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Abstract 

In this paper an optimal (Bayesian) fixed 

sample size procedure for selecting the better of 

two Poisson populations is proposed and studied 

. Bayesian decision-theoretic approach with 

general loss function and Gamma priors are used 

to construct this procedure .  

The numerical result of this procedure are 

given with different loss functions constant , 

linear and quadratic , in one equation we can 

obtain the Bayes risk for the three types of the 

loss functions : constant , linear and quadratic . 

in this paper the numerical results are given by 

using Math Works Matlab ver. 7.10.0 . 
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1- Introduction 
 

The Poisson distribution is most commonly 

used to model the number of random 

occurrences of some phenomenon in the 

specified unit of space or time , for example the 

number of phone calls received by a telephone 

operator in 10-minutes or the term frequencies 

in a given document . [see �] 

A common problem that arises in practice 

is the selection of the better of two Poisson 

populations with unknown parameters . 

Formally , we can state the problem as 

follows . Consider two independent Poisson 

populations 
21 , ΠΠ with unknown occurrence 

means 21 ,λλ  respectively . Let [ ] [ ]21 λλ ≤  be 

the ordered values of the parameters 21 ,λλ  . It 

is assumed that the exact pairing between the 

ordered and unordered parameters is unknown . 

The population iΠ  with [ ]2λλ =i (i=1,2) is called 

the better population .A correct selection is 

defined as the selection of the population 

associated with [ ]2λ  . 

 

 

 

 

Many researchers have considered this 

problem under different types of formulations . 

Goel (1972) studied the problem of selecting a 

subset of k Poisson populations which includes 

the best , i.e. the one having the largest value of 

the parameter . Gupta and Nagel (1971) 

proposed a randomize selection rule for Poisson 

distribution . Alam and Thompson (1973) 

proposed a procedure to select simultaneously 

the population associated with largest parameter 

and estimate this parameter .  

Gupta and Huang (1975) considered the 

selection from k Poisson populations a variable 

size subset including that population with the 

largest parameter when (equal) sample sizes are 

taken . Gupta and Wong (1977) discussed the 

problem of selecting a subset of k different 

Poisson processes including the best which is 

associated with the largest value of the mean 

rate . 

Gupta , Leong and Wong (1979) considered 

the problem of selecting a subset of k Poisson 

populations including the best which is 

associated with the smallest value of the 

parameter . 

Liang and Panchapakesan (1987) derived a 

Bayes rule having the isotonic property for 

selecting the Poisson populations superior to a 

control population under general loss function . 

Gupta and Liang (1991) proposed an 

empirical Bayes method for Poisson selection 

problem , where the goal is to select all good 

populations and exclude all load populations . 

Gupta and Liang (1999) studied the 

problem of selecting the most reliable Poisson 

population from among k competitors provided 

it is better than a control using nonparametric 

Bayes approach . Madhi and Hathoot (2005) 

proposed a Bayesian fixed sample size 

procedures for this problem .  
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2-Description of the Problem 

 

Consider two independent Poisson 

populations 
21 , ΠΠ with known probability 

density function  
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With unknown parameter iλ  (i=1,2) . We 

consider the problem : how to find the best 

population (i.e. the one associated with the 

largest parameter iλ ) . Let [ ] [ ]21 λλ ≤  be the 

ordered values of the parameters 21 ,λλ  . It is 

assumed that the exact pairing between the 

ordered and unordered parameters is  unknown . 

The population iΠ  with [ ]2λλ =i
(i=1,2) is 

called the best population . A correct selection is 

defined as the selection of the population 

associated with [ ]2λ  . 

The aim of this present paper is to derive 

approach for selecting the best of two Poisson 

populations , that is the one having the largest 

parameter [ ]2λ  by using Bayesian decision – 

theoretic framework with Gamma prior and with 

general loss function . 

 

3-Basic Definitions and Concepts 

3-1-Statistical Decision Theory 

(i) Basic Ideas [see �] 

Statistics December be consider as the 

science of decision making in the presence of 

uncertainty . The problems of statistical 

inferences can fit into the decision theory 

framework , for example , testing of a 

hypothesis Ho against a hypothesis H1 December 

be regarded as a decision between two actions 

(i) accepting Ho or (ii) accepting H1 . 

In decision problems , the state of nature 

is unknown , but a decision maker must� be 

made – a decision whose consequences depend 

on the unknown state of nature . Such a problem 

is a statistical decision problem when there are 

data that give partial information a bout the 

unknown state .  

The basic elements of a statistical decision 

problem can be formalized mathematically as 

follows: 

A set A , the action space , consisting of 

all possible actions , A∈a , available to the 

decision maker ; 

a set Ω  , the parameter space , consisting 

of all possible 'state of the nature' , Ω∈θ , one 

and only one of which obtains or will obtain 

(this 'true' state being unknown to the decision-

maker) ; 

a function L , the loss function , having 

domain A×Ω (the set of all ordered pairs of 

consequences A,),,( ∈Ω∈ aa θθ ) and 

codomain R ; 

a set Rx , the range of X , consisting of all 

the possible realizations , xRx ∈  of a random 

variable X , having a distribution whose 

probability function (pf) belongs to a specified 

family { }Ω∈θθ );;(xf ; 

A set D , the decision space, consisting of 

all possible decisions , Dd ∈ , each such 

decision function d having domain Rx and 

codomain A . 

 

(ii) The Risk Function [see �] 

For given ),( aθ the loss function depends 

on the outcome x and thus a random variable . 

Its expected value , i.e. its average over all 

possible outcomes is called the risk function and 

is denoted by    
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(iii) Minimax and Bayes Decision Functions 

[see �] 

The decision function d
*
 that minimizes 

M(d)= d),R( max θ is the minimax decision 

function . Similarly , the function d
**

 that 

minimizes the Bayes risk of a decision d is a 

Bayes decision function . 

      

     

[ ]  continous) (      )(),(),()( Θ== �
Ω

θθπθθ ddRdREdB  

����or  

    

discrete)  (      )(),()( Θ=�
Ω

θπθ dRdB  
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where )(θπ represents the distribution of 

degree of belief over Θ . 

 

 

4- Solution of the Problem      

We term our problem as a two-decision 

problem and represent it symbolically as  

 

        population:
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For parameter λ  and action a , the loss 

function is defined as : 
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For r=0 , we have a constant loss function  , 

for r=1 , we have a linear loss function and for 

r=2 , we have a quadratic loss function , k1,k2 

give decision losses in units of costs . 

Let us suppose that ),...,,(
21 niiii xxxX =  be 

a random sample of size n arising from 

population iΠ . It follows that the likelihood 

function is  
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Our first task in the Bayesian approach is 

the specification of a prior p.d.f g( λ ) . we take 

the prior distribution to be a member of the 

conjugate class of Gamma priors 

),( iiGamma βα , where a member of this class 

has density function 
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By Baye's theorem the posterior probability 

function of θ  is given by  
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We derive the stopping (Baye's) risks of 

decision d1 and d2 for general loss function 

given above and the stopping risk (the posterior 

expected looses) of making decision di denoted 

by );,( 21 ii dR θθ   
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If we take r=0 we find from the above equations 

the posterior expected looses for constant loss 

function for the two decisions d1  and d2 , if we 

take r=1 we find from the above equations the 

posterior expected looses for  linear loss 

function for the two decisions , if we take r=2 

we find from the above equations the posterior 

expected looses for quadratic loss function for 

two decision d1 and d2 . 

For the two – decision problem considered 

a above , the Bayesian selection procedure is 

given as follows : 

Make decision d1 that is selecting 1Π  as the best 

population if );,();,( 22121211 dRdR θθθθ ≤  

and 
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Make decision d2 that is selecting 2Π  as the best 

population if );,();,( 22121211 dRdR θθθθ >  

 

4- Numerical Results and Discussions 

This section contains some numerical 

result about this procedure , we take various 

sample size n and various priors . We write a 

program for this procedure from which we give 

three types of Risk for three types of loss 

functions (constant , linear and quadratic) . from 

this numerical result we note that : 

1-the procedure is well defined , as we seen in  

table (1) and table(2) . 

2-as sample size n increase , the Bayes risk 

decreases for all loss function . 

3-The Bayes risk for quadratic loss function is 

less than the Bayes risk for linear and 

constant loss functions . 

4-we generate a random sample from each 

population by using the function (poissrnd) in 

Math Works Matlab ver. 7.10.0 . 

 

Conclusions 

In this paper we derives a procedure for 

selecting the best of two Poisson populations 

employing a decision – theoretic Bayesian frame 

work with general loss function with Beta prior . 

From this paper we note that : 

1- In this paper we derive approach for 

selecting the best of two Poisson 

populations by using Bayesian 

decision theory with general loss 

function . 

2- In this procedure we can have Bayes 

risk for three loss function (constant, 

linear and quadratic) by using one 

equation . 

3- the Bayes risk for quadratic loss 

function is less than the Bayes risk for 

linear and constant loss function . 

4- from the numerical results in table(1) 

and (2) we saw that the procedure is 

well defined . 

5- if we increase sample size , the Bayes 

risk will decreases for all loss 

functions as we saw in figure(1) , 

figure(2) and figure(3) .  
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Table (1) : The effect of sample size n on Bayes Risk (R1 and R2) , for fixed values of 

),( 21 λλλ = when k1=k2=3 and different prior 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

91 =λ ,  22 =λ ,   k1=k2=3   ,  )3,4;3,2(=prior  

Bayes Risk n Constant Loss Linear Loss Quadratic Loss 

)( 11 dR��

10 1.0129E-004 1.9032E-006 8.5076E-008 

15 7.9995E-006 1.2330E-007 3.6477E-009 

20 3.8006E-007 4.467E-009 1.0142E-010 

25 1.2613E-008 1.1712E-010 2.1110E-012 

30 1.3293E-009 1.0829E-011 1.7145E-013 

)( 22 dR��

10 2.9999 1.5380 0.8752 

15 3.0000 1.4143 0.7251 

20 3.0000 1.3632 0.6621 

25 3.0000 1.3384 0.6306 

30 3.000 1.3047 0.5952 

91 =λ ,  22 =λ ,   k1=k2=3   ,  )5,6;7,4(=prior  

)( 11 dR 

10 5.8666E-005 1.2258E-006�� 4.8907E-008 

15 4.4652E-006�� 6.8452E-008�� 2.0173E-009 

20 2.0350E-007 2.3801E-009 5.3830E-011 

25 6.4763E-009 5.9868E-011 1.0752E-012 

30 6.8915E-010 5.5884E-012 8.8429E-014 

)( 22 dR 

10 2.9999 1.5800 0.9197 

15 3.0000 1.4543 0.7623 

20 3.0000 1.3686 0.6935 

25 3.0000 1.3686 0.6577 

30 3.0000 1.3309 0.6180 
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Table (2) : The effect of sample size n on Bayes Risk (R1 and R2) , for fixed values of 

),( 21 λλλ = when k1=k2=3 and different prior  

21 =λ ,  92 =λ ,   k1=k2=3   ,  )3,4;3,2(=prior  

Bayes Risk n Constant Loss Linear Loss Quadratic Loss 

)( 11 dR��

�� 2.9976 1.1989�� 0.5580 

�� 2.9998�� 1.1837�� 0.5198 

�� 3.0000 1.1884 0.5103 

�� 3.0000 1.1982 0.5100 

�� 3.0000 1.1867 0.4957 

)( 22 dR��

�� 0.0024 1.1837 0.5198 

�� 1.7817E-004 3.1868E-006 1.0795E-007 

�� 8.6710E-006 1.1481E-007 2.9099E-009 

�� 3.0370E-007 3.1122E-009 6.1520E-011 

�� 3.0127E-008 2.6738E-010 4.5968E-012 

21 =λ ,  92 =λ ,   k1=k2=3   ,  )5,6;7,4(=prior  

)( 11 dR 

�� 2.9971 1.1257 0.4894 

�� 2.9998 1.1365 0.4777 

�� 3.0000 1.1547 0.4806 

�� 3.0000 1.1724 0.4875 

�� 3.0000 1.1652 0.4773 

)( 22 dR 

�� 0.0029 7.5685E-005 3.6792E-006 

�� 2.1005E-004 3.8144E-006 1.3125E-007 

�� 9.9418E-006 1.3319E-007 3.4171E-009 

�� 3.3794E-007 3.4955E-009 6.9772E-011 

�� 3.3787E-008 3.0232E-010 5.2420E-012 
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Figure(1) : The influence of the sample size on the posterior expected loss for constant 

loss function 

 

 

���������

��������

��������

��������

��������

	�������

	�������

� � �� �� 	� 	� 
� 
�

��
�

������ ����  

Figure(2) : The influence of the sample size on the posterior expected loss for Linear loss 

function 
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Figure�(3) : The influence of the sample size on the posterior expected loss for quadratic 

loss function 
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