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Abstract. 
              In this paper, we study the direct sum 

of min (max)-CS modules. We show that the 

direct sum of min (max)-CS modules need not 

be min (max)-CS module. So we give many 

sufficient conditions under which the direct 

sum of min (max)-CS modules become min 

(max)-CS module 
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1- Introduction 

        Throughout this paper all rings R are 

commutative with identity and all R-modules 

are unitary. We write A  M and A  e M to 

indicate that A is a submodule of M and A is 

an essential submodule of M, respectively.  

        A submodule N of M is called closed if N 

has no proper essential submodule extension; 

that is if N  e W for some W  M, then N=M. 

It is clear that M, (0) are closed submodules. 

        A submodule N of M is called maximal 

closed if whenever N  W and W is a closed 

submodule, then W = M or N = W. 

        A submodule N of M is called minimal 

closed whenever W  N and W is a closed 

submodule, then   W = (0) or W = N. 

        About thirty years ago, M.Harda and 

B.Muller introduced the concept of extending 

module, where an R-module M is called an 

extending module (or, CS-module) if every 

submodule is an essential in a direct summand 

of M. Equivalently, M is extending if and only 

if every closed submodule is a direct 

summand, [1]. CS-modules have been studied 

by several authors such as N.V.Dung, 

D.V.Huyn, P.F.Smith and R. Wisbauer [2], 

S.H.Mohammed and B.J.Muller [3]. Many 

authors investigated extending relative to 

certain class of modules. Beside this, many 

generalizations of CS-modules are introduced 

see [4], [5]. 

        S.H.Al-Hazmi in [6] introduce the 

concept of min (max)-CS module, where an R-

module M is called min(max)-CS module if 

every minimal closed submodule (every 

maximal closed submodule of M with nonzero 

annihilator) is a direct summand of M. 

        Many basic properties of min(max)-CS 

modules are considered in [7]. In this paper we 

turn our attention to the direct sum of 

min(max)-CS modules, where we notice that 

the direct sum of min(max)-CS modules need 

not be min(max)-CS modules. However we 

give many sufficient and necessary conditions 

under which this property valid. 

 

        We start with the following:  

 

1.1 Definition: [6] 

        An R-module M is called min-CS module 

if, every minimal closed submodule of M is a 

direct summand of M. 

        A ring R is called min-CS if it is min-CS 

R-module. 

 

1.2 Definition: [6] 

        An R-module M is called max-CS 

module, if every maximal closed submodule of 

M with nonzero annihilator is a direct 

summand of M. 

        A ring R is max-CS if it is max-CS R-

module. 

 

 

          We show that a direct sum of min-CS 

modules needs not to be min-CS module, as 

the following example shows: 

Each of ℤ2 and ℤ8 are min-CS modules, but          

M = ℤ2  ℤ8 is not min-CS. 



Inaam Mohammed Ali Hadi, Rana Noori Majeed 
 

03 

 

        We claim that the direct sum of max-CS 

modules need not be max-CS module, but we 

have no example to ensure this. 

 

        First we give the following: 

 

1.2 Proposition:         

        Let M1, M2 be R-modules and let              

M= M1  M2 such that annM1 + annM2 = R. 

Then 

1. M is a max-CS if M1, M2 are max-CS 

modules and the converse is true if M is not 

faithful. 

2. M is a min-CS module if and only if M1, M2 

are min-CS modules. 

Proof: 

(1) Let A be a maximal closed submodule of 

M with annA ≠ 0. Then by the same proof 

of [8, Proposition 4.2, Ch.1], A = B  C, 

where B  M1 and C  M2. 

We claim that B and C are maximal closed 

submodules in M1 and M2 respectively.  

First we shall prove that B and C are closed 

in M1 and M2 respectively. 

Suppose there exists B1  M1 such that          

B e B1. Since C e C, we get B  C e          

B1  C by [9, Proposition 5.20, p.75]. 

Hence B  C = B1  C, since A = B  C is 

a closed submodule of M. 

So B = B1. Thus B is a closed submodule of 

M1. 

Then by a similar way, C is closed in M2. 

To prove B is a maximal closed submodule 

of M1. 

Suppose there exists a closed submodule X 

of M1 such that B  X. 

Then B  C  X  C. But X  C is closed 

in M1  M2, by [10, Exc.15, p.20]. 

So B  C = X  C, since B  C is a 

maximal closed submodule of M1  M2=M. 

Hence B = X, and B is a maximal closed 

submodule of M1. 

By the same way we have C is a maximal 

closed submodule of M2. 

Now, annA = annB  annC ≠ 0, and this 

implies annB ≠ 0, annC ≠ 0. 

Thus there exists W1  M1 and W2  M2 

such that B  W1 = M1 and C  W2 = M2. 

Hence (B  W1)  (C  W2)= M1 M2=M. 

Then (B  C)  (W1  W2) = M. 

Thus A  (W1  W2) = M, that is A is a 

direct summand of M. 

Thus M is a max-CS module. 

The converse follows by [7, Corollary 1.22]. 

(2) By a similar proof of (1), M is min-CS if 

M1, M2 are min-CS, and the converse 

follows by [7, Corollary 1.16].  

 

 

        Recall that an R-module M is called 

distributive if A  (B + C) =(A  B)+(A  C) 

for all submodules A, B and C of M, [11]. 

 

        Now, we give another condition under 

which, the direct sum of max-CS is max-CS. 

 

1.3 Proposition: 

        Let M be a distributive R-module such 

that M = M1  M2 with M1, M2  M. Then M 

is a max-CS if M1 and M2 are max-CS and the 

converse holds if M is not faithful. 

Proof:  

        If M1 and M2 are max-CS modules. 

To prove M is max-CS. 

Let K be a maximal closed submodule of M 

with annK ≠ 0. 

Since M is a distributive, then K = (K  M1)  

(K  M2). 

Now, we claim that K  M1 and K  M2 are 

maximal closed in M1 and M2 respectively. 

Suppose there exists a submodule B of M1 

such that K  M1  e B. But K  M2  eKM2. 

Hence K=(K  M1)(K  M2)  e B(KM2) 

by Proposition [9, Proposition 5.20, p.75]. 

Since K is closed, it follows that 

(K  M1)  (K  M2) = B  (K  M2). 

So that K  M1 = B. Thus K  M1 is a closed 

submodule in M1. 

Similarly, KM2 is a closed submodule in M2. 

Now, we shall prove that K  M1 is a maximal 

closed submodule in M1. 

Suppose there exists a closed submodule C in 

M1 such that (K  M1)  C. 

Hence K=(K M1)  (K  M2)C  (KM2), 

but C  (K  M2) closed in M, by [10, Exc.15, 

p.20]. 

Thus K=(K  M1) (K  M2)=C  (K  M2), 

since K is a maximal closed submodule in M. 

This implies  K  M1 = C and so K  M1 is a 

maximal closed submodule of M1. 

Similarly, K  M2 is a maximal closed 

submodule of M2. 

Moreover, annK≠ 0 and ann K = ann(K  M1) 

 ann(K  M2) ≠ 0. 

Hence ann(K  M1)≠ 0 and ann(K  M2) ≠ 0. 
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On the other hand, M1 and M2 are max-CS 

modules. Then K  M1 is a direct summand in 

M1 and K  M2 is a direct summand in M2.  

So that M1 = (K  M1)  A1 for some A1 M1, 

and M2 = (K  M2)  B1 for some B1  M2. 

Then 

M=M1M2=[(K  M1)A1][(K  M2)B1] 

                  = [(KM1)(K  M2)](A1  B1) 

                  = K  (A1  B1) 

So that K is a direct summand of M. 

Hence M is a max-CS module. 

        The converse follows by [7, Corollary 

1.22]. 

 

        We obtain a similar result for min-CS 

modules but first we prove the following 

lemma. 

 

1.4 Lemma: 
        Let M be an R-module, such that            

M = M1  M2, where M1, M2 ≤ M and K is a 

minimal closed submodule of M. 

Then either K  M1 = 0  or  K  M2 = 0. 

Proof:  

        Suppose K  M2 ≠ 0, then K  M2  K. 

Then there exists a closed submodule H of K 

such that K  M2 ≤ e H, by [10, Exc.13, p.20]. 

But M1 ≤ e M1, so (K  M2)  M1 ≤e H  M1, 

by [10, Proposition 1.1, p.16-17], and hence     

0 ≤e H  M1. Thus H  M1 = 0. 

On the other hand, H is closed in K and K 

closed in M. Then H is closed in M, by           

[10, Proposition 1.5, p.18]. 

But K is minimal closed in M, so that K = H. 

Hence K  M1 = 0. 

 

1.5 Proposition:  

      Let M be an R-module such that 

M=M1M2 with M1  M, M2  M and M is 

distributive. Then M1 and M2 are min-CS if 

and only if M is min-CS. 

Proof:  

() To prove M is a min-CS. Let K be a 

minimal closed submodule of M. 

Then K = (K  M1)  (K  M2), since M is a 

distributive. 

So that by Lemma 1.4, either K  M1 = 0  or         

K  M2 = 0.  

Assume K  M2=0, then K = K  M1 and 

hence K  M1. 

But K  M1 and K is minimal closed in M 

implies K is minimal closed in M1. 

To explain this: 

If K ≤e L and L ≤ M1. Then L ≤ M and           

K ≤e L ≤ M. 

So K = L since K is closed in M. Thus K is 

closed in M1. 

Now, assume there exists a closed submodule 

H in M1 such that H ≤ K. 

Since H is closed in M1, then H is closed in M, 

by [10, Proposition 1.5, p.18]. But K is a 

minimal closed in M. So that H = K. 

Hence K is a minimal closed submodule in M1. 

But M1 is a min-CS module. 

So K is a direct summand in M1. 

Therefore, there exists a submodule W of M1 

such that K  W = M1. 

Thus M = M1  M2 = (K  W)  M2 

                                = K  (W  M2) 

So that K is a direct summand in M. 

Hence M is a min-CS module. 

() It follows by [7, Corollary 1.16]. 

 

1.6 Proposition:  

        Let M be an R-module. M = i
i I

M

 , Mi is 

a max-CS module for each i  I, such that 

every maximal (minimal) closed submodule in 

M is fully invariant. Then M is a max-CS 

(min-CS) module. 

Proof:  

        Let S be a maximal closed submodule of 

M, and let i: M  Mi be the natural 

projection on Mi for each i  I. 

Let xS, then 
i

i I

x m


  , miMi and i(x) = mi. 

Since S is a maximal closed in M, then by our 

assumption, S is fully invariant and hence        

i(S)  S  Mi. 

So, i(x) = mi S  Mi and hence x(SMi). 

Thus S  (S  Mi). 

But (S  Mi)  S, therefore S = (S  Mi). 

Since (S  Mi) is summand in S, then (S  Mi) 

is closed in S, by [10, Exc.3, p.19]. But S is 

closed in M, so (S  Mi) is closed in M, by 

[10, Proposition 1.5, p.18]. 

We claim that (SMi) is maximal closed in 

Mi. 

To prove our assertion 

Suppose there exists a closed submodule Bi in 

Mi (for each i  I), such that S  Mi  Bi. So 

i i
i I i I

(S M ) B
 
    .Hence, i

i I
S B


  . 
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But i
i I

B

  is closed in M = i

i I
M


 , by [10, 

Exc.15, p.20], and S is a maximal closed, then 

i
i I

S B


  , that is i i
i I i I

(S M ) B
 
    . 

So S  Mi = Bi for each i  I; thus S  Mi is a 

maximal closed submodule of Mi. Which 

implies that S  Mi is a direct summand of Mi, 

since Mi is a max-CS module. Then                 

S = i
i I

(S M )

   is a direct summand of  

i
i I

M

 = M. 

Hence M is a max-CS module. 

        Let S be a minimal closed submodule of 

M. By the same argument of the first 

paragraph, for each i  I ,   S ∩ Mi is a closed 

submodule of M. 

But  S∩MiS, hence S∩Mi = S; that is S  Mi 

for any i  I.  

On the other hand, S is a closed in M and          

S  Mi implies that S is a closed in Mi for all        

i  I. 

To prove S is minimal closed in Mi, for all iI. 

Suppose there exists Bi  S, i  I, Bi is a 

closed in Mi.  

But Mi is a closed in M, hence Bi is a closed in 

M, by [10, Proposition 1.5, p.18]. 

Thus Bi = S and so S is minimal closed in Mi. 

Hence there exists Hi ≤ Mi such that SHi=Mi 

for all i  I. Thus (S  Hi )= i
i I

M

 =M, 

Hi≤Mi. Hence S  (iI Hi) = M. 

So S is a direct summand of M and M is a min-

SC module. 

        By [10, Exc.13, p.20], for any N ≤ M, 

there exists a closed submodule H of M such 

that N ≤e H. Sometimes, H is called a closure 

of N, See [4]. 

 

        The following definition is given in [4]: 

 

1.7 Definition: [4] 

        An R-module M is called an UC-module 

if each of its submodules has a unique closure 

in M. 

 

1.8 Remark: 

       Every uniform R-module M is UC-

module, since (0) and M are the only closed 

submodules of M. Thus (0) is the unique 

closure of  0  and for each N ≤ M, N  (0)  M 

is the unique closure of N. 

 

        Now, we give the following result: 

 

1.9 Proposition:  

        Let M = M1  M2 be an UC-R-module, 

with M1, M2 ≤ M. Then M is a min-CS if and 

only if M1 and M2 are min-CS modules. 

Proof:  

() It is clear by [7, Corollary 1.16]. 

() Suppose that both of M1 and M2 is min-

CS module. 

To prove M is a min-CS module. 

Let N be a min-closed submodule of M. 

Then by Lemma 1.4 N  M1=0  or  N  M2=0. 

Suppose N  M2 ≠ 0. 

Now, N is a closed submodule in M and M2 is 

a closed submodule of M, therefore by [4, 

Lemma 1.3 (ii), p.70] we have N  M2 is 

closed in M2. 

Now, we claim that N  M2 is a minimal 

closed submodule in M2. 

For this, suppose there exists a closed 

submodule U of M2 such that U  N  M2. 

But M2 closed in M, since every direct 

summand is closed, by [10, Exc.3, p.19]. 

Therefore, U is closed submodule in M, by 

[10, Proposition 1.5, p.18]. 

But U ≤ N  M2 ≤ N, and N is a minimal 

closed submodule in M. 

So that U = N thus N  M2 = U = N. 

Thus N is a submodule of M2, since U = N. 

Hence N is a minimal closed submodule in M2. 

But M2 is a min-CS module. Therefore N is a 

direct summand of M2. 

Hence, there exists a submodule K of M2 such 

that N  K = M2. It follows that (N K)M1= 

M2 + M1 = M, so N  ( K  M1) = M. 

Therefore N is a direct summand of M. 

Hence M is a min-CS module. 

 

1.10 Remark:  

        The condition M is UC cannot be dropped 

from the Proposition 1.9, as the following 

example shows: 

 

1.11 Example:  

        Let M be the ℤ-module M = ℤ8ℤ2.  

M is not UC-module, since there exists                

N = <( 4, 0 )> = {( 4, 0 ),( 0, 0 ) }, N ≤e ℤ8(0) 

where ℤ8(0) is a closed submodule of M, 

also N ≤e W = < ( 1,1 ) > = {( 1,1 ),( 2, 0 ), 

(3,1) ,( 4, 0 ),( 5,1 ),( 6, 0 ),( 7,1 ),( 0, 0 )}. 

However as we noticed before M is not a min-

CS module and each of ℤ8, ℤ2 is a min-CS 

module. 
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1.12 Definition: [2, p.22] 

        An R-module M is called -extending 

(respectively, finitely or countably -

extending) if every (finite, countable) direct 

sum of copies of M is extending. 

 

        Similarly Al-Hazmi in [6, p.25] defined 

the following: 

        An R-module M is -min-CS (finitely, 

countably  min-CS) if every (finite, 

countable) direct sums of copies of M is min-

CS. There exists a commutative ring R such 

that R (as R-module) is CS, but R is not 

finitely -CS. [6] 

Also there exists a regular ring R such that R is 

countably -CS but R is not -CS, [6]. 

 

        Similarly, we can define the following: 

        An R-module M is said to be -max-CS 

(respectively finitely or countably -max-CS) 

if every (respectively finitely or countably) 

direct sum of copies of M is max-CS. 

 

        Now, we can give the following result: 

 

1.13 Proposition:  
        A ring R is min (max)-CS if and only if R 

is finitely  min (max)-CS. 

Proof:  

() If R is min-CS. To prove R  R  … R 

for n-times is min-CS. 

With out loss of generality, we can take n = 2. 

Let K be a minimal closed ideal in R  R. 

Then K = I  J for some ideals I and J of R. 

It follows that I and J are minimal closed ideals 

of R. To see this: 

Assume I ≤ e H, H is an ideal of R. 

Then I  J ≤ e H  J by [9, Proposition 5.20, 

p.75]. So that I  J = H  J, since I  J is 

closed in R  R. Then I = H. 

Hence I is closed ideal in R. 

Similarly, we can prove J is closed in R. 

Now, to prove I is a minimal closed ideal in R, 

let K be a closed ideal in R such that K  I. 

Then K  J  I  J. 

Hence K  J = I  J, since I  J is a minimal 

closed ideal in R  R. 

Thus K=I, and I is a minimal closed ideal in R. 

Similarly, J is a minimal closed ideal in R. 

Hence each of I and J is a direct summand of 

R, since R is a min-CS ring. 

Thus I  I1 = R, J  J1 = R for some ideals I1, 

J1 of R. It follows that: 

R  R = (I  I1)  (J  J1) 

           = (I  J)  (I1  J1) 

Therefore I  J is a direct summand of R  R. 

Hence R  R is a min-CS ring. 

() It is clear by [7, Corollary 1.16].  

 

        A similar proof can be given for finitely 

-max-CS. 

 

        By similar proof we have: 

 

1.14 Remark:  

        For any ring R, R is CS if and only if R is 

finitely -CS. 
 

1.15 Example:  
        Every uniform ring is CS and hence min-

CS and max-CS. Then 

n times

R R ... R



    is CS 

and hence min-CS and max-CS. 

        As particular case each of ℤ  ℤ  … 

ℤ, ℤ8  ℤ8  … ℤ8 is CS and hence min-

CS and max-CS. 

 

1.16 Corollary:  

        Let R be a nonsingular ring. Then the 

following statements are equivalent: 

(1) R is min-CS. 

(2) R is max-CS. 

(3) R is finitely -min-CS. 

(4) R is finitely -max-CS. 

Proof:  

(1)  (2): It follows by [7, Theorem 1.33]. 

(1)  (3): It follows by Proposition 1.13 

(2)  (4): It follows by Proposition 1.13. 

 

1.17 Proposition:  

        Let R be a ring, then the following are 

equivalent: 

(1) R is  min-CS ( max-CS). 

(2) Every projective R-module M is min 

(max)-CS, such that annM ≠ 0. 

Proof:  

        () Suppose that R is  min (max)-CS. 

To prove every projective R-module is a min-

CS (max-CS). Let M be a projective R-

module. Then by [12, Theorem 5.4.1, p.120] 

there exists a free R-module F and an 

epimorphism f: F  M, but F is free so          

F = 
i I

R

  for some index I. 
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Now, consider the following short exact 

sequence: 
i f

I
0 ker f R M 0     

where i is the inclusion map.  

Since M is projective, then the sequence splits. 

Thus 
I

R ker f M   .  

But 
I

R  is min-CS (max-CS).  

Therefore, by [7, Corollary (2.1.16)] M is min-

CS (max-CS). 

() By [12, Theorem 5.3.4(b),p.118], 
I

R  is 

projective. So 
I

R  is min (max)-CS by 

condition (2). 

 

        By using a similar argument we can prove 

the following: 

 

1.18 Proposition:  

        Let R be a ring. The following statements 

are equivalent: 

(1) R is finitely  min (max)-CS. 

(2) Every finitely generated projective R-

module is min(max)-CS. 

 

      Recall that, an R-module M has a uniform 

dimension (briefly U-dim) if M does not 

contain an infinite direct sum of nonzero 

submodules, [2, p.40].  

      Also Goodearl, see [10, p.79, p.86], gave 

the name finite dimensional module for 

module with finite uniform dimension.  

        First we give the details of the proof of 

the following lemma. 

 

1.19 Lemma: [2, Lemma 7.7, p.58] 

        Let M be a min-CS R-module, and let K 

be a closed submodule of M with finite 

uniform dimension. Then K is a direct 

summand of M. 

Proof:  

         Since K has a finite uniform dimension. 

Then there exists a submodule U of K such 

that U is a uniform closed of K, (since by the 

definition of a finite uniform dimension K has 

a uniform submodule say N and by [10, 

Exc.13, p.20] there exists a closed submodule 

U of K such that N ≤e U. It follows that U is 

uniform) ; that is U is a minimal closed 

submodule of K, by [7, Lemma 1.6]. 

Thus U closed in K and K closed in M. 

Therefore U closed in M, by [10, Proposition 

1.5, p.18]. 

But U is a minimal closed in K, so U is a 

minimal closed in M. 

Hence U is a direct summand of M, since M is 

a min-CS module. 

Hence M = U  U' for some U' ≤ M. 

Thus K = K  (U  U'), which implies that K 

= U  (K  U') by modular law. 

So K  U' is a closed submodule of K, by        

[10, Exc.3, p.19]. 

Again, since K is closed in M, we get (K  U') 

closed in M, by [10, Proposition 1.5, p.18]. 

Now, we shall use induction to prove K is a 

direct summand. 

Since U – dim(K  U') ≤ U – dim(K), by 

Theorem [10, p.87]. 

Hence K  U' is a direct summand of M. 

Therefore, M=(K  U')  W for some W≤M. 

So that U' = U'  [(K  U')  W]. 

Then U' = (K  U')  (U'  W), by modular 

law. 

But M = U  U', so that 

M = U  [(K  U')  (U'  W)] 

    = [U  (K  U')]  (U'  W) 

That is M = K  (U'  W). 

Thus K is a direct summand of M. 

 

1.20 Corollary: [2, Corollary 7.8, p.59], 

                           [6, Lemma 2.1.4, p.32] 

        Let M be an R-module with finite uniform 

dimension. Then M is CS if and only if M is a 

min-CS. 

Proof:  

() It is clear. 

() Suppose M is a min-CS module. 

To prove M is a CS-module. 

Let K be a closed submodule of M. 

Then by [2,5-10, p.41] U–dim(K)≤U–dim(M). 

But M has finite uniform dimension, so K has 

finite uniform dimension.  

Hence K is a direct summand of M by Lemma 

1.19. Therefore, M is a CS-module. 

 

        Recall that for a faithful multiplication R-

module M, M has finite uniform dimension if 

and only if R has finite uniform dimension, see 

[13, Theorem 2.15]. 

        Hence we get the following: 

 

1.21 Corollary:  

        Let M be a faithful finitely generated 

multiplication over a finite uniform dimension 

R. Then the following are equivalent: 

(1) M is a min-CS module. 

(2) R is a CS-ring. 
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(3) R is a min-CS ring. 

(4) M is a CS-module. 

Proof:  

(1)  (3) It follows by [7, Proposition 1.30]. 

(2)  (3) It follows by Corollary 1.20. 

(1)  (4) It follows by [13, Theorem 2.15, and 

Corollary 2.2.19].   

 

 

 

1.22 Corollary:  

        Let M be a min-CS module. M has a 

finite uniform dimension if and only if M is a 

finite direct sum of uniform submodules. 

Proof:  

() If M is min-CS and M has a finite uniform 

dimension, then M is CS by Corollary 1.20. 

Then M is a finite direct sum of uniform 

submodules, by [14, Lemma 6.43, p.222]. 

() Suppose M has no finite uniform 

dimension, so for each V ≤e M, V is not a 

finite direct sum of uniform submodules, by 

[10, p.87]. But this is a contradiction, since          

M ≤e M and M is a finite direct sum of 

uniform submodules. 

Hence M has a finite uniform dimension. 

 

        Recall that, an R-module M is 

indecomposable if the only direct sum 

decompositions M = A  B are those in which 

either A = 0 or B = 0, [10, p.4]. 

 

1.23 Corollary:  

        Let M be an indecomposable R-module. 

Then M is CS if and only if M is min-CS. 

Proof:  

        It follows directly by Corollary 1.20, 

since every indecomposable module has a 

finite uniform dimension, see [2, p.40]. 

 

        Recall that, a Goldie ring is a ring with 

finite uniform dimension such that the 

annihilator ideal satisfying the ACC,           

[10, p.97]. 

 

1.24 Corollary:  

        Let R be a Goldi ring. Then R is CS if and 

only if R is min-CS. 

Proof:  

         It follows by Corollary 1.20. 

 

1.25 Corollary:  

        Let R be semiprime Goldie ring. Then the 

following statements are equivalent: 

(1) R is finitely  min-CS. 

(2) R is finitely -CS. 

(3) R is CS. 

(4) R is min-CS. 

(5) R is max-CS. 

(6) R is finitely  max-CS. 

Proof:  

(3)  (4): It follows by Corollary 1.24. 

(1)  (4): It follows by Proposition 1.13. 

(2)  (3): It follows by Remark 1.14. 

(4)  (5): Since R is semiprime then R is 

nonsingular, by [10, Corollary 3.32, p.97]. 

Hence the result follows by [7, Theorem 1.33]. 

(5)  (6): It follows by Proposition 1.13. 

 

We end this paper by the following examples: 

 

1.26 Examples:  

(1) The ℤ-module M = ℤp  Q, where p is a 

prime number. M is not a CS-module. See 

[4, Example 1.2, p.70]. But M has a finite 

uniform dimension; therefore M is not a 

min-CS module, by Corollary 1.20. 

 

(2) The ring 
2 2

R
0

 
  
 

, RR is not CS by 

[5, p.1248]. But R has a finite uniform 

dimension, th`us R is not min-CS ring by 

Corollary 1.20. 
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 صغرر أعظمن  هاااا  الووا لأ رالوباشالوجووع حول 

 

 رنا نوري هجيذ هادي، انعام هحوذ ظلي
 

 جاهؼت بغداد -ابي الهيثن  -كليت التزبيت -قسن الزياضياث 

 

 

 الوسوخلص:

في هذا البحث ًقىم بدراست الوجوىع الوباشز لاصغز         

صغز وىع الوباشز لا)اػظن( هقاساث التىسغ. ًلاحظ اًه الوج

تىسغ ليس بالضزورة اى يكىى اصغز )اػظن( )اػظن( هقاس 

ًقىم باػطاء الؼديد هي الشزوط الكافيت التي هقاس تىسغ. لهذا 

 تىسغال اثاى الوجوىع الوباشز لاصغز )اػظن( هقاس تحقق

 .تىسغال اثهي اصغز )اػظن( هقاس

 

 

ػظن هقاس تىسغ، أصغز هقاس تىسغ، أ الكلوا  الوفواحية:

 هٌتظن.بؼد هقاس تىسغ، 

 

 


