Compactly f- closed and compactly f-k-closed sets

Habeeb Kareem Abdullah University of kufa College of Education for Girls Department of Mathematics Alyaa Yousif Khudayir University of kufa College of Education for Girls Department of Mathematics

Abstract

In this paper , we introduce the concept of compactly f-closed set. In this work , we have also shown that where X is a T_2 -spase,then a subset A of X is compactly f-closed if and only if A is an f-closed set .

Moreover, we have studied the concept of compactly f-k-closed set and shown that if the space is T2, then compactly if – closed is equivalent to compactly f-k-closed.

Introduction

In [1], Njastad, O. introduced the concept " α -open set" in topology (a subset A of a space X is called an α -open set if $A \subseteq A^{\frac{0}{0}}$, and he proved that the family of all " α -open sets" in a

1.Basic concepts

Definition 1.1,[2].

A subset B of a space X is called feebly open (f-open) set if there exists an open subset

U of X such that $U \subseteq B \subseteq \overline{U}^s$.

The complement of a feebly open set is defined to be a feebly closed (f-closed)set.

Definition 1.2,[4]

A space X is called f-compact if every f-open cover of X has a finite sub cover.

Definition 1.3,[5,6,7]

Let X and Y be spaces and $f: X \to Y$ be a function .Then f is called feebly irresolute (firresolute) function if $f^{-1}(A)$ is an f- open in X, for every f-open set A in Y. topological space (X,T) is a topology on X.

In [2].Navalagi, G.. gives the concept " feebly open set " in topology (a subset A of a space X

is called feebly open set if there exists an open subset U of X such that $U \subseteq A \subseteq \overline{U}^s$, where \overline{U}^s stands for the intersection of all semi-closed subset of X which contains U.

In [3], Jankovic, D.S. proved that the concept " feebly open " and " α -open " conincide.

This paper consists of two section .Section one contains Basic concepts in general topology. Section two recalls the definitions of the compactly f- closed set and the compactly f-k-closed set and the relation between them.

Definition 1.4,[8]

Let X and Y be spaces, the function $f: X \to Y$ is called a st-f-compcat function if the inverse image of each f-compact set Y is f-compact set in X.

Remark(1.5),[8]

Every f-irresolute function is an f-continuous function .

Proposition(1.6),[9]

Let Y be a subspace of a space X. Then if A is a pre-open subset of X and B is an f-open set in X, then $A \cap B$ is f-open in A.

Proposition (1.7),[8]

Let X be a space and $A \subseteq X$, $x \in X$.

Then $x \in \overline{A}^{f}$ if and only if there exists a net

 $(\chi_d)_{d\in D}$ in A and $\chi_d \xrightarrow{f} x$

Proposition (1.8),[8]

- (i) Every f-closed subset of an fcompact space is f- compact.
- (ii) Every f-compact subset of an $f-T_2$ space is f-closed.

Proposition(1.9),[8]

In any space X, the intersection of any f-closed with any f-compact set is f-compact.

Proposition(1.10),[4]

Let X and Y be a space and $f: X \rightarrow Y$ be a function, then if f is f-irresolute function, then an image f(X) of any f-compact space X is an f-compact space.

Proposition(1.11),[8]

Let Y be an f-open subspace of space X and $A \subseteq Y$. Then A is an f-compact set in Y if and only if A is f-compact set in X.

2- The main results

Definition (2.1) :

Let X be a space .A subset W of X is

called a compactly

f-closed set if for every f-compact set K in

X, $W \cap K$ is f – compact.

Example (2.2):

(i) Every finite subset of a space X is compactly f – closed set .

(ii) Every subset of indiscrete space is compactly f - closed set .

Proposition (2.3):

 $\label{eq:compact} \mbox{Every } f-\mbox{closed subset of a space } X \mbox{ is} $$ compactly } f-\mbox{closed set }.$

Proof :

Let A be an f – closed subset of a space X and let K be an f- compact set in X. Then by proposition (1.9), $A \cap K$ is an f – compact. Thus A is compactly f – closed set.

Theorem(2.4):

Let X be a $T_2-\mbox{space}$. A subset A of X is compactly $f-\mbox{closed}$ if and only if A is $f-\mbox{closed}$ set .

Proof :

⇒) Let A be a compactly f - closed set inX. Let, $x \in \overline{A}^{f}$, then by proposition (1.7), there exists a $\text{net}(\chi_{d})_{\alpha \in D}$ in A such that $\chi_{d} \xrightarrow{f} x$. Then $F = \{\chi_{\alpha}, x\}$ is an f - compact set.

Since A is an compactly f - closed, then $A \cap F$ is an f - compact set. So by proposition (1.8,ii), $A \cap F$ is f - closedset. Since $\chi_d \xrightarrow{f} x$ and $\chi_d \in A \cap F$, then by proposition (1.7),

 $x \in A \cap F \to x \in A$. Hence $\overline{A}^{f} \subseteq A$,

Therefore A is f - closed set.

 \Leftarrow) By proposition (2.3).

Proposition (2.5):

Let $f: X \to Y$ be an f – irresolute, st – f – compact, one to one, function. Then A is compactly f – closed set in X if and only if f (A) is compactly f – closed set in Y.

Proof :

⇒) Let A be compactly f – closed in X and let K be an f – compact in Y. Since f is a st –f– compact function, then $f^{-1}(K)$ is f – compact set in X. So $A \cap f^{-1}(K)$ is an f – compact set . Then by proposition(1.10), $f(A \cap f^{-1}(K))$ is f – compact set . But $f(A \cap f^{-1}(K)) = f(A) \cap K$, then $f(A) \cap K$ is f – compact set .Hence f (A) is compactly f – closed set .

Conversely

 \Leftarrow) Let f(A) be a compactly f – closed set in Y , (To prove A is compactly f – closed set in X), let K be an f – compact set in X . Since f is f – irresolute function , then by proposition (1.10) , f (K) is f-compact in Y,So $f(A) \cap f(K)$ is f– compact set . Since f is st-f– compact function, then

$$f^{-1}(f(A) \cap f(K)) =$$

$$f^{-1}(f(A) \cap f^{-1}(f(K)) \text{ is } f - \text{ compact}$$

set in X.

Since f is one to one function, then $A = f^{-1}(f(A))$ and

$$K = f^{-1}(f(K)),$$
 thus
 $A \cap K = f^{-1}(f(A)) \cap f^{-1}(f(K))$. Hence

 $A \cap K$ is f – compact set in X. Therefore A is compactly f – closed set in X.

Proposition(2.6) :

Let B be an f – open subspace of a space X . Then B is compactly f – closed if and only if the inclusion function $i_B: B \rightarrow X$ is st – f – compact.

Proof :

⇒) Let K be an f – compact set in X, then $B \cap K$ is an f – compact set in X, thus by proposition (1.11), $B \cap K$ is an f – compact set in B. But $i_B^{-1}(K) = B \cap K$, then $i_B^{-1}(K)$ is an f – compact set in B. Hence $i_B: B \to X$ is a st – f – compact function

Conversely :

($\stackrel{\leftarrow}{=}$) Let K be an f – compact set in X. Since $i_B: B \to X$ is a st – f – compact function, then $i_B^{-1}(K)$ is an f – compact set in B.Thus by proposition (1.11), $i_B^{-1}(K)$ is an f – compact set in X.

But $i_B^{-1}(K) = B \bigcap K$, then $B \bigcap K$ is an f – compact set in X, for every f – compact set K in X. Therefore B is a compactly f – closed set in X.

Definition (2.7) :

Let X be a space . Then a subset A of X is called compactly f - k - closed if for every f - compact set K in X, $A \cap K$ is f - closed set

Example (2.8) :

Every subset of a discrete space is compactly f - k - closed set .

Proposition(2.9) :

Every compactly f-k-closed subset of a space X is compactly f- closed.

Proof:

Let A be a compactly f - k - closed subset of X and let K be an f - compact set in X, then $A \cap K$ is f closed set. Since $A \cap K \subseteq K$ and K is f - compact set, then by proposition (1.8, i) $A \cap K$ is f - compact set. $\label{eq:compactly} Therefore \ A \ is \ compactly \ f - closed \\ set \ .$

Theorem (2.10):

 $\label{eq:constraint} \begin{array}{c} \mbox{Let }X \mbox{ be }T_2 - \mbox{space and }A \mbox{ is a subset} \end{array}$ of X . Then the following statement are equivalent :

- (i) A is compactly f closed.
- (ii) A is compactly f-k-closed .
- (iii) A is f- closed.

Proof :

 $(i \leftrightarrow ii)$

(i \rightarrow ii) Let A be a compactly f - closed subset of X and let K be an f- compact set in X. Then $A \cap K$ is f - compact set. Since X is T2 - space, then by proposition (1.8,ii), $A \cap K$ is f - closed set

Hence A is a compactly f - k - closed set . (ii \rightarrow i) By proposition (2.9) . (iii \leftrightarrow i) By Theorem (2.4)

Remark (2.11):

If X is not T2 – space then need not that every compactly f – closed set is compactly f - k – closed set as the following example .

Example (2.12):

Let $X = \{a, b, c\}, A = \{a, b\}$, B = {a, c} be a sets and let (X , T) is indiscrete topological space. Then X is not T₂ – space and A is compactly f – closed set, but A is not compactly f – k – closed set , Since B is f - compact set in X, then $A \cap B = \{a\}$ is not f - closed set.

References

1- Njastad, O., " On some classes of nearly open sets ", pacific J. Math., 15 (1965), 961 - 970. 2- Navalagi, G. B., " Definition Bank in General Topology ", (54) G (1991). 3- Jankovic, D. S. and Reilly, I. L., " on Semi - separation properties ", Indian J. pur Appl. Math. 16 (9), (1985) ,957 - 964. 4- Maheshwari, S. N. and Thakur, S. S. , " On α – compact spaces ", Bulletin of the Institute of Mathematics, Academia Sinica ,Vol. 13, No. 4 , Dec. (1985) , 341 - 347. 5- Maheshwari, S. N. and Thakur, S. S. " On α – irresolute mappings ", Tamkang math. 11 (1980), 209 – 214. **6-** Navalagi, G. B., "Quasi α – closed, strongly α – closed and weakly α – irresolute mapping ", National symposium Analysis and its Applications , Jun. (8 - 10) , (1998) . 7- Reilly, I. L. and Vammanamurthy, M. K. , " On α – continuity in Topological spaces ", Acta mathematics Hungarica ,45 ,(1985) ,27 - 32 . 8- Khudayir ,A.Y., "On Strongly Feebly Proper function ", M.Sc., Thesis, University of Kufa,(2008).

9- Jafari, S. and Noiri, T., " Cantra α – continuous functions between Topological spaces ", Iranian Int. J. Sci. 2 (2) (2001), 153 – 167.