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Abstract

In this paper, we define the concepts of a
closed ideal with respect to an element of
a BCH-algebra and a closed BCH-algebra
with respect to an element of BCH-
algebra . We stated and proved some
theorems which determine the relationship
between these notion and the notions of
some ideals of a BCH-algebra.

INTRODUCTION

The notion of BCK- algebras was
formulated first in 1966 [11] by (Y.Imai)
and (K.Iseki) as a generalization of the
concept of set-theoretic difference and
propositional calculus. In the same year
(K.Iseki) introduced the notion of BCI —
algebra [5], which is a generalization of
BCK- algebra . Most of the algebras
related to the t-norm based logic, such as
MTL-algebras, BL-algebras, hoop, MV-
algebras ,B-algebra , BQ-algebra ,and
Boolean algebras etc .

In 1983, (Q.P.Hu) and (X.Li) introduced the
notion of BCH-algebra which are a
generalization of BCK/BChlgebras [10].
After that, many mathematical pape
have been published investigating some
algebraic properties of BCK\BCI\BCH-
algebras and their relationship with other
universal structures including lattices and
Boolean algebras .

In 1996 , (M. A. Chaudhry) and (H. Fakhar-
ud-din) introduced the notion of ideal, closed
ideals, filter, closed filter and some type of
ideals in BCH-algebra [7] .

In 2010 , (A. B. Saeid ) introduced the
notions of fantastic ideal in BCl-algebra [1]

In this paper, we introduce the notion of a
closed ideal and closed BCH-algebra with
respect to an element of a BCH-algebra. We
prove some theorems and give SO
examples to show that the relation of this
notion and other types of ideals of BCH-
algebra.
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1.PRELIMINARIES

In this section we give some basic
concept about BCK-algebra , BCl-algebra
, BCH-algebra, , p-semi simple BCH-
algebra ,medial BCH-algebra , associative
BCH-algebra , BCA-part of BCH-
algebra , medial part of BCH-algebra,
fantastic ideal in BCl-algebra and
(subalgebra , ideal , closed ideal , quasi-
associative ideal ) in BCH-algebra with
some theorems, propositions and
examples.

Definition (1.1) : [5, 6]

A BCl-algebra is an algebra (X,*,0)
of type (2,0) , where X is nonempty set, *
is a binary operation and o is a constant ,
satisfying the following axioms: for all x,
y, zZO X:

- ((x*y)*(x*2))*(z*y) =0,
2. x*(x*y)*y=0,
3. x*x=0,

4. x*y=0andy*x=0imply x =y,
Definition (1.2) : [12]

=

A BCK-algebra
satisfying the axiom:
0*x =0 for all xOI X.
Definition (1.3) : [10]

is a BCl-algebra

A BCH-algebra is an algebra (X,*,0) of
type (2,0) , where X is nonempty set, * is
a binary operation and 0 is a constant ,
satisfying the following axioms: for all
X, Y, 21 X:

1. x*x=0,
2. x*y=0andy*x=0imply x =y,

3. (x*y)*z=(x*z)*y.

Definition (1.4) : [3, 12, 13]

In any BCH/BCI/BCK-algebra X, a
partial order< is defined by putting x vy if
and only if x*y = 0.

Proposition (1.5) : [4, 8, 9]

In a BCH-algebra X, the following holds for
all x,y, zO X,
1. x*0=x,
(x*(x*y)*y=0,
0*(x*y)=(0*x)*(0*y),
0*(0*(0*x))=0*x,

Xx<yimplies0*x=0%*y.

a b~ 0D

Remark(1.6):[9]

It is known that every BCl-algebra is a BCH-

algebra but not conversely, where a BCH-
algebra X is called proper if it is not a BCI-
algebra.

Definition (1.7) : [2]

A BCH-algebra X that satisfying in
condition if 0 *x = 0 then x = 0, for alllXX
is called aP-semisimple BCH-algebra.

Definition (1.8) : [7]

A BCHe-algebra X is callethedial if:
x*(x*y)=y,forall x,ydX.
Definition (1.9) : [2]

A BCH-algebra X is called aassociative
BCH-algebra if:

(x*y)*z=x* (y*z),forallx,y, 4]
X.
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Definition (1.10) : [9]

Let X be a BCH-algebra . Then the set
Xe={x0OX:0*x=0}Iis calledthe
BCA-part of X .

Remark ( 1.11) : [9]

The BCA-part X of X is a nonempty
Since 0 *0 = 0 gives @ X, . Further the
BCA-part of a BCH-algebra may coincide
with the BCH-algebra, but not necessarily
with a BCK-algebra.

Definition (1.12) : [9]
Let X be a BCH-algebra . Then the set

med(X) ={xO X :0* (0 *x) =x}is
calledthe medial part of X .

Remark ( 1.13) : [9]

The medial part med(X) of X is
nonempty Since 0 * (0 *0) = 0 gives[D
med(X).

Theorem (1.14) : [7]
Let X be a BCH-algebra . Then[x

med(X) if and only if x*y = 0*(y*x) for
all x,yrIX

Definition ( 1.15) : [9]

Let X a BCH-algebra and S X.
Then S is called aubalgebra of X if
x*y [0 S for all x, yIS.

Definition (1.16) : [2, 7]

Let X be a BCH-algebra ang |
O X. Then | is called ardeal of X if it
satisfies:

i. ol
ii.  x*yOl and yOl imply xOI.
Definition (1.17) : [7]

Let X be a BCH-algebra andll X be an
ideal. Then | is called dosed ideal of X if
O0*x 0l for all xl.

Definition (1.18) : [7]

Let X be a BCH-algebra andll X be an
ideal. Then 1 is called a quasi-associative
ideal if 0*(0*x) = 0*x, for all xI I.

Definition (1.19) : [1]

Let | be an ideal of X. Then I is called a
fantastic ideal of X if (x*y)*z Ol and ZlI,
then x*(y*(y*x))OlI, for all x, y, Z1X.

Proposition (1.20) : [1]

If X is an associative BCl-algebra, then
every ideal is a fantastic ideal of X.

Definition ( 1.21) ; [11]
A mapping f : (X, *, 0 (Y, *, 0) of

BCH-algebras is called a homomorphism if:

f(x [1y) =1(x) [I" f(y) for all x, y € X.

Note that

if f : X — Y is a homomorphism of BCH-
algebras, then f(0) = 0.

Definition (1.22) :

A mapping f: (X, *, 0} (Y, *, 0) of
BCH-algebras is called an epimorphism if f is
a homomorphism and a surjective.
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2THE MAIN RESULTS

In this section we first define the
notion of the closed ideal with respect to
an element of a BCH-algebra . For our
discussion , we shall link this notion with
other type of ideals which mentioned in
preliminaries.

Definition (2.1):

Let X be a BCH-algebra and | be an
ideal of X . Then I is called eosed ideal
with respect to an element al1X (denoted
a-closed ideal) if:
a*(0*x)0O1, forall xOl.

Remark (2.2):

In a BCH-algebra X , the ideal | =
{0} is the closed ideal with respect to O .
Also , the ideal | = X is the closed ideal
with respect to all elements of X.

Example(2.3):
Let X = {0 ,a ,b ,c }. The following

table shows the BCH-algebra structure on
X.

*

0 a b c
0 0 a b C
a a 0 c b
b b C 0 a
C c b a 0

Then 1={0,a} is 0, a-closed ideal, Since
1. lisanideal [Since .01,
i, If x*yOl and yJl implies xI.]

2. 0*(0*0)=000I 0*(0*a)=l

=l is 0-closed

and

a*(0*0)=all
=l is a-closed
Definition (2.4):

and a*(0*a)=0l

Let X be a BCH-algebra andld. Then
X is called aclosed BCH-algebra with
respect to a, or a-closed BCH-algebra, if and
only if every proper ideal is closed ideal with
respect to a.

Example(2.5):

Let X={0, 1, 2, 3, 4, 5}. The following
table shows the BCH-algebra structure on X.

* 0 1 2 3 4 5
0 0 0 0 0 4 4
1 1 0 0 1 4 4
2 2 2 0 2 5 4
3 3 3 3 0 4 4
4 4 4 4 4 0 0
5 5 5 4 5 2 0

1,.={0, 1} ,

1,={0, 1, 2} and

1:={0, 1, 2, 3}

are all the proper ideals, which are 1-closed
ideals of X, since

i Ifx*y 0O, and Yl = xOl;, Oi=1, 2, 3] .

ii. 11 is 1-closed ideal [since 1*(0*X),, 00X
1]

l,b is 1-closed ideal
LOxO 12 ]

l; is 1-closed ideal
OxO 3]

Therefore,

[since 1*(0*K)i,

[since 1*(0*X)s3

X is 1-closed BCH-algebra.
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Theorem (2.6) :

Let X is a BCH-algebra . If X=X, then X
is 0-closed BCH-algebra .

Pr oof

Let | be an ideal of X
To prove that | is 0-closed ideal
Let x(I. Then
0*(0*x) = 0*0 [Since0*x=0,by definition
(2.10)]
=0 [By definition(1.3) of a BCH-

algebra]

But 0Ol [Since | is an ideal. By definition
(1.16)]

= 0*(0*x) Ol [Since @I, by definition
(1.16)]

= | is O-closed ideal.
Therefore,
X is 0-closed BCH-algebra

Corollary(2.7) :

Every BCK-algebra is 0-closed BCH-
algebra

Pr oof

Let X be a BCK-algebra
= X is BCH-algebra [By remark (1.6) ]

But O0*x = 0, OxOX  [Since X is BCK-
algebra.By definition(1.2) ]

= X=X, [By definition(1.10)
of X, ]

= By theorem(2.6) we get
X is O-closed BCH-algebra

Theorem(2.8) :

Let X be a 0-closed BCH-algebra. Then
every quasi-associative ideal is closed ideal.
Pr oof

Let | be a quasi-associative ideaX of
To prove that | is closed ideal
Let xUI
0*x = 0*(0*x) [ By definition(1.18)]

But | is O-closed ideal
BCH-
Algebra. By definition(2.4)]

= 0*(0*x) Il = O*x0lI
Therefore,

[Since X is 0-closed

| is a closed ideall

Theorem(2.9) :

Let X be a BCH-algebra. Then every quasi-
associative ideal is subalgebra.
Pr oof

Let | be a quasi-associative ideal
and x, yll
To prove that x*yll
0*( 0*(x*y) ) = 0*((0*x)*(0*y)) [By
Proposition (1.5)]

=(0*(0*x))*(0*(0*y))[By
(1.5)]

= (0*x)*(0*y) [ Since x, ¥l and | is a
quasi- associative. By definition(1.18)]

= 0*(x*y) [ proposition(1.5) ]

proposition

= x*y[l [Since | is a quasi-associative ideal]
Therefore,
| is a subalgebrda
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proposition(2.10) :

Let X be an a-closed BCl-algebra, with
aIX. If X is an associative BCl-algebra,

then every a-closed ideal is a fantastic ideal

of X.
Pr oof

Let | be a-closed ideal
[By definition(2.1)]
=By proposition(1.20) we get

= lis an ideal

| is a fantastic ideal of X.

Theorem(2.11) :

Let f: (X, *, 0) - (Y, *, 0) be a BCH-
epimorphism. If | is an ideal of Y, then f
(1) is an ideal of X.

Pr oof

Since f is an epimorphism
=By definition(1.22) we get
fis a homomorphism and f(X) =Y
To prove that f(I) is an ideal

i. f(0)=001
and | is

an ideal of Y. By definitions (1.21) and
(1.16)]

= 00 f (1)

[Since f is a homomorphism

ii. let x, yOX such that x*yJ f (1) and
yo £ 7(1)
= f(x*y)0l and f(ypdl

But f(x*y) = f(x) *' f(y) [By definition
(1.21)]

= f(x) * f(y)OI and f(y)l

= f(x)Ul
= xOf (1)

[Since | is an ideal of Y]

Therefore,
f (1) is an ideal of X

Theorem(2.12) :

Let f: (X, *, 0) > (Y, *, 0) be a BCH-
epimorphism. If K is an ideal of X. Then f (K)
is an ideal of Y.

Pr oof

Since f is an epimorphism
=By definition(1.22) we get
fis a homomorphism and f(X) = Y
To prove that f(l) is an ideal

i. OOK [Since K is an ideal of X]
= f(0) O f(K)
But f(0) =0 [By definition(1.21)]
= 0="1(K)

ii. let x, yOOY such that x * ¥l f(K) and
yt f(K)

= Oxg, y10X  such that f(xY)=x and f(y) =y
= f(x2) * f(y1) O f(K) f(y) O f(K)

But f(xa*y1) = f(x1) *' f(y1) [Sincefis a
homomorphism.By definition(1.21)]

and

= f(x1*y1)Of(K) and f(y)Of(K)
= X*y;0K and y[OK

= xK[Since K
definition(1.16)]

= f(x)Of(K) = xOf(K)
Therefore
f(K) is an ideal of YR

is an ideal. By

10
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Theorem(2.13) :

Let f: (X, *, 0) - (Y, *, 0) be a BCH-
epimorphism. if X is an a-closed BCH-
algebra, then Y is a f(a)-closed BCH-
algebra.

Pr oof

Since f is an epimorphism
=By definition(1.22) we get
f is a homomorphism and a surjective
Let | be an ideal of Y
= By theorem(2.11) we get
(1) is an ideal of X

— (1) is an a-closed ideal of X[Since X is
an a-closed BCH-algebra. By definition
(2.4)]

To prove that | is a f(a)-closed ideal
Let yOI I = OxOX such that f(x) =y
= f(x) 01 = xOfYI)

= a*(0*x)0f (1)
closed ideal.
By definition(2.1)]

= f(a*(0*x)) Ol

=f(a)*'f(0*x) JI[Since f is ahomomorphism.
By definition(1.21)]

=f(a) *' (f(0) *' f(x)) Tl [Since fis a
homomorphism. By definition(1.21)]

=f(a) *' (0 * f(x))dI [Since f(0) = 0.By

[Since f(I) is an a-

definition(1.21)]

= f(a) *' (0 *" y)Ul [Since f(X) = y]
= |l is a f(a)-closed ideal of Y
Therefore,

Y is a f(a)-closed BCH-algebrl

Theorem(2.14) :

Let f: (X, *, 0) - (Y, *, 0) be a BCH-
epimorphism. if Y is an a-closed BCH-
algebra, then X is a b-closed BCH-algebra,
where f(b) = a

Pr oof

Since f is an epimorphism
=By definition(1.22) we get
fis a homomorphism and a surjective
Let K be an ideal of X
= By theorem(2.12) we get
f(K) is an ideal of Y

= f(K) is an a-closed ideal [Since Y is an
a-closed
BCH-algebra. By definition(2.4)]

To prove that K is a b-closed ideal, where
f(b)=a

LetxOK
= f(x) O f(K)

=a* (0*f(x) Of(K)[Since f(K) is an a-
closed

ideal. By definition(2.1)]
= f(b) * (0 * f(x)) U f(K) [Since a = f(b)]

=f(b) * (f(0) * f(x))) Uf(K) [Since f (0) = O.
By definition(1.21)]
=f(b) * f(0*x) K
homomorphism.

By definition(1.21)]

=f(b*(0*a)) Uf(K)
homomorphism.
By definition(1.21)]

= b*(0*a)K [Since f is a homomorphism.
By definition(1.21)]

= K is a b-closed ideal of X.

[Since f is a

[Since f is a

Therefore,
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Y is a b-closed BCH-algebrii
Corollary (2.15) :

Let f: (X, *, 0) - (Y, *, 0) be a BCH-
epimorphism. Then X is 0-closed BCH-
algebra if and only if Y is O-closed BCH-
algebra.

Pr oof

Since f is an epimorphism
=By definition(1.22) we get
f is a homomorphism and a surjective
Let X be 0-closed BCH-algebra
= By theorem(2.13) we get
= Y is f(0)-closed ideal of X

Butf(0) =0 [Since fis a homomorphism.
By definition(1.21)]

Therefore,
Y is a 0-closed BCH-algebra
Conversely

Let Y be O-closed BCH-algebra

Since f(0) = 0 [Since fis a homomorphism.
By definition(1.21)]

= By theorem(2.14) we get

X'is 0-closed BCH-algebra,where f(0) = 0.
|
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