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Abstract 

 

In this paper , we introduce the 

concept of compactly f-closed set. In this 

work , we have also shown that where X is a 

T2-spase,then a subset A of X is compactly 

f-closed if and only if A is an f-closed set . 

Moreover , we have studied the 

concept of compactly f-k-closed set and 

shown that if the space is T2, then 

compactly if – closed is equivalent to 

compactly f-k-closed. 

 

Introduction  

    

    In [1],  Njastad, O. introduced the 

concept "" setopen   in topology (a 

subset A of a space X is called an  

setopen  if  0

0

AA  , and  he proved 

that the family of all "" setsopen  in a 

topological  space ),( TX  is a topology on 

X . 

    In [2].Navalagi, G.. gives the concept " 

feebly open set " in topology (a subset A of 

a space X 

is called feebly open set if there exists an 

open subset U of X such that 
s

UAU  , where  
s

U  stands for the 

intersection of all semi-closed subset of X 

which contains U. 

 

     In [3] , Jankovic , D.S. proved that the 

concept " feebly open " and  

 " open " conincide . 

 

   This paper consists of two section .Section 

one contains Basic concepts in general 

topology. Section two recalls the definitions 

of the compactly 

 f- closed set and the compactly f-k-closed 

set and the relation between them.

 
1.Basic concepts  

 

Definition 1.1,[2]. 

     A subset B of a space X is called feebly 

open (f-open) set if there exists an open subset 

U of X such that 
s

UBU  . 

The complement of a feebly open set is 

defined to be a feebly closed  

(f-closed)set . 

 

Definition 1.2,[4] 

    A space X is called f-compact if every f-

open cover of X has a finite sub cover. 

 

Definition 1.3,[5,6,7] 

    Let X and Y be spaces and  YXf :  be 

a function .Then f is called feebly irresolute (f-

irresolute) function if )(1 Af 
 is an f- open in 

X , for every f-open set A in Y . 

 

Definition 1.4,[8] 

   Let X and Y be spaces, the function  

YXf :  is called a st-f-compcat function 

if the inverse image of each f-compact set Y is 

f-compact set in X . 

Remark(1.5),[8] 
  Every f-irresolute function is an f-continuous 

function . 

Proposition(1.6),[9] 

  Let Y be a subspace of a space X .Then if A 

is a pre-open subset of X and B is an f-open 

set in X, then BA  is f-open in A. 

Proposition (1.7),[8] 

    Let X be a space and XA , Xx . 

Then 
f

Ax   if and only if there exists a net 

Ddd )(
   in A and 

x
f

d 
  . 
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Proposition (1.8),[8] 

(i) Every f-closed  subset of an f- 

compact space is f- compact. 

(ii) Every f-compact subset of an f-T2 

space is f-closed . 

 

Proposition(1.9),[8] 

   In any space X, the intersection of any   

f-closed with any f-compact set is 

 f-compact. 

 

Proposition(1.10),[4] 

   Let X and Y  be a space and YXf :   be 

a function , then if  f is f-irresolute function, 

then an image f(X) of any f-compact space X 

is an f-compact space. 

 

Proposition(1.11),[8] 

   Let Y be an f-open  subspace of  space X  

and YA .Then A is an f-compact set in Y if 

and only if A is f-compact set in X . 

 

2- The main results 

Definition (2.1) : 

 Let X be a space .A subset W of X is 

called a compactly  

f – closed set if for every f – compact set K in 

X , KW   is f – compact . 

Example (2.2):  

( i ) Every finite subset of a space X is 

compactly f – closed set . 

( ii ) Every subset  of  indiscrete space is 

compactly f – closed set . 

Proposition (2.3):  

 Every f – closed subset of a space X is 

compactly f – closed set . 

Proof : 

 Let A be an f – closed subset of a space 

X and let K be an f- compact set in X . Then 

by proposition (1.9) , KA  is an f – 

compact . Thus A is compactly f – closed set . 

 

Theorem(2.4)  : 

 Let X be a T2 – space . A subset A of 

X is compactly f – closed if and only if A is  

f – closed set . 

Proof : 

)  Let A be a compactly f – closed set in 

X . Let,
f

Ax  , then by proposition (1.7) 

, there exists a net Dd  )( in A such 

that xf

d  . Then },{ xF   is an 

f – compact set .  

      Since A is an compactly f – closed , then 

FA   is an f – compact set . So by 

proposition (1.8,ii) , FA  is  f – closed 

set . Since xf

d   and  

,FAd   then by proposition (1.7) , 

AxFAx   . Hence AA
f

 , 

Therefore A is f – closed set . 

  )  By proposition (2.3) . 

Proposition (2.5): 

 Let YXf :  be an f – irresolute , 

st – f – compact , one to one , function . Then 

A  is compactly f – closed set in X if and only 

if f (A) is compactly f – closed set in Y . 

Proof : 

)   Let A be compactly f – closed in X and 

let K be an f – compact in Y . Since f is a 

st –f– compact function,then )(1 Kf 
is f 

– compact set in X. So )(1 KfA   is an 

f – compact set . Then by 

proposition(1.10), ))(( 1 KfAf   is f – 

compact set . 

But ))(( 1 KfAf  = KAf )( ,then 
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KAf )(  is f – compact set .Hence f (A) 

is compactly f – closed set . 

Conversely  

)  Let  f(A) be a compactly f – closed set in 

Y , (To prove A is compactly  

f – closed set in X ), let K be an f – 

compact set in X . Since f is  

f – irresolute function , then by 

proposition (1.10) , f (K) is  

f–compact in Y,So )()( KfAf   is f–

compact set . Since f is st–f– compact 

function, then 

     ))()((1 KfAff   

))(()(( 11 KffAff    is f – compact 

set in X . 

      Since f is one to one function, 

then ))((1 AffA  and 

)),((1 KffK   thus 

))(())(( 11 KffAffKA    . Hence 

KA  is f – compact set in X .  

Therefore A is compactly f – closed set in 

X .  

 Proposition(2.6) : 

 Let B be an f – open subspace of a 

space X . Then B is compactly  

f – closed if and only if the inclusion function 

XBiB :  is st – f – compact . 

Proof : 

)  Let K be an f – compact set in X , then 

KB  is an f – compact set in X , thus 

by proposition (1.11) , KB  is an f – 

compact set in B .  

  But KBKiB  )(1
 , then )(1 KiB


is 

an f – compact set in B . Hence 

XBiB :  is a st – f – compact function 

.  

Conversely  : 

)  Let K be an f – compact set in X . Since 

XBiB :  is a st – f – compact 

function,then )(1 KiB


is an f – compact set in 

B.Thus by proposition (1.11) , )(1 KiB


 is an f 

– compact set in X .  

  But )(1 KiB


= KB  , then KB   is 

an f – compact set in X , for every 

 f – compact set K in X . Therefore B is a 

compactly f – closed set  

in X. 

 

Definition (2.7) :  

 Let X be a space . Then a subset A of 

X is called compactly  

f – k – closed if  for every f – compact set K in 

X, KA   is f – closed set  

Example (2.8) : 

 Every subset of a discrete space is 

compactly f – k -  closed set . 

Proposition(2.9) : 

       Every compactly f–k–closed subset of a 

space X is compactly f– closed. 

Proof : 

 Let A be a compactly f – k – closed 

subset of X and let K be an 

 f – compact set in X , then KA  is f – 

closed set . Since KKA   and K is  

f – compact set , then by proposition (1.8, i)  

KA  is f – compact set . 
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 Therefore A is compactly f – closed 

set . 

Theorem (2.10): 

 Let X be T2 – space and A is a subset 

of X . Then the following statement are 

equivalent : 

(i) A is compactly f – closed . 

(ii) A is compactly f-k-closed . 

(iii) A is f- closed . 

 

Proof  : 

 ( i  ii) 

 (i  ii) Let A be a compactly f – closed 

subset of X and let K be an  

f– compact set in X . Then 

KA  is f – compact set . Since 

X is  

T2 – space, then by proposition 

(1.8 ,ii) , KA   is f – closed set 

.    

   Hence A is a compactly  f – k – closed set . 

(ii  i ) By proposition (2.9) . 

(iii  i ) By Theorem (2.4)   

 

Remark (2.11): 

 If X is not T2 – space then need not 

that every compactly f – closed set is 

compactly f – k – closed set as the following 

example . 

Example (2.12): 

 Let c}b,{a,X  , },{A ba  

, },{ B ca  be a sets and let (X , T) is 

indiscrete topological space . Then X is not 

T2 – space and A is compactly f – closed set, 

but A is not compactly f – k – closed set , 

Since B is f – compact set in X , then 

}{aBA    is not f – closed set . 
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