Bayes estimators with extension of Jeffery prior information for Time censored data and Failure censored data

Authors

DOI:

https://doi.org/10.31642/JoKMC/2018/100208%20

Keywords:

Bayes estimator , extension of Jeffery prior information, Maximum Likelihood estimator, simulation.

Abstract

In this research, the Bayes estimator was derived based on Time censored data of the first type, and the Failure censored data of the second type. Reliance has been made on extension of Jeffery prior information. Finally, the simulation was used based on the MATLAB program and with different inputs to find the best estimator among Maximum Likelihood estimator and Bayes estimators with extension that has the least mean percentage error

Downloads

Download data is not yet available.

References

Abadi, Q. S., & AL-Kanani, I. H. (2020). Estimating of Survival Function under Type One Censoring Sample for Mixture Distribution. Ibn AL-Haitham Journal For Pure and Applied Science, 33(4), 102-109.‏

Al-Hadithi, Ikhlas Ali Hammoudi, “Comparing the standard Bayes estimations of the Pareto distribution parameterUsing different loss functions", Master's Thesis, College of Administration and Economics-University of (Baghdad (2010).

Ali, A. H., &Kanani, I. H. A. (2021, March). Bayesian Methods to Estimate the Parameters of Exponentiated Weibull Distribution. In Journal of Physics: Conference Series (Vol. 1818, No. 1, p. 012143). IOP Publishing

Ellis, W. C., & Tummala, V. R. (1986). Minimum expected loss estimators of the shape & scale parameters of the Weibull distribution. IEEE transactions on reliability, 35(2), 212-215.‏

Epstein, B., &Sobcl, M. (1984). Some Theorems to Life Testing from an Exponential Distribution. Annals of Mathematical Statistics, 25.‏

Elviana, E., &Purwadi, J. (2020, July). Parameters Estimation Of Rayleigh Distribution In Survival Analysis On Type Ii Censored Data Using The Bayesian Method. In Journal of Physics: Conference Series (Vol. 1503, No. 1, p. 012004). IOP Publishing.‏

Felsenstein, K. (2002). Bayesian inference for questionable data. Austrian Journal of Statistics, 31(2&3), 131-140.‏

Fernández, A. J. (2000). Estimation and Hypothesis Testing for Exponential Lifetime Models with Double Censoring and Prior Information. Journal of Economic & Social Research, 2(2).‏

Hahn, J. (2004). Does Jeffrey's prior alleviate the incidental parameter problem?. Economics Letters, 82(1), 135-138.‏

Kumar, A. (2003). Bayes estimator for one parameter exponential distribution under multiply type II censoring scheme. In International Conference on Statistics, Combinatorics and Related Area.‏

Mohammed, M. E., & Al-Tebawy, A. A. A. (2021). Bayesian estimation of the beta distribution parameter (α) when the parameter (β) is known. Turkish Journal of Computer and Mathematics Education (TURCOMAT), 12(14), 4879-4886.‏

Naji, L. F., & Rasheed, H. A. (2019). Bayesian estimation for two parameters of gamma distribution under generalized weighted loss function. Iraqi Journal of Science, 60(5), 1161-1171.‏

Pradhan, B., & Kundu, D. (2014). Analysis of interval-censored data with Weibull lifetime distribution. Sankhya B, 76, 120-139.

Shawky, A. I., &Bakoban, R. A. (2008). Bayesian and non-Bayesian estimations on the exponentiated gamma distribution. Applied Mathematical Sciences, 2(51), 2521-2530.‏

Sinha, S. K., & Sloan, J. A. (1988). Bayes estimation of the parameters and reliability function of the 3-parameter Weibull distribution. IEEE Transactions on Reliability, 37(4), 364-369.

Haneen R. Sahib and Hadeel S. Al-Kutubi ,"A Comparison Between Parameters and Survival Function of the Exponential Distribution Model Using the Complete Data and Censored Data". accepted final of the journalMathematical Modelling of Engineering Problems .2023

Downloads

Published

2023-08-31

How to Cite

Reed Sahib, H., & Al-Kutubi , H. S. (2023). Bayes estimators with extension of Jeffery prior information for Time censored data and Failure censored data. Journal of Kufa for Mathematics and Computer, 10(2), 52–56. https://doi.org/10.31642/JoKMC/2018/100208