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Abstract.

In this paper, we study the direct sum
of min (max)-CS modules. We show that the
direct sum of min (max)-CS modules need not
be min (max)-CS module. So we give many
sufficient conditions under which the direct
sum of min (max)-CS modules become min
(max)-CS module
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1- Introduction

Throughout this paper all rings R are
commutative with identity and all R-modules
are unitary. We writte A<M and A<.Mto
indicate that A is a submodule of M and A is
an essential submodule of M, respectively.

A submodule N of M is called closed if N
has no proper essential submodule extension;
that is if N <. W for some W < M, then N=M.
It is clear that M, (0) are closed submodules.

A submodule N of M is called maximal
closed if whenever N — W and W is a closed
submodule, then W =M or N =W.

A submodule N of M is called minimal
closed whenever W < N and W is a closed
submodule, then W = (0) or W = N.

About thirty years ago, M.Harda and
B.Muller introduced the concept of extending
module, where an R-module M is called an
extending module (or, CS-module) if every
submodule is an essential in a direct summand
of M. Equivalently, M is extending if and only
if every closed submodule is a direct
summand, [1]. CS-modules have been studied
by several authors such as N.V.Dung,
D.V.Huyn, P.F.Smith and R. Wisbauer [2],
S.H.Mohammed and B.J.Muller [3]. Many
authors investigated extending relative to
certain class of modules. Beside this, many

generalizations of CS-modules are introduced
see [4], [5].

S.H.Al-Hazmi in [6] introduce the
concept of min (max)-CS module, where an R-
module M is called min(max)-CS module if
every minimal closed submodule (every
maximal closed submodule of M with nonzero
annihilator) is a direct summand of M.

Many basic properties of min(max)-CS
modules are considered in [7]. In this paper we
turn our attention to the direct sum of
min(max)-CS modules, where we notice that
the direct sum of min(max)-CS modules need
not be min(max)-CS modules. However we
give many sufficient and necessary conditions
under which this property valid.

We start with the following:

1.1 Definition: [6]

An R-module M is called min-CS module
if, every minimal closed submodule of M is a
direct summand of M.

A ring R is called min-CS if it is min-CS
R-module.

1.2 Definition: [6]

An R-module M is called max-CS
module, if every maximal closed submodule of
M with nonzero annihilator is a direct
summand of M.

A ring R is max-CS if it is max-CS R-
module.

We show that a direct sum of min-CS
modules needs not to be min-CS module, as
the following example shows:

Each of Z, and Zg are min-CS modules, but
M=7,® Zgis not min-CS.
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We claim that the direct sum of max-CS
modules need not be max-CS module, but we
have no example to ensure this.

First we give the following:

1.2 Proposition:

Let M;, M, be R-modules and let

M= M; @ M, such that annM; + annM, = R.

Then

1.M is a max-CS if M;, M, are max-CS
modules and the converse is true if M is not
faithful.

2. M is a min-CS module if and only if My, M,
are min-CS modules.

Proof:

(1) Let A be a maximal closed submodule of
M with annA # 0. Then by the same proof
of [8, Proposition 4.2, Ch.1], A =B @& C,
where B < M; and C £ M,.

We claim that B and C are maximal closed
submodules in M; and M, respectively.

First we shall prove that B and C are closed
in M; and M; respectively.

Suppose there exists B; < M; such that
B <. B;. Since C <, C, we get B® C <,
B, & C by [9, Proposition 5.20, p.75].
Hence B®C =B, ®C,since A=B®Ciis
a closed submodule of M.

So B = B;. Thus B is a closed submodule of
Ml-

Then by a similar way, C is closed in M.

To prove B is a maximal closed submodule
of M.

Suppose there exists a closed submodule X
of M, such that B < X.

ThenB® C <X ®C.But X ® Cis closed
in M; © M,, by [10, Exc.15, p.20].

SO B®C=X®C,since B® Cis a
maximal closed submodule of M; @ M,=M.
Hence B = X, and B is a maximal closed
submodule of M;.

By the same way we have C is a maximal
closed submodule of M,.

Now, annA = annB m annC # 0, and this
implies annB # 0, annC # 0.

Thus there exists W; < M; and W, < M,
suchthat B ® W;=M;and C ® W, = M,.
Hence (B ® W]_) @ (C ® Wz)z M;® M,=M.
Then (B @ C) ® (W, ® W,) = M.

Thus A @ (W; @ W,) = M, that is A is a
direct summand of M.

Thus M is a max-CS module.

The converse follows by [7, Corollary 1.22].

(2) By a similar proof of (1), M is min-CS if
M;, M, are min-CS, and the converse
follows by [7, Corollary 1.16].

Recall that an R-module M is called
distributive if An (B + C) =(A n B)+(An C)
for all submodules A, B and C of M, [11].

Now, we give another condition under
which, the direct sum of max-CS is max-CS.

1.3 Proposition:

Let M be a distributive R-module such
that M = M; @& M, with M;, M, <M. Then M
is a max-CS if M; and M, are max-CS and the
converse holds if M is not faithful.
Proof:

If M; and M, are max-CS modules.
To prove M is max-CS.
Let K be a maximal closed submodule of M

with annK = 0.

Since M is a distributive, then K = (K n M;) &
Now, we claim that K n M; and K n M, are
maximal closed in M; and M, respectively.
Suppose there exists a submodule B of M,
such that K n M; <, B. But K n M, <. KnM,.
Hence K=(K n M))®(K N M,) <. B&(KnMy)
by Proposition [9, Proposition 5.20, p.75].
Since K is closed, it follows that

(KN M) ®KNM)=B® (KN M,).

So that K n My, = B. Thus K n My is a closed
submodule in M.

Similarly, KnM; is a closed submodule in M.
Now, we shall prove that K n My is a maximal
closed submodule in M.

Suppose there exists a closed submodule C in
M; such that (K n M;) <C.

Hence K=(Kn M;) & (K n M,)<C & (KnM,),
but C ® (K n M,) closed in M, by [10, Exc.15,
p.20].

Thus K=(K N My)® (K N M,)=C @ (K N M,),
since K is a maximal closed submodule in M.
This implies KnM;=Candso K M;isa
maximal closed submodule of M;.

Similarly, K n M, is a maximal closed
submodule of M.

Moreover, annK= 0 and ann K = ann(K n My)
Nann(K N M,) = 0.
Hence ann(K m M;)= 0 and ann(K n M,) = 0.
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On the other hand, M; and M, are max-CS

modules. Then K n M; is a direct summand in

M; and K n M, is a direct summand in M.

So that My = (K n My) @ A; for some A< My,

and M, = (K n M,) @ B, for some B; < M.,.

Then

M:MlC‘DMZ:[(K M Ml)(‘DA]_]@[(K M Mz)@Bl]
= [(KnMp)@(K N M2)]O(A; © By)
=K® (Al @ B]_)

So that K is a direct summand of M.

Hence M is a max-CS module.

The converse follows by [7, Corollary
1.22].

We obtain a similar result for min-CS
modules but first we prove the following
lemma.

1.4 Lemma:
Let M be an R-module, such that

M =M; @ M,, where M;, M, < Mand K is a
minimal closed submodule of M.

Then either KN M; =0 or KM, =0.
Proof:

Suppose K n M, = 0, then K n M, < K.
Then there exists a closed submodule H of K

such that K " M, <. H, by [10, Exc.13, p.20].

But M, SeMl, SO(Kﬂ Mg)m M, SeHﬁMl,
by [10, Proposition 1.1, p.16-17], and hence

OSeHﬁMl.ThUSHlizo.

On the other hand, H is closed in K and K
closed in M. Then H is closed in M, by
[10, Proposition 1.5, p.18].

But K is minimal closed in M, so that K = H.
Hence K " M; = 0.

1.5 Proposition:

Let M be an R-module such that
M=M;®M, with M <M, M, <M and M is
distributive. Then M; and M, are min-CS if
and only if M is min-CS.

Proof:

(=) To prove M is a min-CS. Let K be a
minimal closed submodule of M.

Then K= (K M;) @ (KN M,), since M is a
distributive.

So that by Lemma 1.4, either K n M; =0 or
KnM,=0.

Assume K n M,=0, then K = K n M; and
hence K ¢ M.

But K < M; and K is minimal closed in M
implies K is minimal closed in M.

To explain this:
If K <cLand L < M;. ThenL < M and

K<.L<M.
So K = L since K is closed in M. Thus K is
closed in M;.
Now, assume there exists a closed submodule

H in M; such that H < K.
Since H is closed in My, then H is closed in M,
by [10, Proposition 1.5, p.18]. But K is a
minimal closed in M. So that H = K.
Hence K is a minimal closed submodule in M;.
But M; is a min-CS module.
So K is a direct summand in M;.
Therefore, there exists a submodule W of M;
such that K ® W = M.
ThusM=M;® M, = (K@ W) &M,

=K@ (WM,
So that K is a direct summand in M.
Hence M is a min-CS module.
(<) It follows by [7, Corollary 1.16].

1.6 Proposition:

Let M be an R-module. M = @M, M is
a max-CS module for each i e I, such that
every maximal (minimal) closed submodule in
M is fully invariant. Then M is a max-CS
(min-CS) module.
Proof:

Let S be a maximal closed submodule of
M, and let -y M —— M; be the natural
projection on M; for eachi e I.
Let xeS, then x =¥ m;, mieM; and m;(x) = m;.

iel

Since S is a maximal closed in M, then by our
assumption, S is fully invariant and hence
mi(S) € SN M,
So, mi(X) = m; €S n M; and hence xe®(SNM;).
Thus S € &(S N M).
But ®(S n M;) ¢ S, therefore S = ®(S N M;).
Since (S n M) is summand in S, then (S N M)
is closed in S, by [10, Exc.3, p.19]. But S is
closed in M, so (S n M) is closed in M, by
[10, Proposition 1.5, p.18].
We claim that (S~M;) is maximal closed in
M;.
To prove our assertion
Suppose there exists a closed submodule B; in
M; (for each i € 1), such that S » M; < B;. So
_@I(Sm Mi)g_('BlBi .Hence, Sc @B;.
le le

iel
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But @B, is closed in M = @M;, by [10,
iel iel

Exc.15, p.20], and S is a maximal closed, then
iel iel iel

So S~ M,;=B;foreachi e I; thus S n M;is a
maximal closed submodule of M, Which
implies that S m M; is a direct summand of M;,
since M; is a max-CS module. Then
S= _@I(Sm M;) is a direct summand of

le
B M;=M.
le
Hence M is a max-CS module.

Let S be a minimal closed submodule of
M. By the same argument of the first
paragraph, for eachi e I, S N M;is a closed
submodule of M.
But SNM;cS, hence SNM; = S; that is S < M;
foranyi e I.
On the other hand, S is a closed in M and
S < M; implies that S is a closed in M; for all
iel
To prove S is minimal closed in M;, for all i<l.
Suppose there exists B; S, i € I, Bjis a
closed in M;.
But M; is a closed in M, hence B; is a closed in
M, by [10, Proposition 1.5, p.18].
Thus B; =S and so S is minimal closed in M;.
Hence there exists H; < M; such that SOH=M;
for all i € I. Thus ®(S @ H; )=_@|Mi=M,

le

Hi<M;. Hence S® (C_Biel H|) =M.
So Sis a direct summand of M and M is a min-
SC module.

By [10, Exc.13, p.20], for any N < M,
there exists a closed submodule H of M such

that N <. H. Sometimes, H is called a closure
of N, See [4].

The following definition is given in [4]:

1.7 Definition: [4]

An R-module M is called an UC-module
if each of its submodules has a unique closure
in M.

1.8 Remark:

Every uniform R-module M is UC-
module, since (0) and M are the only closed
submodules of M. Thus (0) is the unique
closure of 0 and foreachN <M, N = (0) M
is the unique closure of N.

Now, we give the following result:

1.9 Proposition:
Let M = M; @ M, be an UC-R-module,

with My, M, < M. Then M is a min-CS if and
only if M; and M, are min-CS modules.

Proof:

(=) Itisclear by [7, Corollary 1.16].

(<) Suppose that both of M; and M, is min-
CS module.

To prove M is a min-CS module.

Let N be a min-closed submodule of M.

Then by Lemma 1.4 N n M;=0 or N n M,=0.

Suppose N M, = 0.

Now, N is a closed submodule in M and M, is
a closed submodule of M, therefore by [4,
Lemma 1.3 (ii), p.70] we have N n M, is
closed in M,.

Now, we claim that N ~ M, is a minimal
closed submodule in M,.

For this, suppose there exists a closed
submodule U of M, such that U < N N M.
But M, closed in M, since every direct
summand is closed, by [10, Exc.3, p.19].
Therefore, U is closed submodule in M, by
[10, Proposition 1.5, p.18].

But U < NN M, <N, and N is a minimal
closed submodule in M.
SothatU=NthusN~M,=U=N.

Thus N is a submodule of M, since U = N.
Hence N is a minimal closed submodule in M.
But M, is a min-CS module. Therefore N is a
direct summand of M,.

Hence, there exists a submodule K of M, such
that N @ K = M. It follows that (N® K)®M;=
M;+M;=M,s0N® (K® M) =M.
Therefore N is a direct summand of M.

Hence M is a min-CS module.

1.10 Remark:

The condition M is UC cannot be dropped
from the Proposition 1.9, as the following
example shows:

1.11 Example:

Let M be the Z-module M = Zg®7Z5.
M is not UC-module, since there exists

N =<(4,0)>={(4,0),(0,0)}, N <, Zgd(0)
where Zg®(0) is a closed submodule of M,
also N < W =< (1,1) > = {(1,1),(2,0),
(3.1) (4,0),(5,1),(6,0),(7,1),(0,0)}.

However as we noticed before M is not a min-

CS module and each of Zg, Z> is a min-CS
module.
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1.12 Definition: [2, p.22]

An R-module M is called > -extending
(respectively, finitely or countably -
extending) if every (finite, countable) direct
sum of copies of M is extending.

Similarly Al-Hazmi in [6, p.25] defined
the following:

An R-module M is >-min-CS (finitely,
countably > min-CS) if every (finite,
countable) direct sums of copies of M is min-
CS. There exists a commutative ring R such
that R (as R-module) is CS, but R is not
finitely >.-CS. [6]

Also there exists a regular ring R such that R is
countably >.-CS but R is not 2.-CS, [6].

Similarly, we can define the following:

An R-module M is said to be >-max-CS
(respectively finitely or countably >.-max-CS)
if every (respectively finitely or countably)
direct sum of copies of M is max-CS.

Now, we can give the following result:

1.13 Proposition:

A ring R is min (max)-CS if and only if R
is finitely 2 min (max)-CS.
Proof:
(=) IfRismin-CS. Toprove R® R @ ... ®R
for n-times is min-CS.
With out loss of generality, we can take n = 2.
Let K be a minimal closed ideal in R @ R.
Then K =1@® J for some ideals | and J of R.
It follows that | and J are minimal closed ideals
of R. To see this:

Assume | <. H, His an ideal of R.
Then 1 ®J <. H @& J by [9, Proposition 5.20,

p.75]. Sothat | ®J = H @ J, since | & J is
closedinR® R. Then | = H.

Hence I is closed ideal in R.

Similarly, we can prove J is closed in R.

Now, to prove I is a minimal closed ideal in R,
let K be a closed ideal in R such that K c I
ThenK®Jc I @ J.

Hence K@ J=1@® J, since | ® Jis a minimal
closed ideal in R @ R.

Thus K=I, and | is a minimal closed ideal in R.
Similarly, J is a minimal closed ideal in R.
Hence each of | and J is a direct summand of
R, since R is a min-CS ring.

Thus | ® I, = R, J ® J; =R for some ideals I,
J; of R. It follows that:
ROER=(I®1)®JDJy)

Therefore | @ J is a direct summand of R @ R.
Hence R @ R is a min-CS ring.

(<) Itis clear by [7, Corollary 1.16].

A similar proof can be given for finitely
2.-max-CS.

By similar proof we have:

1.14 Remark:
Foranyring R, Ris CSifand only if R is
finitely >-CS.

1.15 Example:
Every uniform ring is CS and hence min-
CS and max-CS. Then R®R ®...®R is CS
n—times
and hence min-CS and max-CS.
As particular case each of Z @ Z & ...

@, Zsg® Zsg® ... DZg is CS and hence min-
CS and max-CS.

1.16 Corollary:
Let R be a nonsingular ring. Then the
following statements are equivalent:
(1) Ris min-CS.
(2) Rismax-CS.
(3) Riis finitely >.-min-CS.
(4) Ris finitely >-max-CS.
Proof:
(1) & (2): It follows by [7, Theorem 1.33].
(1) < (3): It follows by Proposition 1.13
(2) < (4): It follows by Proposition 1.13.

1.17 Proposition:
Let R be a ring, then the following are
equivalent:
(1) Ris > min-CS (2 max-CS).
(2) Every projective R-module M is min
(max)-CS, such that annM = 0.
Proof:
(=) Suppose that R is 2. min (max)-CS.
To prove every projective R-module is a min-
CS (max-CS). Let M be a projective R-
module. Then by [12, Theorem 5.4.1, p.120]
there exists a free R-module F and an
epimorphism f: F —— M, but F is free so
F= @R for some index I.

iel
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Now, consider the following short exact
sequence:

0 kerf — >@®R—
I

>M 0

where i is the inclusion map.
Since M is projective, then the sequence splits.
Thus ®R=kerf®M .

|

But ®R is min-CS (max-CS).
[

Therefore, by [7, Corollary (2.1.16)] M is min-

CS (max-CS).

(<) By [12, Theorem 5.3.4(b),p.118], ®R is
[

projective. So @R is min (max)-CS by
[

condition (2).

By using a similar argument we can prove
the following:

1.18 Proposition:
Let R be a ring. The following statements
are equivalent:
(1) Ris finitely X min (max)-CS.
(2) Every finitely generated projective R-
module is min(max)-CS.

Recall that, an R-module M has a uniform
dimension (briefly U-dim) if M does not
contain an infinite direct sum of nonzero
submodules, [2, p.40].

Also Goodearl, see [10, p.79, p.86], gave
the name finite dimensional module for
module with finite uniform dimension.

First we give the details of the proof of

the following lemma.

1.19 Lemma: [2, Lemma 7.7, p.58]

Let M be a min-CS R-module, and let K
be a closed submodule of M with finite
uniform dimension. Then K is a direct
summand of M.

Proof:

Since K has a finite uniform dimension.
Then there exists a submodule U of K such
that U is a uniform closed of K, (since by the
definition of a finite uniform dimension K has
a uniform submodule say N and by [10,
Exc.13, p.20] there exists a closed submodule
U of K such that N <, U. It follows that U is
uniform) ; that is U is a minimal closed
submodule of K, by [7, Lemma 1.6].

Thus U closed in K and K closed in M.
Therefore U closed in M, by [10, Proposition
1.5, p.18].

But U is a minimal closed in K, so U is a
minimal closed in M.

Hence U is a direct summand of M, since M is
a min-CS module.

Hence M =U @ U' for some U' < M.

Thus K =K n (U & U"), which implies that K
=U ® (K n U’) by modular law.

So K m U is a closed submodule of K, by
[10, Exc.3, p.19].

Again, since K is closed in M, we get (K n U")
closed in M, by [10, Proposition 1.5, p.18].
Now, we shall use induction to prove K is a
direct summand.

Since U — dim(K n U) < U — dim(K), by
Theorem [10, p.87].

Hence K m U'is a direct summand of M.

Therefore, M=(K n U") @ W for some W<M.

SothatU'=U"N[(KnU) @ W].

Then U'= (K n U) & (U n W), by modular

law.

ButM =U @ U, so that

M=U®[(KnU)® U W)
z[Ud(KnU)@ U W)

ThatisM =K @ (U'nW).

Thus K is a direct summand of M.

1.20 Corollary: [2, Corollary 7.8, p.59],
[6, Lemma 2.1.4, p.32]

Let M be an R-module with finite uniform
dimension. Then M is CS if and only if M is a
min-CS.

Proof:

(=) Itisclear.

(«<=) Suppose M is a min-CS module.
To prove M is a CS-module.

Let K be a closed submodule of M.

Then by [2,5-10, p.41] U-dim(K)<U-dim(M).
But M has finite uniform dimension, so K has
finite uniform dimension.

Hence K is a direct summand of M by Lemma
1.19. Therefore, M is a CS-module.

Recall that for a faithful multiplication R-
module M, M has finite uniform dimension if
and only if R has finite uniform dimension, see
[13, Theorem 2.15].

Hence we get the following:

1.21 Corollary:

Let M be a faithful finitely generated
multiplication over a finite uniform dimension
R. Then the following are equivalent:

(1) M isamin-CS module.
(2) RisaCS-ring.

34
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(3) Risamin-CS ring.

(4) MisaCS-module.

Proof:

(1) < (3) It follows by [7, Proposition 1.30].
(2) < (3) It follows by Corollary 1.20.

(1) < (4) It follows by [13, Theorem 2.15, and
Corollary 2.2.19].

1.22 Corollary:

Let M be a min-CS module. M has a
finite uniform dimension if and only if M is a
finite direct sum of uniform submodules.
Proof:

(=) If M is min-CS and M has a finite uniform
dimension, then M is CS by Corollary 1.20.
Then M is a finite direct sum of uniform
submodules, by [14, Lemma 6.43, p.222].

(<) Suppose M has no finite uniform

dimension, so for each V <, M, V is not a
finite direct sum of uniform submodules, by
[10, p.87]. But this is a contradiction, since

M <. M and M is a finite direct sum of
uniform submodules.
Hence M has a finite uniform dimension.

Recall that, an R-module M is
indecomposable if the only direct sum
decompositions M = A @ B are those in which
either A=0o0r B =0, [10, p.4].

1.23 Corollary:

Let M be an indecomposable R-module.
Then M is CS if and only if M is min-CS.
Proof:

It follows directly by Corollary 1.20,
since every indecomposable module has a
finite uniform dimension, see [2, p.40].

Recall that, a Goldie ring is a ring with
finite uniform dimension such that the
annihilator ideal satisfying the ACC,
[10, p.97].

1.24 Corollary:

Let R be a Goldi ring. Then R is CS if and
only if R is min-CS.
Proof:

It follows by Corollary 1.20.

1.25 Corollary:

Let R be semiprime Goldie ring. Then the
following statements are equivalent:
(1) Ris finitely > min-CS.
(2) Ris finitely X-CS.
(3) RisCS.
(4) R is min-CS.
(5) R is max-CS.
(6) Ris finitely > max-CS.
Proof:
(3) < (4): It follows by Corollary 1.24.
(1) < (4): It follows by Proposition 1.13.
(2) < (3): It follows by Remark 1.14.
(4) < (5): Since R is semiprime then R is
nonsingular, by [10, Corollary 3.32, p.97].
Hence the result follows by [7, Theorem 1.33].
(5) < (6): It follows by Proposition 1.13.

We end this paper by the following examples:

1.26 Examples:

(1) The Z-module M = Z, ® Q, where p is a
prime number. M is not a CS-module. See
[4, Example 1.2, p.70]. But M has a finite
uniform dimension; therefore M is not a
min-CS module, by Corollary 1.20.

U U
(2) The ring R { 02 EZ}, Rg is not CS by

[5, p.1248]. But R has a finite uniform
dimension, th'us R is not min-CS ring by
Corollary 1.20.
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