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 Abstract: 

In this paper, we will study the 
numerical solution of fuzzy initial value 
problems using two methods, namely, the 
least square method and the Adomain 
decomposition method. Also, comparison 
between the obtained results is made, as 
well as with the crisp solution, when the  
α-level equals one.    

1- Introduction: 

Fuzzy set theory had been 
introduced by Zadeh in 1965, in which, 
Zadeh's original definition of fuzzy set is 
as follows: 

A fuzzy set is a class of objects with 
a continuum grades of membership, such 
a set is characterized by a membership or 
characteristic function which assigns to 
each object a grade of membership 
ranging between zero and one, [Zadeh L. 
A., 1965]. 

In 1978 and 1980, Kandel and Byatt 
applied the concept of fuzzy differential 
equations to the analysis of fuzzy 
dynamical problems, but the initial value 

    problem was treated rigorously by 
Kaleva in 1987 and 1990, [Pearson, D. W., 
1997]. 

Analytical methods for solving fuzzy initial 
value problems are so difficult in some cases, 
especially for nonlinear differential equations 
and therefore numerical and approximate 
methods seems to be necessary for solving 
such type of problems, [Al-Ani E. M., 2005], 
[Wuhaib, S. A., 2005]. 

2- Preliminaries of Fuzzy Sets: 

Let X be a classical set of objects, called the 
universal set, whose generic elements are denoted 
by x. The membership in a classical subset A of X 

is often viewed as a characteristic function χ from 
X into {0, 1}, such that: 

χ(x) = 
1 if x A

0 if x A

∈
 ∉

 

{0, 1} is called a valuation set. If the valuation set 
is allowed to be the interval [0, 1], then A is called 

a fuzzy set, which is denoted in this case by A% 

and the characteristic function by Aµ %, which the 

grade of membership of x in A%, [Zadeh L. A., 
1965]. 
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Also, it is remarkable that the closer the 

value of Aµ % to 1, the more x belong to A%. 

Clearly, A% is a subset of X that has no sharp 

boundary. The fuzzy set A% is completely 
characterized by the set of pairs: 

A% = {(x, A (x)µ % ) | x ∈ X, 0 ≤ A (x)µ %  ≤ 

1}. 

In addition, some other basic concepts 
related to fuzzy sets may be introduced, 
which may be summarized as follows, 
[Zimmerman, H. J., 1985], [Kandel A., 1986]: 

1. The height of A% is given by: 

hgt(A%) = A
x X
sup (x)
∈

µ %  

2. X may be considered as a fuzzy set with 
membership function A (x)µ %  = 1, for all x ∈ 

X, which is denoted by 1X; while the empty 

fuzzy set ∅% is a fuzzy set with membership 
function (x) 0∅µ =% , ∀ x ∈ X, which is 

denoted by 0X. 

3. A% is said to be normal if there exists x0 ∈ X, 

such that 0A (x )µ %  = 1, otherwise A% is 

subnormal. Also, if a fuzzy set A% is 
subnormal, then it may be normalized by 

dividing Aµ % on hgt(A%) ≠ 0. 

4. cA%  is the complement of A% which is also a 
fuzzy set with membership function: 

c AA
(x) 1 (x)µ = − µ %%

, ∀ x ∈ X. 

A B⊆% % if A (x)µ %  ≤ B(x)µ % , ∀ x ∈ X. 

 5. A B=% % if A (x)µ %  = B(x)µ % , ∀ x ∈ X. 

6. The union of two fuzzy sets A% and B% is 

also a fuzzy set C% and may be associated 
with the following membership function: 

{ }BC A(x) Max (x), (x) , x Xµ = µ µ ∀ ∈% % %

 

7. The intersection of two fuzzy sets A% and 
B% is also a fuzzy set D% and may be 
defined with the following membership 
function: 

{ }D BA(x) Min (x), (x) , x Xµ = µ µ ∀ ∈% % %

 

8. A fuzzy subset A% of ،  is said to be 
convex fuzzy set, if: 

{1 2 1 2A A A( x (1 )x ) Min (x ), (x )µ λ + − λ ≥ µ µ% % %

 

for all x1, x2 ∈ ، , and all λ ∈ [0, 1], 

where A (x)µ %  is standing for a suitable 

membership function 

In addition, among the basic concepts 
in fuzzy set theory is the concept of α-level 

(α-cut) sets of a fuzzy set A%, which is used 
as an intermediate set that connects between 
fuzzy and nonfuzzy sets, [Wuhaib, S. A., 
2005]. 

Given a fuzzy set A% defined on a 
universal X and any number α ∈ (0, 1] the 

α-level, Aα is the crisp set that contains all 
elements of the universal set X, whose 

membership grades in A% are greater than or 

equal to a pre specified value of α, i.e., 

Aα = {x : A (x)µ %  ≥ α, ∀ x ∈ X}  
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The following properties are 

satisfied for all α ∈ (0, 1], which may be 

proved easily for all α, β ∈ (0, 1]: 

1. A% = B% if and only if Aα = Bα. 

2. If A% ⊆ B% then Aα ⊆ Bα. 

3. (A ∪ B)α = Aα ∪ Bα. 

4. (A ∩ B)α = Aα ∩ Bα. 

5. If α ≤ β, then Aα ⊇ Aβ. 

6. Aα ∩ Aβ = Aβ and Aα ∪ Aβ = Aα, if α 
≤ β. 

Another type of fuzzy sets that 
may be characterized using different 
notion is the fuzzy subsets of real 
numbers, which is the so called fuzzy 
number. Fuzzy numbers are always fuzzy 
sets while the converse is not true. The 
definition of a fuzzy number is as follows: 

A fuzzy number M% is a convex 

normalized fuzzy set M% of the real line 
، , such that: 

1. There exists exactly one x0 ∈ R, 
with 0M (x )µ %  = 1 (x0 is called the 

mean value of M%). 

2. M (x)µ %  is piecewise continuous.  

 

Now, the following two remarks 

illustrates the representation of a fuzzy 

number and fuzzy functions in terms of its α-

level sets, because they are more convenient 

to use in applications. 

Remark (1): 

A fuzzy number M% may be uniquely 
represented in terms of its α- 

 level sets, as the following closed 
intervals of the real line: 

Mα = [m − 1− α , m + 1− α ] 

or 

Mα = [αm, 
1

α
m] 

Where m is the mean value of M% and α ∈ [0, 
1]. This fuzzy number may be written as Mα = 

[ M%, M%], where M% refers to the greatest 

lower bound of Mα and M% to the least upper 
bound of Mα. 

Remark (2): 

Similar to the second approach given 
in remark (1), one can fuzzyfy any crisp or 
nonfuzzy function f, by letting: 

f (x) = αf(x), f (x) = 
1

α
f(x), x ∈ X, α 

∈ (0, 1] 

and hence the fuzzy function f% in terms of its 

α-levels is given by fα = [ f , f ]. 

 

 

 

3- Solution of Fuzzy Ordinary Differential 
Equations Using the Least Square Method: 

Consider the fuzzy differential 
equation: 

y%′(x) = f(x, y%), y%(x0) ;  0y%, x ∈ [a, b]……1 

where y is a mapping of x, f(x, y%) is a 

function of x and y, while 0y%  is a fuzzy number. 
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 Among the most important methods 
used to approximate the solution of fuzzy 
differential equations is that which has the 
general idea of minimizing the square of the 
residue error. To illustrate this method, consider 
the fuzzy initial value problem (1). Hence, in 
order to solve the fuzzy ordinary differential 
equation (1) using the least square method, the 
related α-level crisp differential equations are 
given by: 

[ y%′(x)]α = [f(x, y%(x))]α, [ y%(a)]α = [ 0y% ]α, x 

∈ [a, b]……………………….2 

Now, the approximated solution will be 

denoted by: 

[ y%(x)]α = [ y%(x, α), y%(x, α)], α ∈ (0, 1]……3 

where y% and y% refers to the lower and upper 

nonfuzzy solution related to the fuzzy solution at 

certain level α. Also, the initial condition may be 

rewritten as: 

[ y%(a)]α = [ 0y% ]α = [ 0y% (α), 0y% (α)]…….4 

The general form of the least square 

method for solving fuzzy ordinary differential 

equations is given by: 

[ y%(x)]α = [ ψ%(x)]α + 
n

i i
i 0

a [ (x)]α
=

ϕ∑ % …..5 

where ψ% is a fuzzy function which satisfies 

the nonhomogeneous conditions and iϕ% is an 

linearly independent functions satisfying the 

homogeneous conditions and ai, are constants to 

be determined, for all i = 0, 1, …, n. Therefore, 

subs.tu.ng eq.(5) back into eq.(1) and minimizing 

the square of the residual error defined by: 

 E%(a0, a1, …, an) = 

 b

a
∫

2
n n

'
i i ii

i 0 i 0
( x ) a ( x ) f x , ( x ) a ( x ) dxα α αα= =

     
′ψ + ϕ − ψ + ϕ               

∑ ∑% % % %

  

Hence, the problem now is reduced to find 

the coefficients ai, i = 0, 1, …, n. A necessary 

conditions for the coefficients ai, i = 0, 1, …, n; 

which minimizes E is that: 

i

E
0

a

∂ =
∂

%
, for each i = 0, 1, …, n 

which will produce a linear system of n + 1 

equa.ons, or the residue error given by eq.(6) 

may be minimized using the direct 

minimization techniques. 

The following examples illustrate the 

least square method for solving fuzzy 

differential equations: 

Example (1): 

Consider the first order linear fuzzy 

initial value problem: 

y (x)′%  = x + y%, y%(0) = 1%, x ∈ [0, 1] 

Thus, for α ∈ (0, 1], we may write the ini.al 

condition which is a fuzzy number in 

triangular form and α-level sets, as:  

[ 0y% ]α = [ 0y% (α), 0y% (α)] = [1 − 

1− α , 1 + 1− α ] 

One may find that the crisp solution 

when α = 1, is: 

y(x) = 2e
x
 −x − 1 
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Now, using the least square method to 

find the upper and lower fuzzy solutions, 

consider the upper case, i.e., consider: 

y (x)′%  = x + y% 

With initial condition: 

0y%  = 1 + 1− α , α ∈ (0, 1] 

Let: 

yα% (x) = ψ%α(x) + 
n

i i
i 0

a (x)α
=

ϕ∑ %  

Where ψ%α(x) = 1 + 1− α , which satisfies the 

nonhomogeneous initial condition; while the 

functions iαϕ%  which satisfy the homogeneous 

condition y%(0) = 0, may be chosen as: 

0 (x)αϕ%  = x, 1 (x)αϕ%  = x
2
, …, n (x)αϕ%  = x

n+1
 

and hence with n = 5: 

yα% (x) = 1 + 1− α  + a0x + a1x
2
 + a2x

3
 + 

a3x
4
 + a4x

5
 + a5x

6
 

Therefore:  

 E%(a0, a1, …, a5) = 

1

0
∫ ( yα′% (x) − yα% (x) − x)

2
 dx 

= 

1

0
∫ [(a0 + 2a1x + 3a2x

2
 + 4a3x

3
 + 5a4x

4
 + 

6a5x
5
) − (1 + 1− α  + a0x + a1x

2
 + a2x

3
 + 

a3x
4
 + a4x

5
 + a5x

6
) − x]

2
 dx 

Therefore, to find a0, a1, …, a5; either minimize E% 

with respect to a0, a1, …, a5 or evaluate the linear 

system: 

i

E
0

a

∂ =
∂

%
, for each i = 0, 1, …, 5 

Similar calculations may be carried for the lower 

case of solution yα% . Hence we get the following 

results presented in Fig.(1) of the fuzzy solu.on 

y% with different values of α∈ (0, 1]. Also, the 

accuracy of the results may be examined with  

α = 1, which are equal and the same results 

obtained from the crisp solution. 
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Fig.(1) Upper and lower solution of example (1) with αααα ==== 0.2, 0.4, 0.6 and 1.0 using the 
least square method. 
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Example (2): 

Consider the first order nonlinear fuzzy 

initial value problem: 

y (x)′%  = 1 + y%2
, y%(0) = 0%, x ∈ [0, 1] 

Thus, for α ∈ (0, 1], we may represent the ini.al 

condition which is a fuzzy number in triangular 

form and α-level sets, as:  

[ 0y% ]α = [ 0y% (α), 0y% (α)]= [− 1− α , 1− α ] 

One may find that the crisp solution when α = 1, 

is: 

y(x) = tan(x) 

Now, using the least square method to find the 

upper and lower fuzzy solutions, consider the 

lower case, i.e., consider: 

y (x)′%  = x + y% 

With initial condition: 

0y%  = − 1− α , α ∈ (0, 1] 

So: 

yα% (x) = ψ%α(x) + 
n

i i
i 0

a (x)α
=

ϕ∑ %  

Where ψ%α(x) = − 1− α , which satisfies the 

nonhomogeneous initial condition; while the 

functions iαϕ%  which satisfy the homogeneous 

condition y%(0) = 0, may be chosen as: 

 

 0 (x)αϕ%  = x, 1 (x)αϕ%  = x
2
, …, n (x)αϕ%  = x

n+1
 

and hence with n = 5: 

yα% (x) = − 1− α  + a0x + a1x
2
 + a2x

3
 + a3x

4
 + a4x

5
 + a5x

6
 

Therefore: 

E%(a0, a1, …, a5) = 

1

0
∫ ( yα′% (x) − 

2yα% (x) − 1)
2
 dx 

= 

1

0
∫ [(a0 + 2a1x + 3a2x

2
 + 4a3x

3
 + 5a4x

4
 + 6a5x

5
) −  

   (- 1− α  + a0x + a1x
2
 + a2x

3
 + a3x

4
 + a4x

5
 + a5x

6
)

 2
 − 1]

2
 

dx 

Therefore, to find a0, a1, …, a5; either minimize E% with 

respect to a0, a1, …, a5 or evaluate the linear system: 

i

E
0

a

∂ =
∂

%
, for each i = 0, 1, …, 5 

Similar calculations may be carried for the lower case of 

solution yα% . Hence we get the following results 

presented in Fig.(2) of the fuzzy solu.on y% with 

different values of α∈ (0, 1]. Also, the accuracy of the 

results may be examined with α = 1, which are equal 

the same results obtained from the crisp solution. 
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Fig.(2) Upper and lower solu�on of example (2) with αααα ==== 0.1, 0.3, 0.5, 0.7 and 1.0 using the least 

square method. 
  

4- Solution of Fuzzy Ordinary Differential Equations 

Using Adomian Decomposition Method 

Adomian decomposition method (ADM, for 

short) [Admian G., 1988], [Lesnic D., 2002]; is one of 

the most modern methods that may be modified and 

then used for solving fuzzy differential equations of 

various kinds. To introduce this method, we consider 

the following fuzzy integral equation related to the 

fuzzy differen.al equa.on (1): 

y%(x) = 0y%  + 

x

a
∫ f(s, y%(s)) ds………………7 

Then, extend y% using ADM in the series form as: 

y%(x) = 0y%  + n
n 0

y
∞

=
∑ % ……………………8 

 Where  ny% , n= 1,2,…  are as defined in eq .(11) 

below and write the fuzzy nonlinear function  

f(x, y%) as the series of function: 

f(x, y%) = n 0 1 n
n 0

A (x, y , y ,..., y )
∞

=
∑ % % % % ………9 

The dependence of nA%  on x and 0y%  may be 

non-polynomial. Formally, nA%  is obtained by: 

nA%  = 

n
i

in
i 0 0

1 d
f x, y

n! d

∞

= ε=

 
ε 

 ε  
∑ % , n = 0, 1,    

..10 

where ε is a formal parameter. Functions nA%  

are polynomials in 1y%, 2y% , …, ny% , which are 

referred to as the Adomian polynomials. 
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0A%  = f(x, 0y% ) 

1A%  = 1y%f ′(x, 0y% ) 

2A%  = 2y% f ′(x, 0y% ) + 
1

2
2
1y% f ′ ′(x, 0y% ) 

3A%  = 3y% f ′(x, 0y% ) + 1y% 2y% f ′ ′(x, 0y% ) + 
1

6
3
1y% f ′ ′ ′(x, 

0y% ) 

4A% = 4y% f ′(x, 0y% ) + 
1

2
2
2y% f ′ ′(x, 0y% ) + 1y% 3y% f ′ ′(x, 0y% ) 

+ 
1

2
2
1y% 2y% f ′ ′ ′(x, 0y% ) + 

1

24
4
1y% f 

(4)
(x, 0y% ) 

where ′ refers to the partial derivatives of f with 

respect to y. 

Subs.tu.ng (8) and (9) back into (7) gives a 

recursive equation for n 1y +%  in terms of 1y%, 2y% , …, 

ny% , as: 

n 1y +% (x) = 

x

a
∫ n 0 1 nA (s, y (s), y (s),..., y (s))% % % %  ds, n = 

0, 1, ………….11 

Now, consider the following illustrative 
examples: 

Example (3): 

Consider the linear fuzzy ordinary 
differential equation of the first order: 

y (x)′%  = x + y%, y%(0) = 1%, x ∈ [0, 1] 

Thus, for α ∈ (0, 1], we may write the initial 
condition which is a fuzzy number in triangular 
form and α-level sets, as:  

 [ 0y%]α = [ 0y%(α), 0y%(α)] = [1 − 

1− α , 1 + 1− α ] 

Hence, using the ADM, we have to consider 
first the solution in lower case of the fuzzy 
solution y%: 

n 1(y (x))+ α%  = 

x

0
∫ n(y (x))α%  dx, n ≥ 0 

with initial condition: 

0(y (x))α%  = 

2x

2
 + (1 − 1− α ) 

Hence, taking the first ten terms of the 

solution, we get the following solution in series 

form: 

y(x, )α%  = 

2x

2
 + (1 − 1− α ) + 

3x 6x 1 6x

6

− − α +
 + 

2 2x (x 12 1 12)

24

− − α +
 + 

3 2x (x 20 1 20)

120

− − α +
 + 

4 2x (x 30 1 30)

720

− − α +
 + … 

and similarly the upper solution may be found 

to be: 

y(x)%  = 

2x

2
 + (1 + 1− α ) + 

3x 6x 1 6x

6

+ − α +
 + 

2 2x (x 12 1 12)

24

+ − α +
 +  
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3 2x (x 20 1 20)

120

+ − α +
 + 

4 2x (x 30 1 30)

720

+ − α +
 + … 

 
 The results of the upper and lower solutions 

for different values of α ∈ (0, 1] are given in 

Fig.(3), which agree with the results given in 

Fig.(1) for the linear case of problems. 
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Fig.(3) Upper and lower solution of example (3) with αααα ==== 0.2, 0.4, 0.6 and 1.0 using ADM. 

Example (4): 

Consider the first order nonlinear fuzzy 

initial value problem: 

y (x)′%  = 1 + y%2
, y%(0) = 0%, x ∈ [0, 1] 

Thus, for α ∈ (0, 1], we may represent the 

initial condition which is a fuzzy number in 

triangular form and α-level sets, as:  

[ 0y% ]α = [ 0y% (α), 0y% (α)] = [− 1− α , 

1− α ] 

Now, using the ADM for solving this nonlinear  

 
fuzzy ordinary differential equation, we have for 

the upper solution: 

n 1(y (x))+ α%  = 

x

0
∫ n(A (x))α%  dx, n ≥ 0 

with the initial condition: 

0(y (x))α%  = x + 1− α  

where n(A (x))α% , n ≥ 0 are the Adomian fuzzy 

polynomials that represent the nonlinear terms, 

in which the first three terms of them are given 

by: 
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0(A (x))α%  = 
2
0(y (x))α%  

1(A (x))α%  = 2 0(y (x))α% 1(y (x))α%  

2(A (x))α%  = 2 0(y (x))α% 2(y (x))α%  + 

2
1(y (x))α%  

        M 

and hence the upper solution is given by: 

y(x, )α%  = x + 1− α  + 

2x(3(1 ) 3x 1 x )

3

− α + − α +
 + 

x
2 ( )3 4(1 )x

1
3

− α − α + +
 

2 32x 1 2x

3 15

− α + 


 + … 

 
Similarly, the lower solution is found to be: 

y(x, )α%  = x − 1− α  + 

2x(3(1 ) 3x 1 x )

3

− α − − α +
 + 

x
2 ( )3 4(1 )x

1
3

− α− − α + −
 

2 32x 1 2x

3 15

− α + 


 + … 

 

The results of the upper and lower solutions for 

different values of α ∈ (0, 1] are given in Figs.(4) 

and (5), which shows that the results are accurate 

in the lower case of solution and inaccurate in the 

upper case of solution when comparing with 

those results obtained from the least square 

method. 
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Fig.(4) Upper solution of example (4) with αααα ==== 0.1, 0.3, 0.5, 0.7 and 1.0 using ADM. 
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Fig.(5) Lower solution of example (4) with αααα ==== 0.1, 0.3, 0.5, 0.7 and 1.0 using ADM. 

5- Conclusions: 

From the present study of this paper, we 
may conclude the following: 

1. The accuracy of the results may be checked 
with α = 1, in which the upper and lower 
solutions must be equal. 

2. The crisp solution or the solution of the 
nonfuzzy initial value problem is obtained 
from the fuzzy solution by setting α = 1, and 
therefore fuzzy initial value problems may be 
considered as a generalization to the 
nonfuzzy initial value problems. 

3. The ADM given an accurate results when 
solving linear fuzzy initial value problems, 
while give inaccurate results when solving 
nonlinear fuzzy initial value problems. 
Therefore, the least square method may be 
considered to be more reliable than the ADM 
in solving fuzzy initial value problems. 
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للتحليل ادومين وطريقة الصغرى المربعات طريقة إستخدامب الضبابية بتدائيةلإا القيمة لةـأمس لـح  

 

  فاضل صبحي فاضل.  د                     ** احمد علي محمد*  

بغداد / العراق  ،، الرياضيات قسم ، الهيثم ابن التربية كلية ، بغداد جامعة*   

بغداد/  العراق ،، الحاسوب وتطبيقات الرياضيات قسم ،  العلوم كلية ، ينالنهر جامعة**   

 

   خلصالمست

   همـا مختلفتـين طـريقتين بإسـتخدام  الـضبابية الإبتدائيـة القيمـة لمـسألة العـددي الحـل بدراسـة نقـوم سـوف ، البحث هذا في    

 المـضبوط الحل  مع عليها نحصل التي النتائج بمقارنة ًأيضا نقوم وسوف للتحليل ادومين وطريقة الصغرى المربعات طريقة

   . فقط  واحد تساوي ألفا عندما

  


