Some Properties Of N-Co probabilistic Normed Space And Co-probabilistic Dual Space Of N-Co probabilistic Normed Space

Suad Naji Kadhim and Faria Ali

Abstract:

The primary purpose of this paper is to

introduce the, N-coprobabilistic normed space, coprobabilistic dual space of N-coprobabilistic normed space and give some facts that are related of them.

1. Introduction:-

In [1], Menger replaced the nonnegative real numbers as values of the metric by a distribution function and defined probabilistic metric spaces. The concept of random normed spaces were introduced by Serstnev (2). In (3), Jebril and Hatamleh introduced the concept of random n-normed linear space as а generalization of n-normed space which introduced by Gunawan and Mashadi (4). In this paper we introduced a N-coprobabilistic normed linear space depending on the idea of random n-normed linear space was introduced by Jebril and Hatamled (3) and investigate their important properties. Then we shall introduce the definition of N-coprobabilistic bounded linear functional. Thereafter we prove the set of all N-coprobabilistic bounded linear functional is a coprobabilistic norm linear space.

2. Some Results Of N-Coprobabilistic Normed Space:-

In this section we give the definition of N-coprobabilistic normed space and prove some basic concepts of it.

We start this section by giving a definition of N-normed linear space. <u>Definition (2.1), (4):-</u>

Let X to be a linear space over R (field of real numbers) of dimension greater than and equal to n where n>2. A function

 $\| .,..., \| : X \times X \times ... \times X \longrightarrow R \text{ satisfy}$ the following axioms: (\mathbf{N}_{1}) $\| x_{1}, x_{2},..., x_{n} \| = 0 \text{ if and only if } x_{1}, x_{2},..., x_{n} \text{ are}$ linearly dependent. $(\mathbf{N}_{2}) \| \mathbf{X}_{1}, \mathbf{X}_{2},..., \mathbf{X}_{n} \| \text{ is invariant under}$ any permutation of $\mathbf{X}_{1}, \mathbf{X}_{2},..., \mathbf{X}_{n}$. (\mathbf{N}_{3}) $\| x_{1}, x_{2},..., cx_{n} \| = |c| \| x_{1}, x_{2},..., x_{n} \| \text{ for}$ any $c \in R$. $(\mathbf{N}_{4}) \| x_{1}, x_{2},..., x_{n} + x'_{n} \| \leq \| x_{1}, x_{2},..., x_{n} \|$

is said to be an N-norm on X and the pair $(X, \|., ..., \|)$ is called an N-normed space.

Definition (2.2), (4):-

Let $(X, \|., ..., \|)$ be a N-normed linear space, a sequence $\{x_k\}$ in X is said to be convergent to a point $x \in X$ in case $\lim_{k \to \infty} ||x_1, x_2, ..., x_{n-1}, x_k - x|| = 0$ for each $x_1, x_2, ..., x_{n-1} \in X$. In this case, x is said to be the limit of the sequence $\{x_k\}$ and we denote it by $\lim_{k \to \infty} x_k$. Otherwise, the sequence is divergent.

Definition (2.3), (4):-

Let $(X, \|., ..., \|)$ be a N-normed linear space, a sequence $\{x_k\}$ in X is said to be Cauchy sequence in case $\lim_{k \to \infty} \left\| x_1, x_2, \dots, x_{n-1}, x_{k+p} - x_k \right\| = 0 \text{ for }$

each $x_1, x_2, \dots, x_{n-1} \in X$ and P=1,2,....

Definition (2.4), (4):-

A N-normed linear space in which every Cauchy sequence is convergent is said to be complete.

Definition (2.5), (1):-

A nonascending probability distribution function η on R that is a left continuous nonascending real function on R with $\eta(x) = 1$ for all $x \le 0$ and $\eta(+\infty) = 0$

Notes (2.6), (1):-

1-The family of all a nonascending probability

distribution functions will be denoted by $abla^+$

2- By setting $F \leq G$ whenever $F(x) \leq G(x)$, for each $x \in R$, one

introduces natural ordering in ∇^+ .

3-If $a \in R$, then ϵ_a will be an element of ∇^+ defined by

$$\varepsilon_{a}(t) = \begin{cases} 1 & \text{if } t \leq a \\ 0 & \text{if } t > a \end{cases}$$

Definition (2.7), (1):-

Let X be a linear space over a field R, a

mapping C* from X into ∇^+ is said to be a coprobabilistic norm on X in case the following conditions hold:

(c-
$$N_1$$
) $C_x^* = \varepsilon_0$ if and only if x=0
(c- N_2) If

$$0 \neq c \in \mathbb{R} \text{ then } C_{cx}^{*}(t) = C_{x}^{*}(\frac{t}{|c|})$$

(c-N₃)
$$C_{x}^{*}(s+t) \leq \max \left\{ C_{x}^{*}(s), C_{x'}^{*}(t) \right\},$$

for each $s, t \in \mathbb{R}$.

The pair (X, C^*) will be referred to a coprobabilistic normed linear space (briefly c-NLS).

Example (2.8), (1):-

Let $(X, \|.\|)$ be an normed space. For

each $x \in X$ and $t \in R$, a function

is coprobabilistic normed linear space.

Now, we introduce the concept of Ncoprobabilistic normed linear space as a development of coprobabilistic normed linear space.

Definition (2.9)-

Let X be a linear space of dimension greater than or equal to N and a mapping C from $X \times X \times ... \times X = X^n$ into ∇^+ is said to be a N-coprobabilistic norm on X in case the following conditions hold:

(N-c-N₁)
$$C_{(x_1,x_2,..,x_n)} = \varepsilon_0$$
 if and only if

 x_1, x_2, \dots, x_n are linearly dependent.

(N-c- N_2) $C_{(x_1, x_2, \dots, x_n)}$ is invariant under

any permutation of
$$x_1, x_2, \dots, x_n$$
.
 $0 \neq c \in R$ then

(N-c-N₃) If
$$C_{(x_1,x_2,...,cx_n)}(t) = C_{(x_1,x_2,...,x_n)}(\frac{t}{|c|})$$

(N-c-

$$N_4)$$

$$C_{(x_1, x_2, \dots, x_n + x'_n)}(s+t) \le \max \begin{cases} C_{(x_1, x_2, \dots, x_n)}(s) \\ C_{(x_1, x_2, \dots, x'_n)}(t) \end{cases}, \text{ for }$$

each $s, t \in R$.

The pair (X, C) will be referred to N-coprobabilistic normed linear space (briefly N-C-NLS).

In order to make definition (2.9) as clear as possible we will consider the following examples.

Example (2.10):-

Let
$$(X, \|., ..., \|)$$
 be an N-normed space.
For each
 $(x_1, x_2, ..., x_n) \in X^n$ and $t \in \mathbb{R}$. Defined
 $C_{(x_1, x_2, ..., x_n)}(t) = \begin{cases} 1 & \text{if } t \leq \|x_1, x_2, ..., x_n\| \\ 0 & \text{if } t > \|x_1, x_2, ..., x_n\| \\ \dots (2.2) \end{cases}$

In order to prove that (X, C) is a N-C-NLS, we must verify the above four (N-C-N) conditions. $(N-C-N_1)$ It is easy to check that $C_{(x_1,x_2,\ldots,x_n)} = \varepsilon_0$ $(N-C-N_2)$ Since $||x_1, x_2, \dots, x_n||$ is invariant under any permutation of $x_1, x_2, ..., x_n$ it follow that $C_{(x_1, x_2, ..., x_n)}$ is inveariant under any permutation of X_1, X_2, \dots, X_n (N-C-N₃) If $0 \neq c \in R$ and t>0, then one can get the following two cases:-(i) If $t \le ||x_1, x_2, ..., cx_n||$ then $C_{(x_1, x_2, \dots, x_n)}(\frac{t}{|c|}) = 1.$ (ii) If $t > ||x_1, x_2, ..., cx_n||$ then $C_{(x_1, x_2, \dots, x_n)}(\frac{t}{|c|}) = 0$ (N-C- N_{Δ}) For each s, t $\in \mathbb{R}$, we must prove $C_{(x_1,x_2,...,x_n+x'_n)}(s+t) \le \max \left\{ C_{(x_1,x_2,...,x_n)}(s), C_{(x_1,x_2,...,x_n)}(s) = 0. \right\}$ To do this consider the following two cases (1) If $s + t \le ||x_1, x_2, ..., x_n + x'_n||$ then $C_{(x_1,x_2,...,x_n+x'_n)}(s+t) = 1$ $s + t \le ||x_1, x_2, ..., x_n|| + ||x_1, x_2, ..., x_n'||$ In this case one can recognize the following two cases. (i) If $S \leq ||x_1, x_2, \dots, x_n||$ then either $t \le ||x_1, x_2, \dots, x_n'||$ or $t > ||x_1, x_2, \dots, x_n'||$ If $\mathbf{t} \leq ||\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}'_n||$ the proof of ineq.(2.3) is trivial. On the other hand, if $t > ||x_1, x_2, \dots, x'_n||$ then

 $C_{(x_1, x_2, \dots, x'_n)}(t) = 0$. Hence, ineq.(2.3) holds in this case (ii) If $s > ||x_1, x_2, ..., x_n||$ then $t \leq ||x_1, x_2, \dots, x'_n||$ and hence.

 $C_{(x_1,x_2,...,x_n)}(s) = 0$ and $C_{(x_1, x_2, \dots, x'_n)}(t) = 1$. Thus ineq. (2.3) holds. (2) If $s + t > ||x_1, x_2, ..., x_n + x'_n||$ then $C_{(x_1,x_2,...,x_n+x'_n)}(t) = 0$. On the other hand, if $s + t \le ||x_1, x_2, \dots, x_n|| + ||x_1, x_2, \dots, x'_n||$ Thus ineq.(2.3) holds. If $s + t > ||x_1, x_2, ..., x_n|| + ||x_1, x_2, ..., x'_n||$ Then one can see the following two cases:-(i) If $s \le ||x_1, x_2, ..., x_n||$ then $t > ||x_1, x_2, \dots, x'_n||$. Hence ineq.(2.3) holds. (ii) If $s > ||x_1, x_2, \dots, x_n||$ then either $t \le ||x_1, x_2, \dots, x_n'||$ or $t > ||x_1, x_2, \dots, x'_n||$ If $t \le ||x_1, x_2, ..., x'_n||$ then $C_{(x_1, x_2, \dots, x'_n)}(t) = 1$ $t > ||x_1, x_2, \dots, x'_n||$ then

$C_{(x_1,x_2,...,x'_n)}(t) = 0$ Hence ineq.(2.3) holds.

Definition (2.11):-

Let (X,C) be a N-C-NLS, a sequence $\{\mathbf{x}_k\}$ in X is said to be convergent to a point $x \in X$ in case $\lim_{k \to \infty} C_{(x_1, x_2, \dots, x_{n-1}, x_k - x)}(t) = 0 \text{ for each}$ t>0 and for each $x_1, x_2, \dots, x_{n-1} \in X$.In this case, x is said to be the limit of the sequence $\{x_k\}$ and we denote it by $\lim x_k$. Otherwise, the sequence is divergent.

Definition (2.12):-

Let (X,C) be a N-C-NLS, a sequence $\{X_k\}$ in X is said to be Cauchy sequence in

case $\lim_{k \to \infty} C_{(x_1, x_2, \dots, x_{n-1}, x_{k+p} - x_k)}(t) = 0$

for each $t>0, x_1, x_2, ..., x_{n-1} \in X$ and P=1,2,...

Definition (2.13):-

A N-coprobilistic normed linear space in which every Cauchy sequence is convergent is said to be complete.

<u>3.Coprobabilistic Dual Space Of N-</u> Coprobabilistic Normed Linear Space:-

In this section, we give a definitions of Ncoprobabilistic bounded linear functional, uniformly N-coprobabilistic bounded and coprobabilistic dual space of N-coprababilistic normed linear space. Also some results related to them are discussed.

Definition (3.1):-

Let
$$T: (X, C) \longrightarrow (R, C^*)$$
 be

a linear functional where (X,C) be a Ncoprobabilistic normed linear space and C^* be the coprobabilistic norm defined ineq.(2.1). T is said to be N-coprobabilistic bounded on X^n in case there exists a positive number M such that for all

 $(x_1, x_2, ..., x_n) \in X^n \text{ and } t > 0,$ $C *_{T(x_1, x_2, ..., x_n)} (t) \le C_{(x_1, x_2, ..., x_n)} (\frac{t}{M})$

Theorem (3.2):-

Let T be a N-coprobabilistic bounded linear functional on X^n . If $x_1, x_2, ..., x_n$ are linearly dependent then $T(x_1, x_2, ..., x_n) = 0$. <u>Proof:-</u>

Suppose $x_1, x_2, ..., x_n$ are linearly dependent. Since T is a N coprobabilistic bounded linear functional. Then there exists M>0 such tha

$$C*_{T(x_1,x_2,...,x_n)}(t) \le C_{(x_1,x_2,...,x_n)}(\frac{t}{M}), \forall (x_1)$$

Then $C^*_{T(x_1, x_2, ..., x_n)}(t) \le 0$. Hence $T(x_1, x_2, ..., x_n) = 0$

In 2010, Dinda and et. al., [5] gave a relation between fuzzy antinormed linear space and normed space. Here we gave the same idea but for N-coprababilistic normed linear space and N-normed space.

Theorem (3.3):-

Let (X,C) be a N-coprobabilistic normed space satisfying the following two conditions $(N-C - N_5)$ for each t>0,

 $C_{(x_1,x_2,...,x_n)}(t) < 1$ implies $x_1, x_2, ..., x_n$ are Linearly dependent.

(N-C-N₆) For $x_1, x_2, ..., x_n$ are linearly independent, $C_{(x_1, x_2, ..., x_n)}(t)$ is a continuous of $t \in \mathbb{R}$ and strictly decreasing in the subset $\{t: 0 < C_{(x_1, x_2, ..., x_n)} < 1\}$ of \mathbb{R} . And let $\{\|., ..., \|: \alpha \in (0,1)\}$ is a ascending family of N-norms of X. defined $\|x_1, x_2, ..., x_n\|_{\alpha} = Inf\{t: C_{(x_1, x_2, ..., x_n)}(t) \le 1 - \alpha\},$ where $\alpha \in (0,1)$

Also, Let C' be a mapping from

$$\mathbf{X} \times \mathbf{X} \times \dots \times \mathbf{X} = \mathbf{X}^{\mathbf{n}} \text{ into } \nabla^{+} \text{ defined by}$$

$$C'_{(x_{1}, x_{2}, \dots, x_{n})}(t) = \begin{cases} Inf\{1 - \alpha : \|x_{1}, x_{2}, \dots, x_{n}\|_{\alpha} \le t \} & \text{if } x_{1}, x_{2}, \dots, x_{n} \text{ are} \\ & \text{linearly indepent}, t \neq 0 \\ 1 & \text{otherwise} \end{cases}$$

Then, C = C'

Proof:-

The prove directly follows from change the proof of the theorem in (2.4) in [5] to N-coprobabilistic normed space.

Definition (3.4):-

Let $T:(X,C) \longrightarrow (R,C^*)$ be a linear functional where (X,C) be a N-coprobabilistic normed linear space satisfying condition the $(N-C - N_5)$ and (R,C^*) be a coprobabilistic normed linear space where C^* defined in eq.(2.1). T is said to be uniformly N-coprobabilistic bounded in case there exist M > 0 such that

$$T(x_1, x_2, ..., x_n) \ge M \|x_1, x_2, ..., x_n\|_{\alpha},$$

Where $\{\|.,...,\|: \alpha \in (0,1)\}$ is a ascending family of N-norms.

Theorem (3.5):-

Let $T:(X,C)\longrightarrow(R,C^*)$ be a linear functional where (X,C) be a N-

coprobabilistic normed linear space satisfying the condition (N-C- N_5) and (R,C*) be a coprobabilistic normed linear space where C* defined in eq.(2.1). If T is N-coprobabilistic bounded on Xⁿ then it is uniformly Ncoprobabilistic bounded. Proof:-

Suppose Т is N-coprobabilistic bounded. Then there exists M>0 suchthat

$$*_{T_1(x_1,x_2,...,x_n)}(t) \le C_{(x_1,x_2,...,x_n)}(\frac{t}{M_1})$$

and

С

$$C *_{T_2(x_1, x_2, ..., x_n)} (t) \le C_{(x_1, x_2, ..., x_n)}(\frac{t}{M_2})$$

Thus for any two none scalars α and λ we have

 $\leq \max\{C^*_{(\alpha T_1)(x_1,x_2,...,x_n)}(\frac{t}{2}),\$

 $C *_{(\lambda T_2)(x_1, x_2, \dots, x_n)}, \frac{t}{2})$

$$C_{T(x_1, x_2, \dots, x_n)}^{*}(s) \le C_{(x_1, x_2, \dots, Mx_n)}(s)$$

$$\|x_1, x_2, \dots, Mx_n\|_{\alpha} > t \text{ then } \inf\{s: C_{(x_1, x_2, \dots, Mx_{\underline{a}})}(s) \leq 1 - \alpha\} > t \frac{1}{2|\alpha|M_1}, t = 0, \dots, Mx_{\underline{a}} \in \mathbb{C}_{(x_1, x_2, \dots, x_n)} \in \mathbb{C}_{[x_1, x_2, \dots, x_n]}$$

 $\forall (x_1, x_2, ..., x_n) \in X^n \text{ and } s > 0, \quad C *_{T(x_1, x_2, ..., x_n)} (x_1, x_2, ..., x_n) (x_1, x_n) (x_1, x_n) (x_1, x_n) (x_1, x_n) (x_1, x_n) (x_$

Hence,

Hence, $\exists s_0 > t \text{ such that } C_{(x_1, x_2, ..., Mx_n)}(s_0) \le 1 - \alpha_{C_{(x_1, x_2, ..., x_n)}} \left(\frac{t}{2|\lambda|M_2} \right)$

Therefore,

$$\exists s_0 > t \text{ such that } C^*_{T(x_1, x_2, \dots, x_n)}(s_0) \le 1 - \alpha_{\text{Thus } M \ge 2}$$

Then, $|T(x_1, x_2, ..., x_n)| \ge s_0 > t$ Hence, $|T(x_1, x_2, ..., x_n)| \ge ||x_1, x_2, ..., Mx_n||_{\alpha}$ Thus T is uniformly N-coprobabilistic bounded.

Note (3.6):-

Let (X,C) be a N-coprobabilistic normed linear space. We denote by $\beta(X^n, R)$ the set of all N-coprobabilistic bounded linear functionals on X^n and we call β , the coprobabilistic dual space of X^n .

Theorem (3.7):-

 $\beta(X^n, R)$ is a linear space.

Proof:

Let $T_1, T_2 \in \beta(X^n, R)$, then there exist two positive numbers M_1 and M_2 such that for

 $each(x_1, x_2, ..., x_n) \in X^n \text{ and } t > 0$

 $\mathbf{M} = \mathbf{Max} \{ 2 | \alpha | \mathbf{M}_1, 2 | \lambda | \mathbf{M}_2 \} + 1.$ Choose $2|\alpha|M_1$ and $M \ge 2|\lambda|M_2$ implies This that

$$\frac{t}{2|\alpha|M_1} \ge \frac{t}{M} \text{ and } \frac{t}{2|\lambda|M_2} \ge \frac{t}{M} \text{ for}$$

each $t > 0$

 $C_{(x_1,x_2,\ldots,x_n)}\left(\frac{t}{2|\alpha|M_1}\right) \leq$ Н

Hence,

$$C_{(x_{1},x_{2},...,x_{n})}\left(\frac{t}{M}\right) and$$

$$C_{(x_{1},x_{2},...,x_{n})}\left(\frac{t}{2|\lambda|M_{2}}\right) \leq C_{(x_{1},x_{2},...,x_{n})}\left(\frac{t}{M}\right)$$

Therefore,

$$C^{*}_{(\alpha T_{1}+\lambda T_{2})(x_{1},x_{2},...,x_{n})}(t) \leq C_{(x_{1},x_{2},...,x_{n})}\left(\frac{t}{M}\right)$$
 for

each t > 0. Then we have for $each(x_1, x_2, ..., x_n) \in X^n \text{ and } t > 0,$ there exists M>0 such that

 $\overline{C*_{(\alpha T_1+\lambda T_2)(x_1,x_2,\ldots,x_n)}(t)} \leq$ $C_{(x_1,x_2,\ldots,x_n)}\left(\frac{t}{M}\right).$ implies

This

that $\alpha T_1 + \lambda T_2 \in \beta(X^n, R), \forall \alpha, \lambda \in R.$

Hence $\beta(X^n, R)$ is a linear space.

Definition (3.13):-

Let (X,C) be a N-coprobabilistic normed space satisfying the following two conditions

(N-C $-N_{5}$) for each t>0, $C_{(x_1,x_2,...,x_n)}(t) < 1$ implies $x_1, x_2, ..., x_n$ are Linearly dependent.

(N-C-N₆) For x_1, x_2, \dots, x_n are linearly $C_{(x_1,x_2,\ldots,x_n)}(t)$ is a independent, continuous of $t \in R$ and strictly decreasing in the subset $\{t: 0 < C_{(x_1, x_2, ..., x_n)} < 1\}$ of R.

And let $\{\|.,..,\|: \alpha \in (0,1)\}$ is a ascending family of N-norms of X. defined. and $T \in \beta(X^n, R)$, we define

$$\begin{split} \|T\|_{\alpha}^{*} &= Inf \begin{cases} \frac{|T(x_{1}, x_{2}, ..., x_{n})|}{\|x_{1}, x_{2}, ..., x_{n}\|_{1-\alpha}} : x_{1}, x_{2}, ..., x_{n} \\ \frac{|T|_{\alpha}^{*}}{|x_{1}, x_{2}, ..., x_{n}\|_{1-\alpha}} : x_{1}, x_{2}, ..., x_{n} \end{cases} \\ \forall \alpha \in (0, 1) \end{cases}$$

Again we define

$$C_{T}^{**}(s) = \begin{cases} Inf \left\{ 1 - \alpha \in (0,1) : \left\| T \right\|_{\alpha}^{*} \le s \right\} \\ for \ (T,s) \neq (0,0) \\ 1 \\ for \ (T,s) = (0,0) \end{cases}$$

It is clear that C^{**} is coprobabilistic norm on β

Reference:-

(1) Menger K., "Statistical metrics", Proc. Nat. Acad. Sci. USA,

Vol.28, PP.535-537,(1942).

- (2) Serstnev N., "Random normed space", Problems of completeness kazan Gos Univ. Ucen Zap., Vol.122, PP.3-20, (1962).
- (3) Jebril H. and Hatamleh R., " Random n-Normed linear space", Int. J. Open problems compt. Math., Vol.2, No.3, PP.489-495,(2009).
- (4) Gunawan H. and Mashadi M., "On n-Normed space", Int, J.Math. Math. Sci., Vol.27, PP.631-639, (2001).
- (5) Dinda, B, Samanta, T. and Bera U., "Fuzzy Anti-bounded linear functionals", Global Journal of science Frontier Research, Vol.10, PP.36-45,(2010).

بعض الخواص للفضاء المعياري N- المرافق الاحتمالي والفضاء المواجة المرافق الاحتمالي للفضاء المعياري N- المرافق الاحتمالي

الخلاصة : -

الغرض الرئيسي من هذا البحث هو تقديم الفضاء المعياري N- المرافق الاحتمالي, الفضاء المواجه المرافق الاحتمالي للفضاء المعياري N - المرافق الاحتمالي وإعطاء بعض الحقائق المتعلقة بهم .