Fuzzy - α **-** $T_{1/2}$ space

Alyaa Yousif Khudayir

University of Kufa ,College of Education for Girls ,Department of Mathematics

Abstract

In this paper, we introduce the definition of Fuzzy- α - $T_{1/2}$ space and its some proposition about this subject.

Introduction

In A. S. Bin Shahna [1] the concept fuzzy α -open sets. The concepts fuzzy

1-Basic Concepts

Definition 1.1 [1]

A fuzzy set A in a fuzzy topological space "fts" is called :

(i) fuzzy α -open or fuzzy feebly open if $A \leq int(cl(int(A)))$

(ii) fuzzy α -closed or fuzzy feebly closed if $cl(int(cl(A))) \le A$

Definition 1.2 [2,3]

Let A be any fuzzy set in a fts X. The closure of A is the intersection of all fuzzy closed Sets containing A, denoted by cl(A). That is $cl(A) = \wedge \{B : B \text{ is fuzzy closed set} \$, $B \ge A\}$

Definition 1.3 [4,1,5]

Let B be a fuzzy set in a fts X. Then fuzzy α - closure of B is denoted and defined by $\alpha cl(B) = \wedge \{\nu : B \leq \nu, \nu \text{ is} \}$ fuzzy α -closed set }

Definition 1.4 [6, 7,8]

A fuzzy set E in a fts X is called :

(i) fuzzy generalized closed set , if $cl(E) \le H$ whenever $E \le H$ and H is fuzzy open ,We briefly denoted it as Fg – closed set α -continuous and fuzzy α- irresolute function were introduced by Hakeem A. othman and A. S. Bin Shahna in [9,1]. We introduce new definitions of Fuzzy - α - generalized – continuous, Fuzzy - α generalized irresolute and Fuzzy - α *generalized irresolute functions which we need in Propositions of Fuzzy - α - $T_{1/2}$ space.

- (ii) fuzzy generalized α closed set, if $\alpha cl(E) \leq H$ whenever $E \leq H$ and H is fuzzy open We briefly denoted it as Fg α closed set.
- (iii) fuzzy α generalized closed set, if $\alpha cl(E) \le H$ whenever $E \le H$ and H is fuzzy α - open ,We briefly denoted it as F α g closed set

Proposition 1.5 [6,4,5]

In a fuzzy topological space (X,T) , the following hold :

- (i) Every fuzzy closed set is $F\alpha$ -closed.
- (ii) Every fuzzy closed set is Fg closed.
- (iii) Every fuzzy α closed set is Fag closed.

Definition 1.6 [6]

A fuzzy topological space (X,T) is said to be a fuzzy $-T_{1/2}$ space if every Fg – closed set is fuzzy closed.

Definition 1.7 [9,2,1]

A mapping $f: X \to Y$ is said to be :

(i) fuzzy continuous if $f^{-1}(V)$ is fuzzy open (fuzzy closed) set in X for each fuzzy open (fuzzy closed) set V in Y.

(ii) fuzzy α - continuous if $f^{-1}(V)$ is fuzzy α - open (fuzzy α - closed) set in X for each fuzzy open (fuzzy closed) set V in Y.

(iii) fuzzy α – irresolute if $f^{-1}(V)$ is fuzzy α - open (fuzzy α - closed) set in X for each fuzzy α -open (fuzzy α - closed) set V in Y.

Definition 1.8[2,9]

A mapping $f: X \to Y$ is said to be :

(i) fuzzy – open (fuzzy closed) if f(U) is fuzzy open (fuzzy closed) set in Y for each fuzzy open (fuzzy closed) set U in X.

(ii) fuzzy α - open (fuzzy α - closed) if f(U) is fuzzy α - open (fuzzy α - closed) set in Y for each fuzzy open (fuzzy closed) set U in X.

(iii) fuzzy α *- open (fuzzy α *- closed) if f(U) is fuzzy α - open (fuzzy α - closed) set in Y for each fuzzy α - open (fuzzy α - closed) set U in X.

2- The main results

Definition (2.1) :

If every fuzzy - α - generalized closed (briefly F - α - g- closed) set in X fuzzy - α closed (briefly F - α - closed) set in X, then the space is fuzzy - α - $T_{1/2}$ space which denoted by F- α - $T_{1/2}$ space.

Theorem (2.2)

A fuzzy topological space (X , T) is F- α – $T_{1/2}$ space iff F α O (X , T) = F α G O (X , T).

Proof

→ Let (X, T) be F- $\alpha - T_{1/2}$ space, let A be F α G O set in X, then 1-A is F α g – closed set in X. since (X, T) is F- $\alpha - T_{1/2}$ space, then 1 – A is a fuzzy – α – closed set (F- α – closed set), thus $A \leq F \alpha$ O (X, T).

since $F \alpha O(X, T) \le F \alpha G O(X, T)$, then $F \alpha G O(X, T) = F \alpha O(X, T)$.

← Let F α O(X, T) = F α GO(X, T), let A is F- α -g - closed set, then 1- A is F- α -g open set. By hypothesis, 1- A ≤ F α O(X, T). Hence (X, T) is F- α - $T_{1/2}$ space.

Definition (2.3)

A $f: X \to Y$ be a function from afts X to afts Y is called:

1- Fuzzy - α - generalized – continuous (F – α – g – continuous) function if $f^{-1}(V)$ is F – α – g – closed set in X , for every fuzzy closed set V in Y .

2 - Fuzzy - α - generalized irresolute (F - α - g - irresolute) function if $f^{-1}(V)$ is F - α - g - closed set in X, for every F - α - g - closed set V in Y.

3 - Fuzzy - α *- generalized irresolute (F - α *- g - irresolute) function if $f^{-1}(V)$ is F - α -closed set in X, for every F - α - g - closed set V in Y.

Proposition (2.4)

Every $F - \alpha - g$ – irresolute function is $F - \alpha - g$ – continuous function.

Proof

Let $f: X \to Y$ be $F - \alpha - g$ - irresolute function and let U be fuzzy closed set in Y, by Proposition 1.5 (i,iii), then U is $F - \alpha - g$ - closed set in Y. Since f is $F - \alpha - g$ irresolute function, then $f^{-1}(U)$ is $F - \alpha - g$ g - closed set in X. Hence f is $F - \alpha - g$ continuous function.

Proposition (2.5)

Let $f: X \to Y$ be a function from afts X to afts Y, then :

- (i) If f is $F \alpha g$ continuous function and X is F- $\alpha T_{1/2}$ space .Then f is fuzzy α continuous function.
- (ii) If *f* is $F \alpha g$ irresolute function and X is $F - \alpha - T_{1/2}$ space .Then *f* is fuzzy α continuous function.
- (iii) If f is $F \alpha g$ irresolute function and X is $F - \alpha - T_{1/2}$ space .Then f is fuzzy - $\alpha * - g$ irresolute function .

Proof

(i) Let V be fuzzy closed set of Y, since f is $F - \alpha - g - continuous$ function, then $f^{-1}(V)$ is $F - \alpha - g - closed$ set of X. since X is $F - \alpha - T_{1/2}$ space, then $f^{-1}(V)$ is fuzzy $-\alpha$ - closed set. Therefore $f: X \to Y$ is fuzzy α - continuous function.

(ii) By Proposition (2.4)

(iii) Let U be fuzzy- α - g -closed set of Y, since f is F - α - g - irresolute function, then $f^{-1}(U)$ is F - α - g - closed set of X. since X is F- α - $T_{1/2}$ space, then $f^{-1}(V)$ is fuzzy - α - closed set. Hence $f: X \rightarrow Y$ is fuzzy - α *- g -irresolute function.

Proposition (2.6)

Let X, Y and Z be ftss, and $f: X \to Y$, $g: Y \to Z$ and $gof: X \to Z$ be function, then:

(i) If *f* is fuzzy α -irresolute function and $g: Y \rightarrow Z$ is $F - \alpha - g$ - irresolute function such that Y is F- $\alpha - T_{1/2}$ space .Then *gof* is fuzzy - α *-g irresolute function. (ii) If *f* is fuzzy α -irresolute function and $g: Y \rightarrow Z$ is F – α – g – continuous function, such that Y is F- α – $T_{1/2}$ space .Then *gof* is fuzzy α continuous function.

Proof

(i) Let U be F - $\alpha - g$ - closed set in Z ,since g is F - $\alpha - g$ - irresolute function, then $g^{-1}(U)$ is F - $\alpha - g$ - closed set in Y. since Y is F- $\alpha - T_{1/2}$ space, then $g^{-1}(U)$ is F - α - closed set in Y. But f is fuzzy α irresolute function, then $f^{-1}(g^{-1}(U))$ is F - α - closed set in X.

But $f^{-1}(g^{-1}(U)) = (gof)^{-1}(U)$. Therefore gof fuzzy is fuzzy – α *-g -

irresolute function. (ii)) Let U be fuzzy closed set in Z, since g is $F - \alpha - g$ - continuous function, then $g^{-1}(U)$ is $F - \alpha - g$ - closed set in Y. since Y is $F - \alpha - T_{1/2}$ space, then $g^{-1}(U)$ is $F - \alpha$ - closed set in Y. But f is fuzzy α irresolute function, then

$$f^{-1}(g^{-1}(U))$$
 is is F - α - closed set in X.
But $f^{-1}(g^{-1}(U)) = (gof)^{-1}(U)$.
Therefore gof is fuzzy α - continuous function.

Proposition (2.7)

Let $f:(X,T) \to (Y,T')$ be onto , Fuzzy - α - generalized irresolute and fuzzy α *- closed function . If X is F- $\alpha - T_{1/2}$ space , then (Y, T') is F- $\alpha - T_{1/2}$ space .

Proof

Let A be $F - \alpha - g$ - closed set in Y, since f is Fuzzy - α - generalized irresolute function, then $f^{-1}(A)$ is $F - \alpha - g$ - closed set in X. since X is $F - \alpha - T_{1/2}$ space, then $f^{-1}(A)$ is $F - \alpha$ -closed set in X. But f is fuzzy α^* - closed function, then f ($f^{-1}(A)$) is F - α -closed set in Y. since f is onto, then f ($f^{-1}(A)$) = A. Thus A is F - α -closed set in Y. Therefore (Y, T') is F- $\alpha - T_{1/2}$ space.

Proposition (2.8)

Let X,Y and Z be ftss, and let $f: X \to Y$, $g: Y \to Z$ and $gof: X \to Z$ be function, then : (i) If $gof: X \to Z$ be $F - \alpha - g$ - continuous function and $f: X \to Y$ is fuzzy α *- closed function such that X is $F - \alpha - T_{1/2}$ space, then $g: Y \to Z$ is fuzzy α - continuous function.

(ii) If $gof: X \to Z$ be $F - \alpha - g$ - irresolute function and $f: X \to Y$ is fuzzy α *- closed function such that X is $F - \alpha - T_{1/2}$ space , then $g: Y \to Z$ is fuzzy - α *-g- irresolute function.

Proof

(i) Let U be fuzzy closed set in Z, since *gof* is $F - \alpha - g$ - continuous function, then $(gof)^{-1}(U)$ is $F - \alpha - g$ - closed set in X. But X is $F - \alpha - T_{1/2}$ space, then $(gof)^{-1}(U)$ $F - \alpha$ -closed set in X. Since *f* is fuzzy α *- closed function, then $f(gof)^{-1}(U)$ is $F - \alpha$ -closed set in Y. But

$$f(gof)^{-1}(U) = f(f^{-1}(g^{-1}(U))) = g^{-1}(U)$$
,

Then $g^{-1}(U)$ is $F - \alpha$ -closed set in Y. Hence $g: Y \to Z$ is fuzzy α - continuous function.

(ii) Let U be $F - \alpha - g$ - closed set in Z, since *gof* is $F - \alpha - g$ - irresolute function, then $(gof)^{-1}(U)$ is $F - \alpha - g$ - closed set in X. But X is $F - \alpha - T_{1/2}$ space, then $(gof)^{-1}(U)$ F - α -closed set in X. Since f is fuzzy α *- closed function, then $f(gof)^{-1}(U)$ is F – α –closed set in Y. But

$$f(gof)^{-1}(U) = f(f^{-1}(g^{-1}(U))) = g^{-1}(U)$$
,

Then $g^{-1}(U)$ is F – α –closed set in Y. Hence $g: Y \to Z$ is fuzzy α *- g- irresolute function.

Definition (2.9)

If a space is called fuzzy – $\alpha * -T_{1/3}$ space if every fuzzy – α – g – closed set is fuzzy closed set .

Proposition (2.10)

Every fuzzy $-\alpha * -T_{1/3}$ space is F- $\alpha - T_{1/2}$ space.

Proof

Let A be $F - \alpha - g$ - closed set in X, since (X,T) is fuzzy $-\alpha * -T_{1/3}$, then A is fuzzy closed set in X, thus A fuzzy $-\alpha$ - closed set in X. Hence (X,T) F- $\alpha - T_{1/2}$ space.

References

[`1] A. S. Bin Shahna(**1991**)"On fuzzy strong semicontinuity and fuzzy pre *continuity* ", *Fuzzy Sets and Systems* 44,303 308.

[2] C. L. Chang(**1968**) " Fuzzy topological spaces ",*J. Math. Anal. App***2**4, 182-190.

[3] X.Tang (2004) "spatial object modeling in fuzzy topological spaces with to lands cover chang in china "application *ph.D.Dissertation ,ITC Dissertation* NO.108 *,Univ . of Twente , The Nethe Iands ,*

[4] K. K. Azad,(**1981**) " On fuzzy continuity, fuzzy almost continuity and fuzzy weakly continuity "*J. Math . Anal .Appl* 82., 1432

[5] S. S. Thakur and S. Singh, (**1998**''On fuzzy semipreopen sets and fuzzy semipre continuity "*Fuzzy sets and systems* 98, 383 391.

[6] G. Balasubramanian and P. Sundaram, (**1997**) "On some generalizations of fuzzy continuous functions *'Fuzzy Sets and Systems*86(1), 93-100.

[7] R. K. Saraf, and S. Mishra(**2000**)'Fg ?closed sets", *J. Tripra Math. So2*.27–32.

[8] O. Bedre Ozbakir(**2002**)"On generalized fuzzy strongly semiclosed sets in fuzzy topological spaces *"Int. J. Math. Math. Sci.* 30(11), 651-657.

[9] Hakeem A. Othman(**2009**) New Results of fuzzy Alpha open sets fuzzy Alpha continuous mapping *Int .j .contemp .Math sciences*, Vol 4 " No .29, 14191420 .