Some Results on Smarandache Semigroups

Asst.Prof. Sajda Kadhum Mohammed Dep.of Math., College Of Education for Girls, Al-Kufa University

Abstract: We discusse in this paper a Smarandache semigroups, a Smarandache cyclic semigroups and a Smarandache lagrange semigroups.We prove that the Smarandache semigroup Z_{2P} with multiplication modulo 2P where p is an odd prime have two subgroups of order P-1 and we prove that Z_{2P} is a S-cyclic semigroup and Smarandache weakly Lagrange semigruop and we prove that some results about a Smarandache inverse in groups and a Smarandache conjugate in groups .

1.Introduction :

Padilla Raul introduced the notion of *Smarandache semigroups*[1], in the year 1998 in the paper entitled Smarandache Algebraic Structures .Since groups are prefect structures under a single closed associative binary operation ,it have become infeasible to define Smarandache groups . Smarandache semigroups are the analog in the Smarandache ideologies of the groups where Smarandache semigroup is defined to be the semigroup A such that a proper subset of A is a group (with respect to the same binary operation).

In this paper we prove some results in *a Smarandache lagrange semigroups*[1],[2], *a Smarandache cyclic semigroups*,[2], *a* Smarandache inverse in groups and a Smarandache conjugate in groups,[2], we use Mathlab programming to check our results in this paper.

2. Definitions and Notations:

Definition 2.1: The Smarandache semigroup (Ssemigroup) is defined to be a semigroup A such that a proper subset of A is a group (with respect to the same binary operation),[2].

Example 2.2: Let $z_{14}=\{0,1, \ldots, 13\}$ be the semigroup under multiplication module 14. Clearly the set $A=\{1,13\} \subset z_{14}$ is a group under multiplication modulo 14, so z_{14} is the Smarandache semigroup,[2].

Definition2.3: Let S be a S-semigroup if every subset A of S which a subgroup is cyclic then we say S is a *Smarandache cyclic*, [2].

Definition 2.4: Let S be a S-semigroup if there exist at least a proper subset A of S which is a cyclic subgroup under the same operation of S then we say S is a *Smarandache weakly cyclic*, [2].

Definition 2.5: Let G be a group . An element $x \in G \setminus \{1\}$ is said to have *a Smarandache inverse* y in G if xy=1and for $a, b \in G \setminus \{1, x, y\}$, we have xa=y (or ax=y), yb=x (or by=x) with ab=1,[2]. **Definition 2.6**: Let G be a group . An element $x \in G$; x is said to have *a Smarandache conjugate* y in G if

- 1- x is conjugate to y (that is there exist
- $a \in G$ such that $x = aya^{-1}$).
- 2- a is conjugate with x and a is conjugate with y,[2].

Definition 2.7: Let S be a finite S-semigroup .We say S is *a Smarandache non-Lagrange semigroup* if the order of none of the subgroups of S divides the order of the S-semigroup,[2].

Definition 2.8: Let S be a finite S-semigroup.If the order of every subgroups of S divides the order of the S-semigroup S then we say S is a Smarandache Lagrange semigroup, [2].

Definition 2.9: Let S be a finite S-semigroup. If there exist at least one subgroup A that is a proper subset $(A \subset S)$ having the same operation of S whose order divides the order of S then we say that S is a Smarandache weakly Lagrange semigroup, [2].

Definition 2.10: Let (G,*) be a finite group and p a prime .A subgroup (P,*) of (G,*) is said to be a Sylow p-subgroup if (P,*) is a p-group and is not properly contained in any other psubgroup of (G,*) for the same prime number p,[3].

Definition 2.11: Two integers a and b, not both of which are zero, are said to be *relatively prime* whenever g.c.d.(a,b)=1,[4],[5].

Theorem 2.12: The linear congruence $ax \equiv b$ mod n have a solution if and only if d\b, where

d=g.c.d.(a,n). If $d\setminus b$, then it have d mutually incongruent solutions modulo n, [4].

Theorem 2.13: Let $a,b,n \in \mathbb{Z}$, n>0. If g.c.d.(a,n)=1 then the congruence $az \equiv b \mod n$ have a unique solution z; moreover, any integer z is a solution iff $z \equiv z \mod n$, [6].

Theorem 2.14: If n is a positive integer then $ax \equiv 1 \mod n$ have a unique solution iff g.c.d.(a,n)=1,[6],[7].

Theorem (Sylow)2.15: Let (G,*) be a finite group of order p^kq , where p is a prime not dividing q Then (G,*) have a Sylow p-subgroup of order p^k , [3], [7], [8].

Theorem 2.16: Let G be a finite group ,H a psubgroup of G, if H is normal subgroup then H contains in each Sylow p- subgroup in G,[3].

Theorem2.17:let (G,*) be a group of order pq where p and q prime numbers p<q, if $q \neq 1 \mod p$ then (G,*) cyclic,[3],[9].

Theorem 2.18: If G is an abelian group of order n having at most one cyclic for each prime divisor P of n then G is cyclic, [10].

3. The Main Results

Proposition 3.1: let Z_{2P} be the semigroup under the multiplication modulo 2P ,P is an odd prime then Z_{2P} have two subsets of order P-1where they are subgroups of it under the same operation.

Proof: Let (Z_{2P}, \cdot_{2P}) be the semigroup under multiplication modulo 2P, P is an odd prime,

the order of Z_{2P} is 2p ,now ,to compuse a subset of Z_{2P} without zero element in it we must cancel zero element and P because that 0.x=x.0=0 and $P.x=x.P=0 \quad \forall x \in Z_{2P}, [4],$

so we have all odd and even number in it except 0 and P, now ,we have two subsets ,H and K where $H=\{2n: n \in Z \text{ and } 0 < n \le p-1, n \ne p\}$

$$= \{2,4,\ldots,2P-2\}$$

and K=
$$\{2n+1: n \in \mathbb{Z} \text{ and } 0 \le n \le P-1, 2n+1 \neq P\}$$

= $\{1,3, ..., 2p-1\}.$

To prove that (H, \cdot_{2P}) is a group,

If
$$x, y \in H \subseteq Z_{2P}$$
 then $xy \in Z_{2P}$,

since x,y even so xy is even and by use the multiplication mod 2P which is even ,since H contains each element of Z_{2P} which is even so $xy \in H$.

It is clear that H is associative under multiplication mod 2P,

now, let $x, 1+P \in H$ where P is an odd prime so

 $x.(1+p)=x+xp \mod 2p = x$, $(1+p).x=x \mod 2p$ since x is even,

so 1+p is the identity element of H.

Now let $x,y \in H$ then $xy \equiv yx \equiv 1+p \mod 2p$ have two incongruent solution ,since g.c.d(y,2p)=2,

let the first is
$$x_0$$
 so the other is $x_0 + \frac{2p}{2} = x_0 + p$,

,[4],since p is an odd prime so just one of them must be even ,so just one of them belong to H, therefore H contains one solution of this equation so H have an inverse for each element of it, so (H, \cdot_{2P}) is a group.

Now to prove that (K, \cdot_{2P}) is a group,

If $x,y \in K \subseteq Z_{2P}$ then $xy \in Z_{2P}$, since x,y odd so xy is odd and by use the multiplication mod 2P

xy still odd and since K contains each element of Z_{2P} except p which is odd so $xy \in K$, it is clear that K is associative under multiplication mod 2P and the identity element is 1,

now, let $x,y \in K \subseteq Z_{2P}$ then $xy \equiv yx \equiv 1 \mod 2p$ have a unique solution,since g.c.d.(y,2p)=1,[11], so x have y as inverse so (K, \cdot_{2P}) is a group ,it is clear that the order of $H = o(Z_{2P})$ -{odd number}-

$$\{0\}=2p-\frac{2p}{2}-1=p-1, \text{and}$$

the order of K = $o(Z_{2P})$ -{even number}-{p}=2p-

$$\frac{2p}{2}$$
-1=p-1

Remark:

It important to note that any other subgroup of Z_{2P} must be a subset of H or K, since if there is a subset M of Z_{2P} contains element from H and K so there are several cases:

Case 1:If $1 \notin M$ and $x \in K \bigcap M$ so x have no identity element so M is not a group.

Case 2: if 1 $,1+p \in M$ and $x \in H \cap M$ so x have two identity element 1 and 1+p so M is not a group.

Case 3: if $1 \in M$ and $1+p \notin M$ and $x,y \in M$ such that $x \in H$ and $y \in K$ then since H is even so

xy=z for some $z \in H$, then $y=x^{-1}z$ is even number but $y \in K$ so we have contradiction.

Proposition 3.2: let Z_{2P} be the semigroup under the multiplication modulo 2P ,P is an odd prime then Z_{2P} is a cyclic Smarandache semigroup if p- $1 \neq 2^{\alpha}$.

Proof: Let (Z_{2P}, \cdot_{2P}) be the semigroup under multiplication modulo 2P, P is an odd prime , and $p-1 \neq 2^{\alpha}$.

By remark above there is no subgroup of Z_{2P} not contains in the subgroup of H or K, so we must to prove that H and K cyclic then use the fact that each subgroup of cyclic subgroup is a cyclic subgroup,[3].

First we prove that H is cyclic,

we know that each $x \in Z$ can be written as a product of prime number, [5],[7],so

 $x=p_1^{\alpha_1}p_2^{\alpha_2}...p_L^{\alpha_L}$ where $p_i\quad i{=}1\ ,...\ ,L\quad$, is a prime number , then

 $O(H) = 2^{\alpha_1} p_2^{\alpha_2} \dots p_L^{\alpha_L}$ where o(H) is an even number, then there are two cases:

Case 1: If $o(H) = 2^{\alpha_1} p_1^{\alpha_2}$ where $p_1 \ge 3$,

Since $p_1 \ge 3$ and $2 \searrow p_1 \mod 2p$, so H is cyclic,[8],[9].

Case 2: if $o(H)=2^{\alpha_1}p_2^{\alpha_2}...p_L^{\alpha_L}$ where each $p_i \neq 2$, since H is commutative so each subgroup of it must be normal subgroup ,[8], then by sylow theorem for each p_i , H contains a unique sylow p_i -subgroup (T_i) of order p_i for each i,

since it is normal and the order of it is prime so it is cyclic.

Now we want to prove that this group is unique for each p_i , suppose that there exist cyclic subgroup of order p_i , say M since it is normal so it is contains in each Sylow p_i -subgroup in Z_{2P} ,[3], since T_i is Sylow p_i -subgroup so $M \subseteq T_i$ so $o(m) \le o(T_i)$

but $o(M) = p_i$ so $M = T_i$, therefore this group is unique for each p_i , so for every p_i divisor of order H there exist a unique cyclic subgroup

have order p_i so H is a cyclic subgroup,,[3],[8], by use the similar way we can prove that K is a cyclic subgroup,

so Z_{2P} is a Smarandache cyclic semigroup.

Example: let (z_{14}, \cdot_{14}) be the semigroup under the multiplication modulo 14,

since 14 = 2p where p=7 so by above proposition there are two subsets of it of order p-1=6,

 $H=\{2,4,6,8,10,12\}$ and $K=\{1,3,5,9,11,13\}$, the tables of them are given by

•14	1	3	5	9	11	13
1	1	3	5	9	11	13
3	3	9	1	13	5	11
5	5	1	11	3	13	9
9	9	13	3	11	1	5
11	11	5	13	1	9	3
13	13	11	9	5	3	1

•14	2	4	6	8	10	12
2	4	8	12	2	6	10
4	8	2	10	4	12	6
6	12	10	8	6	4	2
8	2	4	6	8	10	12
10	6	12	4	10	2	8
12	10	6	2	12	8	4

Note that H is a cyclic subgroup generated by 10 and 12 ,i.e. $H= \langle 10 \rangle = \langle 12 \rangle$, and 1+p=8 is the identity and K is a cyclic subgroup generated by $K= \langle 3 \rangle = \langle 5 \rangle$.

Proposition 3.2: let Z_{2P} be the semigroup under the multiplication modulo 2P ,P is an odd prime then Z_{2P} is a Smarandache weakly lagrange semigroup if $p-1 \neq 2^{\alpha}$.

Proof: (Z_{2P}, \cdot_{2P}) be the semigroup under multiplication modulo 2P, P is an odd prime and $p-1 \neq 2^{\alpha}$, by the proposition above there exist two subgroups of Z_{2P} , H and K with order p-1,

 $o(Z_{2P})=2p$, H and K with order = $p-1 \neq 2^{\alpha}$,

since 2p did not divisible by p-1 so Z_{2P} did not a Smarandache lagrange semigroup but it is weakly Lagrange semigroup since o(H) is even and for each prime q divisor of o(H) there exist a subgroup of order q and since 2 divided o(H)so there exist a subgroup M of H of order 2 ,since $M \subset H \subset Z_{2P}$ so $M \subset Z_{2P}$ and $o(Z_{2p})$ 2p

 $\frac{o(z_{2p})}{o(M)} = \frac{2p}{2} = p$, so Z_{2P} is Smarandache

weakly lagrange semigroup.

Proposition 3.3:Let (G,*) be a group and $x \in G$, if x have Smarandache inverse ,then in general need not have Smarandache conjugate .

Proof: we prove this by an example .Let

 $G=\langle a \rangle =\langle 1 \ 2 \ 3 \ 4 \rangle$ be a group with usual composition of mappings, such that $(1 \ 2 \ 3 \ 4) \in S(4)$ which is the semigroup of all mappings from $x=\{1,2, 3,4\}$ to $x=\{1,2,3,4\}$ under the usual composition of mappings.

It is clear that $a^4=I$ where I=(1) and the order of G = 4, note that $aa^3=I$ and $a^2 \in G \setminus \{1, a, a^3\}$ such that $a^2a = a^3$ and $a^3 a^2 = a$, so a have a

Smarandache inverse but there is no $x \in G$ such that x conjugate to a so a have not Smarandache conjugate

Proposition 3.4:Let (G,*) be a group and $x \in G$, if x have Smarandache conjugate ,then in general need not have Smarandache inverse. **Proof:** we prove this by an example. Let

$$S_{3} = \{I = \begin{pmatrix} 123\\123 \end{pmatrix}, p_{1} = \begin{pmatrix} 123\\132 \end{pmatrix}, p_{2} = \begin{pmatrix} 123\\321 \end{pmatrix}$$
$$p_{3} = \begin{pmatrix} 123\\213 \end{pmatrix}, p_{4} = \begin{pmatrix} 123\\231 \end{pmatrix}, p_{5} = \begin{pmatrix} 123\\312 \end{pmatrix}\}$$

be the symmetric group of the degree 3 .Now we have p_1 conjugate with p_2 since

$$\begin{pmatrix} 123\\ 132 \end{pmatrix} = \begin{pmatrix} 123\\ 213 \end{pmatrix} \begin{pmatrix} 123\\ 321 \end{pmatrix} \begin{pmatrix} 123\\ 213 \end{pmatrix},$$

so p_1 conjugate with p_2 by p_3 . And since

$$\binom{123}{213} = \binom{123}{312} \binom{123}{132} \binom{123}{231}, p_3 \text{ conjugate}$$

with p_1 by p_5 , and

$$\begin{pmatrix} 123\\213 \end{pmatrix} = \begin{pmatrix} 123\\132 \end{pmatrix} \begin{pmatrix} 123\\321 \end{pmatrix} \begin{pmatrix} 123\\321 \end{pmatrix} \begin{pmatrix} 123\\132 \end{pmatrix}, p_3 \text{ conjugate}$$

with p_2 by p_1 , so p_1 Smarandache conjugate with p_2 ,but p_1 did not have Smarandache inverse ,where p_1 $p_1=I$ but there is no $x,y \in S_3 \setminus \{I, p_1\}$ such that $x p_1=p_1$ and $y p_1=p_1$ where xy=I. *References:*

[1]. Raul, Padilla, 1998, "Smarandache Algebraic Structures ",Bull of Pure and Applied Sciences, Delhi, vol. 17E, No1, 119-121. [2]. Vasantha, W.B., Kandasamy,2003,"Smarandache Semigroups", American Research Press Rehoboth,NM 87322,USA,internet address http://www.gallup.unm.edu/~smarandache/eBoo ks-otherformats.htm ,. [3]. David M.Burton, 1967, "Introduction To Modern Abstract Algebra", Addison-Wesley Publishing Company, U.S.A. [4]. David M.Burton, "Elementary Number Theory", WM.Brown Publishers Dubque, Iowa. [5] Kenneth H.Rosen, 2000, "Elementary Number Theory and Application", Addison weslay Longman, Inc., USA. [6]. Garret Birtchoof, 1977, "A survey of Modren Algebra", fourth editiomn, Macmillan Publishing Co.Inc., USA. [7]. Shoup ,V.,2005,"A Computational Introduction to Number Theory and Algebra " ,Cambridge University Press, internet address www. Cambridge. org.sa/9780521851541. [8]. Herstein, I.N., 1976, "Topics in Algebra ",John Wiley and Sons . [9]. John ,B.Fraleigh, 1967, "A First course in Abstract Algebra", Addison Wesley. [10]. Josph, J. Rotman, 2003, "Advanced Modren Algebra", Printice Hall. [11]. Baker, A. ,2003, "Algebra and Number Theory ", University of Glasgow, internet address http//www.maths.gla.ac.uk/~ajb.

قسم الرياضيات , كلية التربية للبنات , جامعة الكوفة

تتاولنا في هذا البحث أشباه زمر سمارنداش , أشباه زمر سمارندانش الدوارة وأشباه زمر سماراندش لاكرانج .أثبتتا أن أشباه زمر سماراندش Z_{2P}معيار 2P حيث P عدد أولي فردي تحوي زمرتين جزئيتين من الرتبة P-1 وبرهنا انها شبه زمرة سماراندش دوارة وكذلك مِشبه زمرة لاكرانج بضعف كما برهنا بعض النتائج المتعلقة بنظائر سماراندش في الزمر وترافق سماراندش في الزمر .