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Abstract

In this paper we use the higher order
differences for second order (derivative) in
solving  parabolic partial delay differential
equations by using the explicit method and we
get results are more closer to the exact values
than the results which can be obtained if the
familiar second order (derivative) form is used.
Finally ,we make a comparison using Matlab
between the results through two tables of
values form [ 3] which results from Taylor
series expansions of a function centered on the

grid point (x,t.) . In this paper, we use the

1
higher order differences for second order instead
of the familiar form for solving the parabolic
delay differential equations .

1. Introduction

Delay differential equations play an
important role in many life applications , say
problems of mixing of liquids , population
growth, control systems, mechanical and
electrical systems. In addition, many physical
and engineering problems can be modeled
mathematically in the form of partial delay
differential equations (PDDE's) . Interest in
equations of this type (see for example [1] and
[2] ) have continued to grow as it has become
apparent that they are also of importance in area
of biomedical modeling especially physiological
and hormonal control systems .

It is well known that PDDE’s are differential
equations in which the unknown function
depends on two or more independent variables
and its partial derivatives , with several values of
the delay .

Most researches discuss the methods for
solving partial delay differential equations of
second order by using the familiar second order

2. Classification of Second Order PDDE's

Consider the following partial delay
differential equation

2 2 2

0 0
a—-u(x,t)+b u(x,t) +c—-u(x,t
v, (x,1) P (x,1) e (x,1)

0 0
+ d—u(x,t)+ e—u(x,t)+ fu(xt) +
U+ e ux )+ fu(x)

hu(x—T,,t-T,) = g(x,t) (2.1)

where a,b,c,d,e, f,g,h,T,and T,are known

functions of X and t. The classification of
second order partial delay differential equation
(2.1) is similar to that in partial differential
equations,

1. If b* —4ac > 0, then equation (2.1) is
said to be of the hyperbolic type.

2. If b? —4ac =0, then equation (2.1) is
said to be of the parabolic type.

3. b?> —4ac < 0, then equation (2.1) is
said to be of the elliptic type.
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3. Explicit Method for Solving PDDE’s

The explicit method [4],[5] and [6] is one of
the numerical methods that use for solving
partial differential equations .In this section , we
shall use this method in solving the heat
equation with constant delay. This equation
takes the form

u, (x,t) = a’u (X, t) +u(x,t=T),

0<x<L,t>0 (3.2)
subject to the boundary conditions
u(0,t)=0, u(Lt)=0, t>0 (32
and initial condition
u(x,0)=f(x), 0<x<L. (3.3)
Also, initial delay condition is given by
u(x,t)=g(x,1),0<x<L-T<t<0 (34)

where « isaconstantand T > 0 is the delay
term .

To approximate the solution of this problem,
we first select two mesh constants h and k , with

L . . o
m= ™ is an integer number .The grid points are

(X;,t;)  where
t,=jk, j=012,..

X, =ih, i=0,1,2,..m,and

The heat equation (3.1) can be written at the
interior grid point (x;,t;) , 1=12,..m-1 and

j=12,..as

U (%, t,) =a’u, (x.t;)+u(x,t; -T). (35)

Derivation of the difference equation in our
method is obtained by using the forward

difference quotient of u,(X;,t;)

(X|7 J)_ [u(xi7tj+1) (XH J) ]_

2

> o (3.6)

—u(x,n;)

such that n; e(t;,,t;,;) and the difference

guotient of the fourth order formula  of
uxx(Xi1tj)

Uy (X o) = — [-u(x;,,t;) +16u(X; 4, t;)

2h2
- 30U(X|,t ) + 16u(X|+1’ J) u(X|+2’t )]
h® o

3.7
12 ox* 3.7)

—zulent;)

such that &, (x e I+1) Applying (3.6 ) and
(3.7) inequation (3.5) gives

1 2
E[ui’jﬂ_ui’j] 12h2[ Ui p,;+16U;,,;
30 +16u|+1’ - i+2’j ]+(0(Xiatj _T)+

82 a2h2 4
——u(x;,,n7;)— —u(ent, 3.8
26{2 1 77]) 12 a 4 ( ) ( )
Solving equation (3.8 ) for u; ;,, gives

2

Uisjg = ui’j+12h2 [-u;,,;+16u; 4, ;—30u;, ;
k2

+ 16u|+1’ - |+21 ]+k(0(X|, i T) +?

0? ka’h? &*

— u(x,n. ue,t;). 3.9

atz(.771) 5 6x4( t;) (3.9)

2
If /’L=k0§ we have
h
54 A 42

ui’j+1:(1_7)ui!j_Eui—Z’j+?ui—l’j+

42 A k?

?uiﬂ’j - E i+27] +k§0(X|,t T) + 7

48
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0? ka’h® o*
?U(Xi’nj)_Tyu(gi’tj)’ (310)
where i=23...m-2, j=12.. . If we
neglect the error term
k? 8 ka’h? o*
=g )= eulat)
(3.11)
we get
54 A 42
|’J+l (1 2) |'j_EWi—2’j+?Wi—l’j+
42 A

?Wiﬂ'j_lz i+27] +k¢(x|’1 T) (3.12)

where W, ; is the approximate solution of (3.1)

at the grid point (xi,tj), i=23,...m-2,
j=12,....
Now, the initial

condition u(x,0)=f(x), 0<x<L,
implies that w;,,= f(x), i=0,1..,m and

the boundary
conditions u(0,t)=u(L,t)=0 imply that
Wo,j:Wm,j:O, j=0,1,... . The explicit

nature of the difference method that expressed in
equation (3.12 ) can be written in terms of
matrices form as

wi =Aaw 4+ B, j=012,.. (3.13)
such that
W J+1 I:WZ J+1’W3 jHLr Wm—2,j+l:|T (314)
T
wU :[Wz,j,WS,j,...,Wmfz,j:I (3.15)
=[ (%), f (%) f (X,5)] (3.16)
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51 44 —A o o o o
2 3 12
44, 54 44 —A o o o
3 2 3 12
4 A, 54 44 2 0 0
12 3 2 3 12
0 —A a1 1,2 44 0 0
A— 12 3 2 3
o] o] -2 4 52 0 0
12 3 2
H : : 1,2 L -4
’ ’ 2 3 12
0 0 0 0 -4 ﬁ 1,2 ﬂ
12 3 2 3
0 0 0 0 0 —2 42 52
12 3 2

42
B =[kgo(x2,tj —T)+?lej,k(p(x3,tj -T)

A
_Ewl,,-,kqo(xél,tj ~T)ee k(X 4ot = T),

ko(Xpg:t; =T)——

TRV (317)

Wina, s ko(X,, ay -T)

It is clear that for finding the solution of (3.1)
using equation (3.12), we must have

W andw, 5, ]=0,1,2,.... .Therefore we

shaII use the explicit method [ 3 ] without using
higher order differences to find these values , as
follows

wid—aAwWiB | j=012.. (318

such that
[1—-24 A 0 0 0 |
A 1-24 A 0 0
A - 0 A 1-24 --- 0 0
B R} 0
0 0 0 A 1-24 A
| O 0 0 0 A 1-24]
(j+1) _[ ]T
W - Wl’j+1’W2’j+l""’Wm—l’j+1 (3'19)

[1’J’ Wasjoees W, —l'j]T (3-20)
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W(O) =[f(X1), f(Xz)f--w f(xm—l)]T’ (3.21)
B, =[ko(x,,t; =T),kp(x,,t; =T),...,
Kp(Xp0 t; =TT, (3:22)
and A= ka” .
h2

Example 3.1. Consider the parabolic partial
delay differential equation

2u(x,t)zaax—zzu(x,t)+u(x,t—2),

0 satx <1,t>0 (3.23)
with the boundary and initial conditions

u(0,t) =u(L,t)=0,t>0, (3.24)

u(x,00=x-x*>, 0<x<1, (3.25)
and initial delay condition

o(X,t) = (2+x—x%)e""?, 0<x<],
—2<t<0. (3.26)

The exact solution of this example has the form
u(x,t)=(x—x?e', 0<x<1Lt>0.(3.27)

For this PDDE, if we suppose that h=0.1 and
k =0.001 then we have

50

8 1 o o
10 10
1 8 1 o o
10 10 10
© i5 16 7 ° ©
~o - ES
10
(0] (o] (o] = 8 1
10 10 10
(0] (o] (o] (o] 1 8
L 10 10 |
and
3 2 -1 0 0 o)
4 15 120
2 3 2 =1 0 o) [o)
15 4 15 120
-1t 2 3 2 -1 o o
120 15 4 15 120
o) -1 2 3 2 o) 0
A= 120 15 4 15
o) 0 -1 2 3 o) 0
120 15 4
: : : 3 2 -1
: ’ ’ 4 15 120
0 0 0 -1 2 3 2
120 15 4 15
o] o) o o] o] -1 2 3
L 120 15 4 |

First, we must find the values lejand

Wm—l,j

matrix Aand the relations (3.18) and (3.20)-

(3.22). Then we can use the matrix A and the
relations (3.15) -(3.17) to findw,; where
i=2,3,..,m=-2 and j=12,..,99 given in
table 3.1 . The numerical results when h=0.1,
k =0.001 and its comparison with the exact
solution of the equation (3.23) are given in table
3.1 such that the columns numerical 1[3] and
numerical 2 represent the numerical solutions of
the equation ( 3.23 ) using the explicit method
without and with higher order differences
respectively .

when j=1,2,...,99 using the above

Similarly , we can find the numerical results
given in table 3.2 when h=0.1and k =0.0001
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t X Exact Step length h=0.1, k=0.001 and a=1
Numerical 1 Error 1 Numerical 2 Error 2
0.1 0.1 |0.0994654 | 0.09953231 0.00006692 0.09953231 0.00006691
0.1 0.2 0.1768274 0.17694232 0.00011497 0.17682216 0.00000524
0.1 0.3 |0.2320859 | 0.23223291 0.00014702 0.23207882 0.00000708
0.1 0.4 0.265241 0.26540631 0.00016531 0.26523276 0.00000824
0.1 0.5 |0.2762927 | 0.27646394 0.00017124 0.27628406 0.0000086
0.1 0.6 0.265241 0.26540631 0.00016531 0.26523276 0.00000824
0.1 0.7 0.2320859 0.23223291 0.00014702 0.23207882 0.00000708
0.1 0.8 0.1768274 0.17694232 0.00011497 0.17682216 0.00000524
0.1 0.9 |0.0994654 | 0.09953231 0.00006692 0.09953231 0.00006691
Table 3.1
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t X Exact Step length h=0.1, k=0.0001 and a=1
Numerical 1 Error 1 Numerical 2 Error 2
01| 01 0.0994654 0.09947206 0.00000666 0.09947206 0.00000666
01| 0.2 0.1768274 0.17683882 0.00001147 0.17682683 0.00000057
01| 03 0.2320859 0.23210056 0.00001466 0.23208519 0.00000071
01| 04 0.265241 0.2652575 0.00001648 0.26524020 0.0000008
01| 05 0.2762927 0.2763098 0.00001707 0.27629186 0.00000084
01| 06 0.265241 0.2652575 0.00001648 0.26524020 0.0000008
01| 0.7 0.2320859 0. 23210056 0.00001466 0.23208519 0.00000071
01| 08 0.1768274 0. 17683882 0.00001147 0.17682683 0.00000057
01| 09 0.0994654 0.09947206 0.00000666 0.09947206 0.00000666
Table 3.2
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It is clear form table 3.1 and table 3.2 that the Mathematical Biosciences
results in the column numerical 2 is more closer and Engineering , Vol4
to the exact values than the results in the column No.2, pp.355-368.

numerical 1[3] . In other words, we can get a
better results if we use higher order differences 3. G, Jasim2007, On The

for second order instead of the familiar second Solutions of Linear Partial

order differences . Delay Differential Equations,
M.sc. Thesis, University of
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