Perfectly continuous \implies contra-continuous \implies contra-precontinuous

Almost perfectly continuous

2) For function $f:(X, \tau, T) \rightarrow (Y, \delta)$ we have the following diagram

3.18 Examples:

1) Let $X = \{a, b, c\},\$

 $\tau = \{X \ , \emptyset, \{a\}, \{b\}, \{a, \ c\}, \{a, \ b\}\}$ and Y={a ,b ,c} ,

 $\delta = \{X, \emptyset, \{b\}, \{c\}, \{b, c\}\}$. Then the identity function f: $(X, \tau) \rightarrow (Y, \delta)$ is almost contra pre continuous. But it is not almost perfectly continuous.

2) Let $X = \{a, b, c\},\$

$$\begin{split} \tau &= \{X, \emptyset, \{a\}, \{b\}, \{a, c\}, \{a, b\}\} \text{ defined} \\ T:p(x) \to p(x) \text{ as follows } T(A) = \text{int cl } A \text{ and} \\ \text{let } Y=\{a, b, c\}, \delta= \{X, \emptyset, \{b\}, \{c\}, \{b, c\}\}. \\ \text{Then the identity functionf: } (X, \tau, T) \to (Y, \delta) \text{ is almost contra } T^*\text{- continuous. But it is} \\ \text{not regular open } T^*\text{-closed..} \end{split}$$

3) Let X = {a, b, c}, $\tau = \{X, \emptyset, \{a\}, \{a, b\}, \{a, c\}\}$ and Y=X, $\delta = \{X, \emptyset, \{a\}, \{a, b\}\}$ and

 $f: (X, \tau) \rightarrow (Y, \delta)$ be the identity function. Then f is almost contra pre continuous function which is not contra-pre continuous.

4) Let $X = \{a, b, c\},\$

 $\tau = \{X, \emptyset, \{a\}, \{b\}, \{a, c\}, \{a, b\}\}$ defined T:p(x) \rightarrow p(x) as follows T(A) =int cl A and let Y={a, b, c}, $\delta = \{X, \emptyset, \{b\}, \{c\}, \{b, c\}\}.$ Then the identity function f: (X, τ , T) \rightarrow (Y, δ) is almost contraT*-continuous. But it is not contraT*-continuous.

<u>3.19Theorem[9]</u>: If f: $X \rightarrow Y$ is almost contra-pre continuous function and A is a semi open subset of X, then the restrictionf | $_A : A \rightarrow Y$ is almost contra-pre continuous.

<u>3.20 Theorem</u>:Let $(X, ,\tau,T)$ be an operator topological spaces .where T(A)=intcl(A) and let (Y,δ) be topological space, if f: $(X, ,\tau,T) \rightarrow (Y,\delta)$ is almost contra T*-continuous function and A is a semi –open subset of X ,then the restriction $g=f/_A:A\rightarrow Y$ is almost contra T*-continuous .

Proof: Let F be regular closed in Y since f is almost contraT*-continuous then f^{-1} (F) is T*-open in X (Notice that T*-open sets in X are exactly the pre-open sets in X) since A is semi open then $g^{-1}(F)=A \cap f^{-1}(F)$ by [13] $g^{-1}(F)$ will be pre -open in X (T*-open) there for g is almost contra $-T^*$ -continuous function.

<u>3.21Remark:</u> If A is not semi –open then f/A may not be almost contra pre-continuous function.

<u>3.22</u> Definition:A cover $\pounds = \{ U\alpha \mid \alpha \in I \}$ of sub set of X is called a T*-cover if U_{α} is T*-open for each $\alpha \in I$. If T (A) =int cl A then the T*-cover of X will be a pre – open cover of X (p-cover).

3.23Definition:Let (X,τ,T) be an operator topological spaces where $w \in \tau$, $w \subseteq T(w)$ $U \subseteq X$ then $\tau_1 = \{ w \cap U \mid w \in T \}$ and let $T:p(X) \rightarrow p(X),$ T_1 : p(U)p(U) \rightarrow let $A \subseteq U \subseteq X, T_1(A) = T(A) \cap U \subseteq U$ then (U, τ_1 T_1) operator topological sub spaces of (X, (τ, T) such that $(U, \tau_1 T_1) \subseteq (X, C, T)$.

3.24Lemma:

1) Let (X, τ) be a topological spaces, let $U \subseteq X$. If V is pre open in U and U is pre open in X then V is pre open in X.

2) If (X, τ, T) is an operator topological spaces and (U, τ_1, T_1) is an operator topological sub spaces of (X, τ, T) if Vis T^*_1 -open in U and U is T*-open in X then V is T*-open in X.

Prove 2:

 $V \subseteq T_1(V)$

$$T_1(V) = T(V) \cap U$$

 $V \subseteq T(V) \cap U \subseteq T(V)$ Then $V \subseteq T(V)$

Vis T*-open in X

<u>3.25Theorem</u>: Let $f : (X,\tau,T) \to (Y,\delta)$ be function and let $(U_{\alpha},\tau_{\alpha},T_{\alpha})$ be an operator topological sub spaces of (X,τ,T) for each α

let $\mathfrak{L} = \{ U_{\alpha} \mid \alpha \in I \}$ be a T*-cover of X [U_{α} is T*-open] suppose

 $g_{\alpha} = f | U_{\alpha} = (U_{\alpha}, \tau_{\alpha}, T_{\alpha}) \rightarrow (Y, \delta)$ is almost contra T*-continuous for each $\alpha \in I$.then $f : (X, \tau, T) \rightarrow (Y, \delta)$ is almost contra T*-continuous function .

<u>Proof:</u> Let Vbe a regular closed set in Y, Since $g\alpha = f | U_{\alpha}$ is almost contra T*continuous for each $\alpha \in I$, $(g_{\alpha})^{-1}(V)$ is T*_a-open in U_a But U_a is T*-open in X bylemma (**3.24.2**) $(g_{\alpha})^{-1}(V)$ T*-open in X V_{α} T*_a-open in U_a $V_{\alpha} \subseteq T_{\alpha}(V_{\alpha}) = T (V_{\alpha}) \cap U_{\alpha} \subseteq T (V_{\alpha})$ $V_{\alpha} \subseteq T(V_{\alpha})$, V_{α} T*-open in X But $f^{-1}(V) = U (g_{\alpha})^{-1}(V)$, hence $f^{-1}(V)$ is T*open

<u>3.26Theorem[9]:</u>Let $f : (X,\tau) \to (Y,\delta)$ be function and let $g : X \to X \times Y$ be the graph function of fdefinition by g(x) = (x, f(x)) for every $x \in X$ if g is almost is almost contra pre-continuous then f is almost contra pre-continuous .

3.27Theorem: Let $f : (X,\tau,T) \rightarrow (Y,\delta)$ be function and let $g: (X,\tau,T) \rightarrow (X \times Y \times Y)$,L)[where L is the product topology on X x Y] be graph function of f definition by g(x)=(x,f(x)) if g is almost contra T*continuous then f is almost contra T*continuous.

Proof: Let V be regular closed in Y Notice that Xx Y is regular closed in X x Y Since g is almost contra T*-continuous Then $g^{-1}(Xx V)$ is T*-open in X But $f^{-1}(V) = g^{-1}(Xx V)$ Hence $f^{-1}(V)$ is T*-open in X Which mean that f is almost contra T*continuous.

3.28Theorem[9]:If a function

 $f:(X, \tau) \rightarrow (Y, \delta)$ is almost contraprecontinuous and almost continuous, then f is almost perfectly continuous

3.29Theorem: If a function

<u>Proof:</u> Let V is regular open in Y.

Since f is almost contra-T*continuous and almost continuous,

 $f^{-1}(V)$ is T*-closed and T*-open.

Hence, $f^{-1}(V)$ is clopen.

We obtain that f is almost T*-perfectly continuous.

<u>3.30Theoerm</u>:Let $f:(X, \tau, T) \rightarrow (Y,\delta)$ be a function and $x \in X$. If there exists U is T*-open in X such that x U and the restriction of f to U is an almost contra T*-continuous at x,then f is almost contra-T*continuous at x.

<u>Proof:</u>Suppose that F is regular closed containing f(x). Since $f \mid_U$ is almost contra T*-continuous at x,

There exists V is T*-open in U containing x

Such that $f(V) = (f |_U)(V) \subseteq F$.

Since U is T*-open in X containing x

ThatV is T*-open in X containing x

This shows clearly that f is almost contra T*-continuous.

<u>3.31Theorem</u>: Let $f : (X,\tau,T) \rightarrow (Y,\delta,L)$ and $g:(Y,\delta,L) \rightarrow (Z, \phi)$ be function ,then the following properties is hold :

(1)If f is almost contra T*-continuous and g is almost L-perfectly continuous,then gof: $(X, \tau, T) \rightarrow (Z, \phi)$ is almost contra T*-continuous and almost T*-continuous.

(2)If f is almost contra T*-continuous and g is perfectly continuous, then gof: $(X, \tau, T) \rightarrow (Z, \phi)$ is T*-continuous and contra T*-continuous.

(3) If f is contra T*-continuous and g is almost perfectly continuous, then $gof:(X, \tau, T) \rightarrow (Z, \phi)$ is almost contra T*-continuous and almost T*-continuous.

Proof:

 (1) Let V be any regular open in Z Since g is almost L-perfectly continuous g⁻¹(V) is L-clopen(L-open and Lclosed)

Since almost T*f is contra continuous $(gof)^{-1}(V) = f^{-1} (g^{-1}(V))$ is T*-open and T*-closed There for gof is almost contra T*continuous and almost T*continuous. (2) Let V be open in (Z, φ) Since g is perfectly continuous, Then $g^{-1}(V)$ is clopen in (Z, ϕ) This mean that $g^{-1}(V)$ is regular open in (Z, ϕ) and regular closed in (Z, ϕ) Then $f^{-1}(g^{-1}(V))$ is T*-closed and T*open $Now (gof)^{-1}(V) = f^{-1} (g^{-1}(V))$ Hence gof is almost T*-continuous and contra T*-continuous. (3) Let V be regular open in (Z, φ) Since g is almost perfectly continuous,

Then $g^{-1}(V)$ is clopen

Hence $g^{-1}(V)$ is regular open and regular closed Now f is contra T*-continuous Then $f^{-1}(g^{-1}(V))$ is T*-closed Hence $(gof)^{-1}(V)$ is T*-continuous Hence gof is almost contra T*-

continuous

Notice that $g^{-1}(V)$ is regular closed

Then $f^{-1}(g^{-1}(V))$ is T*-open

That is $(gof)^{-1}(V)$ is T*open

Then gof is almost contra T*continuous and almost T*-continuous.

References

[1]. S. G. Crossley and S. K. Hildebrand, Semiclosure, Texas J. Sci. 22 (1971), 99-112. [2]. J. Dontchev, Contra-continuous functions and strongly S-closed spaces, Internat J. Math. Math. Sci. 19 (1996), 303-310. [3]. J. Dontchev, M. Ganster and I. Reilly, More on almost s-continuity, Indian J. Math. 41 (1999),139-146. [4]. S. Jafari and T. Noiri, On contraprecontinuous functions, Bull. Malaysian Math. Sc. Soc.25 (2002), 115-128. [5]. A.S. Mashhour, I.A. Hasanein and S.N. El-Deeb, A note on semi-continuity and precontinuity, Indian J. Pure Appl. Math. 13 (1982), 1119–1123. [6]. A.S. Mashhour, M.E.A. El-Monsef and I.A. Hasanein, On pretopological spaces, Bull.

Math.Soc. Sci. R S R. 28 (1984), 39-45.

[7]. A.A. Nasef and T. Noiri, Some weak forms of almost continuity, Acta. Math. Hungar.74 (1997), 211–219.

[8]. T. Noiri, super-continuity and some strong forms of continuity, Indian J. Pure Appl. Math.15 (1984), 241–250.

[9].E. Ekici, "Almost contra-precontinuous functions", Bull. Malaysian Math. Sc. Soc. 27(1) (2004), 53-65.

[10]. HadiJ.Mustafa ,and A.A.Hassan , T-open sets ,M.SC thesis ,mu'ta university Jordan ,2004