Near Prime Spectrum

Prof. Dr. Hadi. J. Mustafa

University of Kufa- College of Mathematics and Computer Sciences-

Department of Mathematics

Ameer Mohammad-Husain Hassan

University of Kufa- College of Mathematics and Computer Sciences-

Department of Mathematics

Email Address : mameer57@yahoo.com

Abstract:

Let *R* be a commutative ring with identity . It is well known that a topology was defined for $Spec(R) = \{I: I \text{ is a prime ideal of } R\}$ called the Zariski topology (prime spectrum). In this paper we will generalize this idea for near prime ideal . If *N* be a commutative near-ring with identity, P_N be a near prime ideal of *N* and define

 $Spec(N) = \{P_N: P_N \text{ is a near prime ideal } \}$. Then Spec(N) can be endowed with a topology similar to the Zariski topology which is called near Zariski topology (near prime spectrum). we studies and discuss some of properties of such topology.

Keywords : prime ideal ;near prime ideal ;prime spectrum ; near prime spectrum .

1-Introduction.

Let *R* be a ring with identity. The theory of the prime spectrum of R where Spec(R) ={*I*: *I* is a prime ideal of *R*} has been form 1930. The modern theory was developed by Jacobson and Zariski mainly [3]. A topology was defined on Spec(R) as follows : For each ideal E of R if $V(E) = \{P \in Spec(R): E \subseteq P\}$, then the collection $\xi = \{V(I): I \text{ is an ideal of } R\}$ satisfies the axioms of closed subset of a topology for X(R) = Spec(R), called the Zariski topology for Spec(R) [11 p. 100-101]. In 1992 this idea generalized for modules by P. A. Hummadi [12] . She proved that, if M is a

multiplication *R*-module (*R* is a commutative ring with identity) or more generally a locally cyclic module , then Spec(M) =

 ${P:P is a prime submodule of M}$ can be endowed with a topology similar to the Zariski topology . later , in 1994 [13] , the prime spectrum for modules was studied , some new results were given . Chin-pi L. (1995)[9] , Chinpi L. (1999)[10] , have studied Zariski topology on the prime spectrum of a module .

In this work we generalize this idea for near prime ideals . Let N be a commutative near ring with identity . If Spec(N) is the set of all near prime ideals of N, for a subset E of N we definedV(E) as the set of all near prime ideal containing E. Some properties of the sets V(E)are given . it is shown that Spec(N) can be endowed with a topology similar to the Zariski topology which is called near prime spectrum topology . Some properties of the space Spec(N) are given. It is shown, how some algebraic properties of N are reflected on the topological properties of Spec(N). We are show that Spec(N) is compact space, T_0 space and any near-ring homomorphism $\varphi: N_1 \to N_2$ induces a continuous map $\varphi^*: Spec(N_2) \rightarrow$ $Spec(N_1)$ define by $\varphi^*(P_N) = \varphi^{-1}(P_N)$ where P_N is a near prime ideal of N_2 .

2-Some definitions and construction of the Near Prime Spectrum .

Definition 2.1. [14]

Let *N* be a nonempty set with two binary operations (+), (.). (N, +, .) is called nearring if and only if :

- 1. (*N*,+) is a group (not necessarily commutative).
- (N,.) is a semi group, that is, (.) is closed on N and satisfies the associativety.
- 3. For all $n_1, n_2, n_3 \in N$; $(n_1 + n_2).n_3 = n_1.n_3 + n_2.n_3$ (right distributive law)

This near-ring will be termed as right near-ring . If $n_1 \cdot (n_2 + n_3) = n_1 \cdot n_2 + n_1 \cdot n_3$ instead of condition (3) the set N satisfies, then we call N a left near-ring.

If 1.n = n (n.1 = n) then N has a left identity(right identity). If (N, +) is abelian, we call N an abelian near-ring. If (N, .) is commutative we call N itself a commutative near-ring [14]. Clearly if N is commutative near-ring then left and right distributive law is satisfied and 1.n = n.1 = n, N is called unital commutative near-ring.

In this paper the word (N be a near-ring) shall mean a unital commutative near-ring.

Definition 2.2. [14]

Let (N, +, .) and $(N_1, +', .')$ be two nearrings then $h: N \to N_1$ is called a near-ring homomorphism if for each $m, n \in$ N, h(m + n) = h(m) + h(n) and $h(m, n) = h(m) \cdot h(n)$, and h is said to be unital if h is near-ring homomorphism and $h(1_N) = 1_{N_1}$.

Definition 2.3. [7]

A nonempty subset A of N is called Nsubgroup of N, if (A, +) is a sub group of (N, +) and $NA \subseteq A$.

Definition2.4. [14]

Let N be a near-ring, $n \in N$, we say that n is a nilpotent if $n^m = 0$ for some m > 0

Definition2.5.

Let *N* be a near-ring with identity, for $x \in N$, *x* is called a unit if it has inverse for (.), i.e., there exists $x^{-1} \in N$ such that $x \cdot x^{-1} = x^{-1} \cdot x = 1$.

Definition2.6. [14]

Let *N* be a near-ring and I_N is a nonempty subset of *N* . (I_N , +,.) is called an ideal of *N* if and only if :

1- $(I_N, +)$ is normal subgroup of (N, +).

2- $I_N N \subseteq I_N$ and for all $n, n_1 \in N$ and for all $i \in I_N, n(n_1 + i) - nn_1 \in I_N$.

If $(I_N, +)$ is normal subgroup of (N, +)and $I_N N \subseteq I_N$ then $(I_N, +, .)$ is called right ideals of N while $(I_N, +)$ is normal subgroup of (N, +) with for all $n, n_1 \in N$ and for all $i \in I_N, n(n_1 + i) - nn_1 \in I_N$ are called left ideals.

Definition2.7. [5]

Let *N* be a near-ring and I_N be a subset of *N*. We write $\sqrt{I_N} = \{x \in N : x^k \in I_N \text{ for some positive integer } k\}$. Then $\sqrt{I_N}$ is called radical set. If *N* is an abelian near-ring then $(\sqrt{I_N}, +, .)$ is a near ideal.

Definition2.8.

Let *N* be a near-ring and S_N is a proper near ideal of *N*, then S_N is called a near primary ideal if $a.b \in S_N$ with $a \notin S_N$ implies $b^n \in S_N$ for some positive integer *n*.

Definition2.9. [14]

Let P_N be a proper near ideal of $N.P_N$ is called a near prime ideal if for each near ideal P_{1N}, P_{2N} of N and $P_{1N}, P_{2N} \subseteq P_N$ implies $P_{1N} \subset P_N$ or $P_{2N} \subset P_N$.

Remark 2.10.

- 1. Every near prime ideal is a near primary ideal.
- 2. If *N* is a abelian near-ring and I_N is a primary near ideal of *N*, then the near ideal $(\sqrt{I}, +, .)$ is a near prime.
- 3. A proper near ideal P_N of the near-ring N is a near prime ideal if for all

 $a, b \in N, a. b \in P_N$ implies either $a \in P_N$ or $b \in P_N$.

Definition 2.11. [14]

Let *N* be a near-ring, *N* is a near integral domain if *N* has no non-zero divisors of zero .i.e. *N* be a near-ring and there exist element ahas this properties . Let $a \in N$, $a \neq 0$, there exist $b \in N$, $b \neq 0$ and $a \cdot b = 0$.

Definition 2.12. [1]

Let *N* be a near-ring, I_N be a near ideal of *N*. Let $N/I_N = \{n + I_N, n \in N\}$ be the set of cosets of I_N in *N*. then $(N/I_N, +, .)$ is called the quotient near-ring of *N* or over I_N , where +and . are defined by $(n_1 + I_N) + (n_2 + I_N) =$ $(n_1 + n_2) + I_N$ and $(n_1 + I_N) \cdot (n_2 + I_N) =$ $(n_1 \cdot n_2) + I_N$ for all n_1 , n_2 in *N*.

Definition 2.13.

Let *N* be a near-ring and I_N be a near ideal of *N*, then the function $nat_{I_N}: N \to N/I_N$ is called natural near-ring homomorphism defined as $nat_{I_N}(x) = x + I_N$ for each $x \in N$. It is clear that the function nat_{I_N} is a near-ring homomorphism, denoted by π_{I_N} .

Proposition 2.14. [1]

Let N be a near-ring and P_N be a proper near ideal in N. Then, P_N is a prime near ideal if and only if N/P_N is a near integral domain.

Definition 2.15.

A near ideal M_N of the near-ring N is called a near maximal ideal provided that $M_N \neq N$ and whenever J_N is a near ideal of Nwith $M_N \subset J_N \subseteq N$, then $J_N = N$.

Definition 2.16 [14]

Let $(F_N, +, .)$ be a near-ring we say that $(F_N, +, .)$ be a near-field if $(F_N - \{0\}, .)$ is a group.

Definition 2.17. [14]

Let I_N be a near ideal of N; the prime radical of I_N denoted by $P(I_N) = \bigcap_{I_N \subseteq P_N} P_N$.

Theorem2.18. [1]

Let M_N be a near ideal in a near-ring N, then N/M_N is a near field if and only if M_N is a near maximal ideal.

Proposition 2.19. [1]

In near-ring every near maximal ideal is a near prime ideal .

Proposition 2.20.

Let spec (N) be the set of all near prime ideal , let $V(E) = \{P_N \in Spec(N) : E \subset P_N\}$ then,

- 1. $V(0) = Spec(N), V(1) = \emptyset$.
- 2. If $(E_i)_{i \in I}$ is any family subset of N. Then $V(\bigcup_{i \in I} E_i) = \bigcap_{i \in I} V(E_i)$

3. $V(I_N \cap J_N) = V(I_N J_N) = V(I_N) \cup$ $V(J_N)$. For any I_N, J_N is a near ideal of N.

<u>**Proof</u> :-**</u>

1. Since $\{0\} \subset P_N$ for every near prime ideal P_N , then V(0) = Spec(N), let $V(1) \neq \emptyset$ so there exist P_N is a near prime ideal such that $P_N \in V(1)$ and $\{1\} \subset P_N$. So $1 \in P_N$, this is a contradiction because P_N is a near prime ideal then $1 \notin P_N$, so $V(1) = \emptyset$.

2. $P_N \in V(\bigcup_{i \in I} E_i) \iff \bigcup_{i \in I} E_i \subseteq P_N \Leftrightarrow E_i \subseteq P_N$, for each $i \in I \Leftrightarrow P_N \in V(E_i)$, for each $i \in I \Leftrightarrow P_N \in \bigcap_{i \in I} V(E_i)$.

3. If P_N is a near prime ideal of N, and if $P_N \notin V(I_N)$ and $P_N \notin V(J_N)$ then the sets $I_N \setminus P_N$ and $J_N \setminus P_N$ are nonempty. Let $x \in I_N \setminus P_N$ and $y \in J_N \setminus P_N$, then $xy \in I_N J_N \setminus P_N$, and therefore $P_N \notin V(I_N J_N)$. It follows from this that $V(I_N J_N) \subset V(I_N) \cap V(J_N)$. But also $I_N J_N \subset I_N \cap J_N$, $I_N \cap J_N \subset I_N$ and $I_N \cap J_N \subset J_N$, and therefore $V(I_N \cap J_N) \subset V(I_N J_N)$. Thus $V(I_N) \cup V(J_N) \subset V(I_N \cap J_N)$ And therefore $V(I_N \cap J_N) \subset V(I_N \cap J_N) \subset V(I_N \cap J_N) \subset V(I_N) \cap V(J_N)$. And therefore $V(I_N \cap J_N) = V(I_N J_N)$.

Definition 2.21.

Let N be a near-ring, spec(N) be the set of all near prime ideal of N is called near prime spectrum. And let E be a subset of N : define V(E) as the set of all near prime ideal containing *E*. Then collection of all V(E) satisfies topological space is called a near Zariski topology on *Spec* (*N*) and denoted by \mathcal{T} . In $N = \{0, 1, 2, 3, 4, 5, 6, 7\}$, define + and \cdot as follows :-

+	0	1	2	3	4	5	6	7
0	0	1	2	3	4	5	6	7
1	1	2	3	0	5	6	7	4
2	2	3	0	1	6	7	4	5
3	3	0	1	2	7	4	5	6
4	4	7	6	5	0	3	2	1
5	5	4	7	6	1	0	3	2
6	6	5	4	7	2	1	0	3
7	7	6	5	4	3	2	1	0

•	0	1	2	3	4	5	6	7
0	0	0	0	0	0	0	0	0
1	0	1	0	1	0	1	1	0
2	0	2	0	2	0	2	2	0
3	0	3	0	3	0	3	3	0
4	4	4	4	4	4	4	4	4
5	4	5	4	5	4	5	5	4
6	4	6	4	6	4	6	6	4
7	4	7	4	7	4	7	7	4

Let $P_1 = (0), P_2 = (3), P_3 = (5), P_4 = (7)$ are a near prime ideal and let Spes(N) = $\{P_1, P_2, P_3, P_4\}$, $V(E) = \{P \in Spec(N), E \subset P\}$. Then (Spec(N), V(E)) is a near Zariski Topology.

Note 2.22.

- 1. If $(E_i)_{i \in \Lambda}$ is a family of near ideals then $\bigcap_{i \in \Lambda} V(E_i) = V(\sum_{i \in \Lambda} E_i).$
- 2. Let *N* be a unital commutative near-ring . Each element *f* of *N* determines an open subset H(f) of Spec(N), where $H(f) = \{P_N \in Spec \ N : f \notin P_N\}$, i.e., this open set is the complement of closed set consisting of all near prime ideal of *N* that contain the near ideal (*f*) generated by the element *f* of *N*. Note that $H(f) \cap H(g) = H(fg)$ for all elements *f* and *g* of *N*. Indeed let P_N be any near prime ideal of *N*. Then $fg \notin P_N$ if and only if $f \notin P_N$ and $g \notin P_N$. Thus $P_N \in H(fg)$ if and only if $P_N \in H(f)$ and $P_N \in H(g)$.
- 3. Let I_N be a near ideal of the near-ring N. Then $Spec(N) \setminus V(I_N) =$ $\{P_N \in Spec(N): I_N \not\subset P_N\} =$ $\bigcup_{f \in I_N} \{P_N \in Spec(N): f \notin P_N\} =$ $\bigcup_{f \in I_N} H(f)$. It follows that the collection of subset of Spec(N) that are of the form H(f) for some $f \in N$ is a basis for the topology of Spec N, since each open subset of Spec(N) is a union of open set of this form.
- 4. Given any collection {I_λ : λ ∈ Λ }of near ideals of N, we can form their sum ∑ I_λsuch that λ ∈ Λ , which the near ideal consisting of all elements of N that can be expressed as a finite sum of the form x₁ + x₂ + … + x_r where each

summand x_i is an element of some near ideal I_{λ_i} belonging to the collection.

- 5. Give any two near ideals I_{1N} and I_{2N} of N
 , we can form their product I_{1N}I_{2N}. This near ideal I_{1N}I_{2N} is the near ideal of N consisting of all elements of N that can be expressed as a finite sum of the formx₁y₁ + x₂y₂ + … + x_ry_k withx_i ∈ I_{1N} andy_i ∈ I_{2N} for i = 1,2, ..., r.
- 6. Since $R \subseteq N$ clearly that $Spec(R) \subseteq$ Spec(N).

Lemma2.23.

Let N be a near-ring , I_N, J_N are a near ideals then :

- 1. $V(I_N) \subseteq V(J_N)$ if $J_N \subseteq I_N$.
- 2. $V(I_N) \subseteq V(J_N)$ if and only if $P(J_N) \subseteq P(I_N)$.

Lemma2.24.

Let Spec(N) be a near Zariski topology and (0) be a prime ideal then ;

- 1. $H(f) = \emptyset$ if and only if f is near nilpotent.
- H(f) = Spec(N)if and only if f is a near unit.
- 3. Let I_N be a near ideal of N then $P(I_N) = \{f \in N : H(f) \cap V(I_N) = \emptyset\}.$

Proof :-

1-Let $H(f) = \emptyset$, then V(f) = V(0), by lemma (2.23), P(f) = P(0). So $f^n = 0$. Thus , f is a near nilpotent . Conversely ; let $f^n = 0$ for some $n > 0 \Longrightarrow f = 0 \Longrightarrow f \in P(0)$ then $f \in P_N$ for all P_N is near prime ideal. Then $H(f) = \emptyset$.

2-Let $H(f) = Spec(N) \Longrightarrow f \notin P_N$ for all $P_N \in Spec(N) \Longrightarrow 1 \in (f)$, (since every $I_N \subsetneq N$ there exist a maximal near ideal M_N such that $I_N \subseteq M_N$). Thus f is near unit.

Conversely ; let f is a near unit \Rightarrow $f.f^{-1} = 1 \Rightarrow f.1/f = 1$ by note $(2.22)H(f) \cap H(1/f) = Spec(N)$.

3-It follows from definition (2.17) that $P(I_N)$ is the intersection of all near prime ideals P_N of N, $I_N \subseteq P_N$, thus an element f of N belongs to $P(I_N)$ if and only if $f \in P_N$ for all $P_N \in V(I_N)$, and thus if and only if $H(f) \cap V(I_N) = \emptyset$.

Definition2.25.

Let N be a near-ring, the near nil radical of N is the set of all nilpotent elements of the near-ring, denoted by H.

Note2.26.

If *r* and *s* are elements of a commutative near-ring and if $r^m = 0$ and $s^n = 0$ then $(r + s)^{m+n} = 0$. Also $(-r)^m = 0$, and $(tr)^m = 0$ for all $t \in N$.

It follows that the near nil radical of a near-ring is a near ideal of that N.

Proposition2.27.

The near nil radical of N is the intersection of all the near prime ideals of N.

Proposition2.28

Let N be a near-ring, Spec(N) be a near prime spectrum space and $P_1, P_2 \in Spec(N)$. Then

- 1. $\overline{\{P_1\}} = V(P_1)$.
- 2. $P_2 \in \overline{\{P_1\}}$ if and only if $P_1 \subseteq P_2$.
- The set {P₁} is a closed in Spec(N) if and only if P₁ is near maximal ideal.

Proof :-

1-Let $V(I_N)$ be a closed sub set of Xcontaining P_1 , that is $P_1 \in V(I_N)$. Clearly $V(P_1)$ is a closed set containing P_1 . Hence by lemma (2.23) (1), $V(P_1) \subseteq V(I_N)$, therefore $V(P_1)$ is the smallest closed set containing $\{P_1\}$, i.e. $\overline{\{P_1\}} = V(P_1)$.

$$2\text{-}P_2 \in \overline{\{P_1\}} \Leftrightarrow P_2 \in V(P_1) \Leftrightarrow P_1 \subset P_2 \; .$$

3-Is clear.

Definition2.29.[4]

Let (X, T) be a topological space we say that X is hyper connected (irreducible) if X satisfies one of the following equivalent two conditions ;

- 1. every pair of nonempty open sets in *X* intersect.
- 2. every nonempty open set in X is dense.

Recall that a topological space (X, T) is said to be disconnected if X can be expressed as the union of two disjoint nonempty open subsets of X, otherwise X is said to be connected. [8]

Remark2.30.

Every irreducible topological space is connected

Definition 2.31.

Let *N* be a unital commutative near-ring. A subset *V* of *N* is said to be multiplicative subset if $1 \notin V$ and $a. b \in V$ for all $a \in V$ and $b \in V$.

Proposition 2.32.

Let N near-ring, let I_N be a near ideal of N, then $V(I_N)$ is an irreducible topological space if and only if the $(P(I_N), +, .)$ is a near prime ideal of N.

Proof :-

Suppose that $V(I_N)$ is an irreducible topological space. Let n_1 and n_2 be elements of $N \setminus P(I_N)$. Then $H(n_1) \cap V(I_N)$ and $H(n_2) \cap$ $V(I_N)$ are nonempty by note (2.22) (2). Now $H(n_1n_2) = H(n_1) \cap H(n_2)$, and therefore $H(n_1n_2) \cap V(I_N)$ is the intersection of the nonempty open subset $H(n_1) \cap V(I_N)$ and $H(n_2) \cap V(I_N)$ of $V(I_N)$. It follows from the irreducibility of $V(I_N)$ that $H(n_1n_2) \cap V(I_N)$ is itself nonempty, and therefore $n_1n_2 \in N \setminus$ $P(I_N)$. Thus if $V(I_N)$ is an irreducible topological space then the complement $N \setminus P(I_N)$ of $P(I_N)$ is a multiplicative subset of N, and therefore $P(I_N)$ is a near prime ideal of N.

Conversely; suppose that $P(I_N)$ is a near prime ideal of N. W_1 and W_2 be nonempty subsets of $V(I_N)$. Any open subset of $V(I_N)$ is a union of subsets of $V(I_N)$ each of which is of the form $H(n) \cap V(I_N)$ for some $n \in N$. Therefore there exist elements n_1 and n_2 of N such that $H(n_1) \cap V(I_N)$ and $H(n_2) \cap V(I_N)$ are nonempty , $H(n_1) \cap V(I_N) \subset W_1$ and $H(n_2) \cap$ $V(I_N) \subset W_2$. Then $n_1 \notin P(I_N)$ and $n_2 \notin P(I_N)$. then $n_1 n_2 \notin P(I_N)$, because But the complement of a near prime ideal is a multiplicative subset of N. It follows that $H(n_1n_2) \cap V(I_N)$ is nonempty. Thus $W_1 \cap$ W_2 is nonempty. We have $V(I_N)$ is irreducible.

3-Some Properties of the space Spec(N).

Theorem3.1.

The near prime spectrum Spec(N) of any commutative near-ring N is a compact topological space.

<u>**Proof**</u> :-

Let $\{U_{\lambda} : \lambda \in \Lambda\}$ be any open cover of Spec(N). Then there exists a collection $\{I_{\lambda} : \lambda \in \Lambda\}$ of near ideals of N such that $spec(N) \setminus U_{\lambda} = V(I_{\lambda}) = \{P \in Spec(N) : I_{\lambda} \subset P\}$ for each open set U_{λ} in the given collection. Let the near ideals I_{λ} in this collection. Then $V(I_N) = \bigcap_{\lambda \in \Lambda} V(I_\lambda) = \bigcap_{\lambda \in \Lambda} (Spec(N) \setminus U_\lambda) = Spec(N) \setminus \bigcup_{\lambda \in \Lambda} U_\lambda = \emptyset$

Thus there is no near prime ideal P_N of N with $I_N \subset P_N$. But any proper near ideal of N is contained in some near maximal ideal ([6] theorem 3-30) and moreover every near maximal ideal is a near prime ideal by proposition (2.19) . We conclude that $I_N = N$, and therefore every element of the near-ring Nmay be expressed as a finite sum where each of the summands belongs to one of the near ideals I_{λ} . In particular there exists elements x_1, x_2, \ldots, x_k of N and near ideals $I_{\lambda_1}, I_{\lambda_2}, \dots, I_{\lambda_k}$ in the collection $\{I_{\lambda} : \lambda \in \Lambda\}$, such that $x_i \in I_{\lambda_i}$ for i = 1, 2, 3, ..., k and $x_1 + x_2 + \dots + x_k = 1$. But then $\sum_{i=1}^k I_{\lambda_i} =$ N and there fore $Spec(N) \setminus \bigcup_{i=1}^{k} U_{\lambda_i} =$ $\bigcap_{i=1}^{k} V(I_{\lambda}) = V(\sum_{i=1}^{k} I_{\lambda_i}) = V(N) = \emptyset$ and therefore $\{U_{\lambda_i}, i = 1, 2, ..., k\}$ is an open cover of Spec(N). Thus every open cover of Spec(N) has a finite sub cover. We conclude that Spec(N) is a compact topological space.

Corollary3.2.

Let I_N be a near ideal of near-ring N. Then the closed subset $V(I_N)$ of Spec(N) is a compact set.

Lemma 3.3.

Let $\varphi: N_1 \to N_2$ be a near-ring unital homomorphism between near-rings N_1 and N_2 . Then $\varphi: N_1 \to N_2$ induces a continuous map $\varphi^*: Spec(N_2) \to Spec(N_1)$ from $Spec(N_2)$ to $Spec(N_1)$, where $\varphi^*(P_N) = \varphi^{-1}(P_N)$ for every near prime ideal P_N of N_2 .

<u>Proof</u> :-

Let P_{N2} be a near prime ideal of N_2 . Now $1_{N2} \notin P_{N2}$, because P_{N2} is a proper near ideal of N_2 , then $1_{N1} \notin \varphi^{-1}(P_{N2})$, since $\varphi(1_{N1}) = 1_{N2}$. It follows that $\varphi^{-1}(P_{N2})$ is a proper near ideal of N_1 .

Let *x* and *y* be elements of N_1 . Suppose that $xy \in \varphi^{-1}(P_{N2})$. Then $\varphi(x)\varphi(y) = \varphi(xy)$ and therefore $\varphi(x)\varphi(y) \in P_{N2}$. But P_{N2} is a near prime ideal of N_2 , and therefore either $\varphi(x) \in P_{N2}$ or $\varphi(y) \in P_{N2}$. Thus either $x \in \varphi^{-1}(P_{N2})$ or $y \in \varphi^{-1}(P_{N2})$. This shows that $\varphi^{-1}(P_{N2})$ is a near prime ideal of N_1 . We conclude that there is a well-defined function $\varphi^*: Spec(N_2) \to Spec(N_1)$ such that $\varphi^*(P_{N2}) = \varphi^{-1}(P_{N2})$ for all near prime ideal P_{N2} of N_2 .

Now we prove that φ^* is a continuous function , let I_{N_1} be a near ideal of N_1

 $\varphi^{*-1}(V(I_{N1})) = \{P_{N2} \in Spec(N_2) : \varphi^*(P_{N2}) \in V(I_{N1})\}.$ since $\varphi^*(P_{N2}) = \varphi^{-1}(P_{N2})$

$$=\{P_{N2} \in Spec(N_{2}): \varphi^{-1}(P_{N2}) \in V(I_{N1})\}$$
$$=\{P_{N2} \in Spec(N_{2}): I_{N1} \subset \varphi^{-1}(P_{N2})\}$$
$$=\{P_{N2} \in Spec(N_{2}): \varphi(I_{N1}) \subset P_{N2}\} =$$
$$V(\varphi(I_{N1}))$$

Thus , $\varphi^*: Spec(N_2) \to Spec(N_1)$ is a continuous function . \blacksquare

Recall that a continuous open (closed) bijective map $f: X \to Y$, where X and Y are topological spaces , is called a homeomorphism and is denoted by $f: X \cong Y$. Two spaces X, Y are homeomorphic , written $X \cong Y$, if there is a homeomorphism $f: X \cong Y$ [8].

Proposition3.4.

Let *N* be a near-ring , let I_N be a proper ideal of *N* , and let $\pi_I: N \to N/I_N$ be the corresponding quotient near-ring homomorphism onto the quotient near-ring N/I_N . Then the induced map $\pi_I^*: Spec(N/I_N) \to Spec(N)$ maps $Spec(N / I_N)$ homeomorphically onto the closed set $V(I_N)$.

<u> Proof</u> :-

1-To prove $\pi_I^*: Spec(N/I_N) \to Spec(N)$ is onto function. Let q_N be a near prime ideal of N/I_N . Then $I_N \subset \pi_I^{-1}(q_N)$ and therefore $\pi_I^*(q_N) \subset V(I_N)$. We conclude that $\pi_I^*(Spec(N/I_N)) \subset V(I_N)$. For prove $V(I_N) \subset \pi_I^*(Spec(N/I_N))$, let P_N be a near prime ideal of N belonging to $V(I_N)$ then $I_N \subset P_N$, and let $q_N = \pi_I(P_N)$. Now since $I_N \subset P_N$ and therefore $\pi_I^{-1}(q_N) = I + P_N =$ P_N . It follows from that the q_N must be a proper near ideal of N/I_N . Let x, y by elements of N with the property that $(x + I_N)(y + I_N) \in q_N$. then $\pi_I(xy) \in q_N$, $\pi_I(x)\pi_I(y) \in q_N$, and therefore $xy \in P_N$. But then either $x \in P_N$ or $y \in P_N$, and thus either $x + I_N \in q_N$ or $y + I \in q_N$. This shows that q_N is a near prime ideal of N / I_N . Moreover $P_N = \pi_I^*(q_N)$. We conclude that $\pi_I^*(Spec(N/I_N)) = V(I_N)$.

2-To prove $\pi_I^*: Spec(N/I_N) \rightarrow$ Spec(N) is a one-to-one function. If q_{1N}, q_{2N} are near prime ideals of N/I_N , and $\pi_I^*(q_{N1}) = \pi_I^*(q_{N2})$ by lemma (3.3). Thus, $\pi_I^{-1}(q_{1N}) = \pi_I^{-1}(q_{2N})$, and therefore $. q_{1N} = \pi_I(\pi_I^*(q_{1N})) = \pi_I(\pi_I^*(q_{2N})) = q_{2N}$, so $q_{1N} = q_{2N}$. then from (1,2) we get $\pi_I^*: Spec(N/I_N) \rightarrow Spec(N)$ maps the near spectrum $Spec(N/I_N)$ bjectively onto the closed sub set $V(I_N)$ of the near spectrum Spec(N) of N.

Let q_N is a near ideal of N/I_N and p_N be a near prime ideal. Then $\pi_I\left(\pi_I^{-1}(q_N)\right) = q_N$ and $\pi_I\left(\pi_I^{-1}(p_N)\right) = p_N$. It follows that $\pi_I^{-1}(q_N) \subseteq \pi_I^{-1}(p_N)$ if and only if $q_N \subset p_N$. But then $V\left(\pi_I^{-1}(q_N)\right) \cap V(I_N) =$ $\{P \in V(I_N): \pi_I^{-1}(q_N) \subset P\} = \pi_I^*\{p_N \in$ $Spec(N/I_N): \pi_I^{-1}(q_N) \subset \pi_I^{-1}(p_N)\} =$ $\pi_I^*\{p_N \in Spec(N/I_N): q_N \subset p_N\} = \pi_I^*(V(q_N)).$

Thus the continuous function $\pi_I^*: Spec(N/I_N) \rightarrow Spec(N)$ maps closed subsets of $Spec(N/I_N)$ onto closed subsets of $V(I_N)$. But any continuous closed bijection between two topological spaces is a homeomorphism . We conclude therefore

that the function π_I^* maps $Spec(N/I_N)$ homeomrphically onto $V(I_N)$.

Proposition3.5.

Let $\varphi: N_1 \to N_2$ be a near-ring homomorphism , and $\varphi^*: Spec(N_2) \to Spec(N_1)$ be the induced map . Let $\pi: N_2 \to N_3$ be another near-ring homomorphism . Then $(\pi \circ \varphi)^* = \varphi^* \circ \pi^*$.

<u>Proof</u> :-

Let $I_N \in Spec(N_3)$. Then $(\pi \circ \varphi)^*(I_N) = (\pi \circ \varphi)^{-1}(I_N) = \varphi^{-1}(\pi^{-1}(I_N)) = \varphi^{-1}(\pi^*(I_N)) = \varphi^*(\pi^*(I_N)) = (\varphi^* \circ \pi^*)(I_N)$ therefore $(\pi \circ \varphi)^* = (\varphi^* \circ \pi^*)$.

Proposition3.6.

Let $\varphi: N_1 \to N_2$ be a near-ring homomorphism between near-rings N_1 and N_2 . If I_N is a near ideal of N_1 . Then

- 1. $\varphi^{*-1}(V(I_N)) = V(\varphi(I_N))$.
- 2. If φ is surjective , then φ^* is a homeomorphism of $Spec(N_2)$ onto the closed subset $V(ker\varphi)$ of $Spec(N_1)$.

<u> Proof</u> :-

$$1.P_N \in \varphi^{*-1}(V(I_N)) \Leftrightarrow \varphi^*(P_N) \in V(I_N) \Leftrightarrow$$
$$I_N \subseteq \varphi^*(P_N) \Leftrightarrow I_N \subseteq \varphi^{-1}(P_N) \Leftrightarrow \varphi(I_N) \subseteq$$
$$P_N \Leftrightarrow P_N \in V(\varphi(I_N)) . \blacksquare$$

2.It is well known that , if φ is surjective , then there is a one-to -one correspondence between near prime ideal of

 N_2 and near prime ideal of N_1 containing $ker\varphi$, this means that $\varphi^*: Spec(N_2) \rightarrow$ $V(ker\varphi)$ is bijective , by lemma (3.3) φ^* is continuous . It remains to show that $\varphi^*(H(f))$ is open in $V(ker\varphi)$ for each $f \in N_2$ $\varphi^*(H(f)) = \{\varphi^*(I_N) : I_N \in$ Now Spec(N₂) and $f \notin I_N$ = { $P_N \in V(ker\varphi)$: $\varphi^{-1}(f) \notin P_N$ = $H(\varphi^{-1}(f)) \cap V(ker\varphi)$. Hence $\varphi^*(H(f))$ is open in $V(ker\varphi)$, thus φ^* is an open map . Hence φ^* is a homeomorphism from $Spec(N_2)$ onto $V(ker\varphi)$.

Proposition 3.7.

Let *N* be a near-ring , and let *H* be the near nilradical of *N*. Then the near quotient homomorphism $v: N \rightarrow N / H$ induces a homeomorphism $v^*: Spec(N/H) \rightarrow Spec(N)$ between the spectra of *N* / *H* and *N*.

<u>Proof</u> :-

Let *H* be the near nil radical we starts this proof from V(H) = Spec(N). $V(H) = \{P_N \in Spec(N) : H \subseteq P_N\} =$ $\{P_N \setminus \bigcap_{q_N \in Spec N} q_N \subseteq P_N\} = Spec(N)$. But for any near ideal I_N of *N*, the quotient homomorphism from *N* to N/I_N a induces a homomorphism between $Spec(N/I_N)$ and $V(I_N)$. It follows that the quotient homomorphism $v: N \to N / H$ induces a homomorphism between Spec(N) and $Spec(N/I_N)$.

Theorem 3.8.

If N be a near-ring and (0) is near prime ideal then Spec(N) is an irreducible space.

<u>Proof</u> :-

Let H(f), H(g) be any two nonempty basic open subset of Spec(N). Since (0) is a near prime ideal of N, (0) belongs to every nonempty basic open subset H(f) and H(g)of Spec(N), consequently Spec(N) is irreducible.

Corollary 3.9.

If *N* be a near-ring and P(0) is near prime , then Spec(N) is a connected space.

Corollary 3.10.

Let *N* be a commutative near-ring with identity , and let *H* be the near nilradical of *N* . Suppose that the spectrum Spec(N) of *N* is an irreducible topological space . Then *N* / *H* is a near integral domain .

Proof :-

Since Spec(N) is irreducible then H is a near prime ideal of N and therefore N / His a near integral domain by using proposition (2.14).

Definition 2.11.

A near-ring N is said to be near noetherian if every near ideal is finitely

generated . Recall that a topological space (X, T) is noetherian if every ascending chain of open subsets of X is finite . Since closed subsets are complements of open subset , it comes to the same thing to say that the closed subset of X satisfy the descending chain condition , i.e. , every descending chain of closed subsets of X is finite [2].

Proposition 3.12.

If N is a near noetherian near-ring. Then Spec(N) is a noetherian space.

<u>Proof</u> :-

Let $V(I_1) \supseteq V(I_2) \supseteq \cdots$ be an arbitrary descending chain of closed subsets of Spec(N) where I_1, I_2, \dots are near ideal of N. Then by lemma (2.23.) (2) $P(I_1) \subseteq$ $P(I_2) \subseteq \cdots$. But N is near Noetherian, so there exists $n \in N$ such that $P(I_1) \subseteq P(I_2) \subseteq \cdots \subseteq P(I_n) = P(I_{n+1})$ hence $V(I_1) \supseteq V(I_2) \supseteq \cdots \supseteq V(I_n) = V(I_{n+1})$ that is $H(I_n) = H(I_{n+1})$. Therefore Spec(N) is a Noetherian space.

Proposition 3.13.

Let N be a near-ring. Then the space Spec(N) is a T_0 space.

<u>Proof</u> :-

Let P_1 , $P_2 \in Spec(N)$ and $P_1 \neq P_2$ then $P_1 \not\subseteq P_2$ or $P_2 \not\subseteq P_1$, let H(f) = $\{P_1 \in Spec(N): f \notin P_1\}$ and $P_1 \not\subseteq P_2$. Then We get $P_1 \in H(f)$, $P_2 \notin H(f)$. Thus Spec(N) is a T_0 space.

Proposition 3.14.

Let *N* be a near-ring. Then the space Spec(N) is T_1 if and only if Spec(N) = Max(N) is the set of all near maximal ideal of *N*.

<u> Proof</u> :-

Assume that Spec(N) is a T_1 -space . Hence every singleton is closed . But $\{P\}$ is closed by using proposition (2.28) . Hence every near prime ideal is near maximal . Equivalently , Spec(N) = Max(N) . Conversely ; Let Spec(N) = Max(N) . Since $V(P) = \{P\}$ for all $P \in Spec(N)$. Then Spec(N) is T_1 .

Proposition 3.15.

If N is a near integral domain , then the following statements are equivalent :

- 1. *Spec*(*N*) indiscrete topological space
- 2. *N* is a near field .

Proof :-

 $(1) \rightarrow (2)$. Assume that of Spec(N) is indiscrete space. Then for $0 \neq f \in N$ either $H(f) = \emptyset$ or H(f) = X. If $H(f) = \emptyset$, then fis near nilpotent by lemma (2.24) (1). So f = 0, which this is a contradiction . So H(f) = X, and by lemma (2.24) (2) f is a near unit. Hence N is a near filed.

 $(2) \rightarrow (1)$. Let *N* be a near filed. Then the only near prime ideal of *N* is (0), i.e., $X = \{(0)\}$. Hence Spec(N) is the indiscrete space.

Proposition 3.16.

Let (0) is a near prime ideal . If N is a near-ring which is not a near field , then the space Spec(N) can not be T_1 .

<u> Proof</u> :-

Assume a Spec(N) is T_1 ; therefore, by proposition (3.14), Spec N = Max(N). That is (0) is a near maximal ideal; consequently N is a near field, which is a contradiction.

References

- [1] S. J. Abbasi and Ambreen Zehra Rizvi "Study of Prime Ideal in Near-Ring", J. of Engineering and Sciences, Vol. 02, No. 01, 2008.
- [2] -H.K. Abdullah "On Zariski Topology On Modules ", M.Sc. Thesis, College of Science, University of Baghdad, 1998.
- [3] –Jcsus Antonio Avila G. "Spec(R) y Axiom as do Separation ontro T_0yT_1 ", Divulgacones Math. Vol. 13, No. 2 (2005), P. 90-98.
- [4] -Atiyah M. F. and Macdonald I. G. ,"Introduction to Commutative Algebra", Addison-Wesly Publishing, Company, London, 1969.
- [5] –R. Balakrishnan and S. Suryanarayanan ,"P(r,m) Near-Ring", Bulletin Malaysian

Math. Sc. Soc. (second series) , 23 (2000) , 117-130 .

- [6] -D. M. Burton ,"Introduction to Modern Abstract Algebra" , Addison-Wesly Publishing , Company , London , 1967.
- [7] -S. C. Choudhary , GajendraPurohit , " Radicals in Matrix Near-Ring-Modules" International Journal of Algebra , Vol. 3 , 2009, No. 19, 919-934.

[8] –Dugundji J. ,"Topology" , Ally and Bacon ,Inc. London , 1966 .

[9]- Chin-Pi L., "Spectra of Modules " Comm.

Algebra, 23 (1995), 3741-3752.

- [10]- Chin-Pi L., "The Zariski Topology on The Prime Spectrum of a Module ", Houston Journal of Math., 25, No. 3(1999) , 417-432.
- [11]- Bourbaki N., " Elements of Mathematics", Comm. Algebra Hermann, Paris, (1972).
- [12]- Hummadi P., R. Sh. Rasheed, " Topological on Modules ", Zanco The scientific Journal of Salahaddin University, Vo. 5, No. (4), (1994), pp. 59-66.
- [13]- Hummadi P., "Prime Submodules and a Topological Structure ", Journal of College of education, Universityof Salahaddin (1992).
- [14] -W. B. Vasantha ,"Smarandache Nearring", American Research Press Rehoboth , NM , 2002.