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Abstract :   
In this paper , we introduced a new 

subclass ),,,,,,(  tAS p

  which 

consists of analytic and p valent 

functions with negative coefficients in 

the unit disk defined by integral 

operator . We obtain coefficient 

estimates and some results including 

applications of Fourier series . 
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1.Introduction  

Let )( INpTp  denote the class of 

functions of the form : 
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which are analytic and p valent in 

the unit disk CzzU  :{ and 1z . 

Let pS  denote the subclass of pT  

consisting of functions of the form : 

 np

np

n

p zazzf 








1

)(   ,    (2)    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Definition 1: 

For 11  A  and p0  ,  10     

,  10     ,  10  t  , 0   , 1 , 

a function pTf   is  said to be in the 

class ),,,,,,(  tATp

  if and only if  
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where )( 
Q is the generalized  Jan – 

Kim – Srivastava integral operator [2] 

defined by  
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and for 0 we have )()(0 zfzfQ  . Let  

               

ppp StATtAS ),,,,,,(),,,,,,(   

  (6) 

We note that class )0,0,1,0,1,0,1(

pS was 

studied by Geol  and Sohi [1] . The 

class )0,0,1,0,1,,1(1 S was studied by 
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Silvarman [4].The 

class )0,0,1,0,1,0,( AS p   was studied by 

Pashkokeva and Vasilev [3] . 

2. Coefficient Estimates  

 In the following theorem , we obtain 

the coefficient estimates for the class 

),,,,,,(  tAS p

 .  

Theorem 1:  

A function )(zf  defined by (2) be in 

the class ),,,,,,(  tAS p

  if and only 

if  
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The result is sharp . 

Proof :  

Let (7) holds true and 1z  . Then  
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 Hence by the principle of maximum 

modulus  ),,,,,,()(  tASzf p

  . 

Conversely , suppose that  
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 Using the fact that zz )Re(   for any 

z , we have  
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Choose vales of z  on the real axis so 

that  
)(
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zfQ
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 is real . Upon clearing 

the denominator in (8) and letting 
1z  through real values we obtain  
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The function 
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is extermal function . 

Corollary 1: 

If ),,,,,,()(  tASzf p

  ,then  
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Theorem 2: 

 Let ),,,,,,()(  tASzf p

  . Then 

the integral operator  
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Proof : 
 By virtue of (11) it follows from (1) 

that  
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Since 1kp and by (7) last expression 

is less than or equal to ))((  pAt , so 

the proof is complete . 

The Fourier series is defined by the 

form : 
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such that nn baa ,,0  are constant . But 
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Let the function ),( xzY  be defined by 

the form : 
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where )(zf  defined by (2) . 

In the next theorem, we show that the 

function ),( xzY  be in the class 

),,,,,,(  tAS p

 .  

Theorem 4: 

 Let ),,,,,,()(  tASzf p

  be 

defined by (2). Then the function 

),( xzY  defined by (12) be in the 

),,,,,,(  tAS p

  , if 1nb   , 

 22  nx  . 

Proof : 

To prove the 
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 , we 

must to show that  
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since 1nb  and for  22  nx  , we 

get 1)sin( nx  ,then 
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Then ),,,,,,(),(  tASxzY p

  . 

So the proof is complete. 

Let the function )(xf  defined by the 

form : 

                 1    0 x  
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                  1        x0  
The Fourier series of the function 

)(xf is defined by the form : 
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Suppose that function ),( xzQ be 

defined by the form: 
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and )(zf  defined by (2) . 

In the next theorem , we show the 

function ),( xzQ  be in the class 

),,,,,,(  tAS p

  . 

Theorem 5: Let 

),,,,,,()(  tASzf p

  be defined by 

(2). Then the function ),( xzQ  defined 

by (16) be in the ),,,,,,(  tAS p

  , if 

1)( nE  ,  22  nx . 

The proof of Theorem 5 is similar to 

proof of Theorem 4 . 
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