Calculation of Of Skin Absorbed Dose For The Staff And Students From External Gamma Ray Source In Nuclear Physics Lab

Lubna A. Mehdi Physics department / Science college / Kufa University e-mail: Lubna A. Mehdi@yahoo.com

Abstract

The aim of this project is to determine the amount of the dose absorbed by skin of the staff and students while they are working in nuclear physics lab. and to determine whether they are in safe side or not .

The parameters that which are studied in this project are the exposure time ,the distance from radioactive source and the activity of radioactive gamma ray source ,where two radioactive sources are involved in this study are CO^{60} (1.25 Mev) and Cs^{137} (0.266 Mev) .This project show that all of the studied parameters have significant effect on the skin absorbed dose whether it's in the positive or negative side.

Key words: Skin Absorbed Dose, External Gamma Ray, Nuclear Physics

حساب جرعة الجلد الممتصة للكادر التعليمي و الطلبة من مصدرخارجي باعث الأشعة كاما في مختبر. الفيزياء النووية

الخلاصة

الهدف من هذا البحث هو لتحديد كمية الجرعة الممتصة من قبل جلد الكادر التعليمي والطلبة إثناء فترة تواجدهم في مختبر الفيزياء النووية ولتحديد ما إذا كانوا (الكادر+ألطلبه) في الجانب الأمين أو لا (من ناحية خطر الإشعاع).

العوامل المدروسة في هذا البحث هي زمن التعرض ،المسافة عن المصدر المشع و النشاط الإشعاعي لمصدر العوامل المدروسة في هذا البحث تم اخذ عنصرين مشعين هما (1.25 Mev Co⁶⁰) و((Cs¹³⁷, 0.266 Mev)) و().وضح البحث بان كل العوامل المدروسة لها تأثير واضح على جرعة الجلد سواء كانت في الجانب الايجابي أو السلبي. كلمات مفتاحية: جرعة الجلد الممتصة ، أشعة كاما ، لاشعة كام

1.Introduction

Scientists have studied the effects of radiation for more than 100 years, and they know a great deal about how to detect, monitor and control even the smallest amounts. In fact, more is known about the health effects of radiation than about most other physical or chemical agents[1].

The goal of any radiation safety program is to reduce exposure, whether internal or external, to a minimum. The external exposure reduction and control measures available are of primary importance[2].

In order to be able to protect people from ionizing radiation ,it is obviouslynecessary to measure the radiation to which they may be exposed , and so quantity Exposure.

Health effects of radiation exposure start with the deposition of radiation energy in cells, tissues and organs. When radiation passes through matter, it deposits energy in the material concerned.[3]

The energy present in ionizing radiation eventually appears as a heat if it is absorbed in tissues.

When an ionizing radiation is absorbed, may cause damage ,but the more likely method of damage is to sensitive target within biological structure of molecule .[4]

Quantities and units not restricted to the absorption of photons in air are obviously required. When substance other than air is put into photons beam it will be exposed to same energy fluence that passed through the air volume .Generally mass energy transfer coefficient of the new material will not be equal to that of air .Mass absorption coefficient are a function of atomic number and photon energy .The energy deposited in mass Δm of new material will be :

 $\Delta E = \psi (\mu en/\rho)m. \Delta m$

Where ψ energy fluence , $(\mu en/\rho)m$ is mass absorption coefficient .

A quantity known as absorbed dose, or more simply dose, can be defined in term of energy imparted by ionizing radiation to mass element (Δm)

 $D=\Delta E/\Delta M$

The unit of dose is the rad where

1 rad = 0.01 J/kg (Gy) = 100 erg /g[3].

Three main factors determine the radiation-induced damage that might be caused to living tissue, the number of radioactive nuclei that are present, the rate at which they give off energy, and the effectiveness of energy transfer to the host medium, i.e., how the radiation interacts with the tissue.[5]

Gamma radiation is extremely penetrating and can pass through most materials, being significantly attenuated only by thick slabs of dense materials, such as lead.[3].

2.Method of calculation:

Two radioactive sources were used in this study are (Cs^{137}) which emits gamma ray photons of(0.662 Mev)with the activity of(0.0112 µCi) and (Co^{60})which emits two photons (1.173 & 1.333 Mev) with activity of (0.2771 µCi) .The two sources that used in this

study of disk shape of 2 cm diameter. The radiation Exposure can be obtained using equation(1):

where
$$\dot{X} = \Gamma \frac{A}{D^2}$$
....(1)

 \dot{X} : Exposure rate .

 Γ : Specific gamma ray constant

A : Activity of the radioactive source.

D : The distance from the radioactive source..

The radiation dose in air can be obtained using the following conversion factor(2)[6]

1 Roentgen = 8.7 mGy.....(2)Absorbed dose can be calculated in different material by using the equation (3)

$$D_{Mediuem} = D_{Air} \frac{\mu_m(Medium)}{\mu_m(Air)}....(3)$$

where : μ_m : the mass absorption coefficient which is

$$\mu_m = \frac{\mu}{\rho}$$
.....(4) equal:

 μ : the linear absorbed coefficient , ρ :

density of material.[7]

3.Results:

1.The exposure rate values in unit of roentgen per hour relative to the distances from both radioactive source (Cs^{137}) and Co^{60}) are shown in tables (1).

2.The exposure values for three periods of time(1,2 and 3hours) relative to the distance from radioactive source (Cs^{137})in unit of roentgen are shown in table (2).

3. The exposure values for three periods of time (1,2 and 3hours) relative to the distance from radioactive source (Co^{60}) in unit of roentgen are shown in table(3)

4.The air dose in (mGy) for three periods of time(1,2 and 3hours) relative to the distance from radioactive source(Cs^{137}) are shown in table (4)

5. The air dose in (mGy) for three periods of time(1,2 and 3hours) relative to the distance from radioactive source(Co^{60}) are shown in table(5)

6. The skin dose in (mGy) for three periods of time(1,2 and 3hours) relative to the distance from radioactive source(Cs^{137}) are shown in table(6)

7. The skin dose in (mGy) for three periods of time(1,2 and 3hours) relative to the distance from radioactive source(Co^{60}) are shown in table(7)

8. The relationship between the exposure rate and the distance from the radioactive source for both (Cs^{137} and Co^{60}) are shown in figure (1)(2),figure (3) and (4) show the exposure for(1,2and 3 hours)versus the distance from both radioactive source(Cs^{137} and Co^{60}).

9.Figures (5) and (6) show air dose in three periods of time (1,2 and 3 hours) versus the distance from radioactive sources (Cs^{137} and Co^{60}).

10.Skin dose for three periods of time versus the distance from radioactive (7) (10)

Source are shown in figures (7) and (8).

Table1: Show the values of the exposure rate relative to the distance from radioactive sources (Cs^{137} and Co^{60}).

The Radioactive Source	Distance (cm)	Exposure Rate (Roentgen/h)
	10	0.00000373
	20	0.00000093
	30	0.000000041
N	40	0.00000023
13.	50	0.00000014
S.	60	0.00000001
•	70	0.000000007
	80	0.000000005
	90	0.000000004
	100	0.00000000004
	10	0.0000357
	20	0.00000893
	30	0.00000397
	40	0.00000223
-60	50	0.00000142
Ċ	60	0.000000992
	70	0.000000729
	80	0.000000558
	90	0.000000441
	100	0.00000357

Table2: Show the exposure values in (roentgen) for three periods of time relative to the distance from radioactive source(Cs^{137}).

	Dictor	Exposure	Exposure	Exposur
	ce/cm	In one	Exposure	e
		h our		In 3
		nour	nours	hours
	10	0.000000	0.000000	0.00000
		373	746	1119
	20	0.000000	0.000000	0.00000
	20	093	186	0279
	20	0.000000	0.000000	0.00000
Ca	30	041	082	0123
137	40	0.000000	0.000000	0.00000
157	40	023	046	0069
	50	0.000000	0.000000	0.00000
		014	028	0042
	60	0.000000	0.000000	0.00000
		01	02	003
	70	0.000000	0.000000	0.00000
		007	014	0021
	80	0.000000	0.000000	0.00000
		005	01	0015
	00	0.000000	0.000000	0.00000
	90	004	008	0012
	100	0.000000	0.000000	0.00000
	100	00004	00008	000012

Table3: Show the exposure values in (roentgen) for three periods of time relative to the distance from radioactive source(Co^{60}).

	Distanc	Exposure	Expo	Exposure
	e/cm	In one	sure	In 3 hours
		hour	In 2	
			hours	
	10	0.000035	0.000	0.0001071
	10	7	0714	0.0001071
			0.000	
	20	0.000008	0178	0.00002679
		93	6	
			0.000	
	30	0.000003	0079	0.00001191
Co-		97	4	
60			0.000	
	40	0.000002	0044	0.00000669
		23	6	
			0.000	
	50	0.000001	0028	0.00000426
		42	4	
			0.000	0 00000207
	60	0.000000	0019	0.00000297
		992	84	0
			0.000	0.00000218
	70	0.000000	0014	0.00000218
		729	58	7
			0.000	0.00000167
	80	0.000000	0011	0.00000107
-		558	16	4
	90		0.000	0.0000132
		0.000000	0008	2
		441	82	3
-			0.000	0.00000214
	100	0.000000 357	0007	0.00000214 2
			14	L

Table4: Show the values of dose in air(mGy) in three periods of time relative to the distance from radioactive source(Cs^{137}).

		air	air	air
	Distance	Dose	Dose	Dose
	/cm	In one	In 2	In 3
		hour(m	hour(m	hour(m
		Gy)	Gy)	Gy)
	10	0.00000	0.0000	0.00000
		32451	064902	97353
	20	0.00000	0.0000	0.00000
	20	08091	016182	24273
	20	0.00000	0.0000	0.00000
	50	03567	007134	10701
	40	0.00000	0.0000	0.00000
		02001	004002	06003
US-	50	0.00000	0.0000	0.00000
137		01218	002436	03654
	(0)	0.00000	0.0000	0.00000
	00	0087	00174	0261
	70	0.00000	0.0000	0.00000
	70	00609	001218	01827
	20	0.00000	0.0000	0.00000
	80	00435	00087	01305
	00	0.00000	0.0000	0.00000
	90	00348	000696	01044
	100	0.00000	0.0000	0.00000
		0.00000	00000	000104
			696	4

Table5:Show the values of dose in air(mGy) in three periods of time relative to the distance from radioactive source(Co^{60}).

		Skin	Skin	Skin
	Distance	Dose	Dose	Dose
	/cm	In one	In 2	In 3
		hour(m	hour(m	hour(m
		Gy)	Gy)	Gy)
	10	0.0003	0.0006	0.0010
		4198	8396	2594
	20	0.0000	0.0001	0.0002
	20	85544	71088	56632
	20	0.0000	0.0000	0.0001
	30	3803	7606	1409
	40	0.0000	0.0000	0.0000
Co-		21362	42724	64086
60	50	0.0000	0.0000	0.0000
		13602	27204	40806
	(0	0.0000	0.0000	0.0000
	00	095028	190056	285084
	70	0.0000	0.0000	0.0000
		069834	139668	209502
	90	0.0000	0.0000	0.0000
	80	053453	106906	160359
	90	0.0000	0.0000	0.0000
		042245	08449	126735
	100	0.0000	0.0000	0.0000
		034198	068396	102594

Table6: Show the values of skin absorbed(mGy) in three periods of time relative to the distance from radioactive source(Cs^{137}).

		Skin	Skin	Skin
	Distance	Dose	Dose	Dose
	/cm	In one	In 2	In 3
		hour(m	hour(m	hour(m
		Gy)	Gy)	Gy)
	10	0.00000	0.0000	0.00001
		357	0714	071
	20	0.00000	0.0000	0.00000
	20	089	0178	267
	20	0.00000	0.0000	0.00000
	50	0392	00784	1176
G	40	0.00000	0.0000	0.00000
CS-	40	022	0044	066
137	50	0.00000	0.0000	0.00000
		0134	00268	0402
	60	0.00000 00957	0.0000 00191 4	0.00000 02871
	70	0.00000	0.0000	0.00000
		0067	00134	0201
	80	0.00000	0.0000	0.00000
		0047	00094	0141
	90	0.00000	0.0000	0.00000
		0038	00076	0114
	100	0.00000	0.0000	0.00000
		000038	00000	000114
		3	766	9

Table7: Show the values of skin absorbed(mGy) in three periods of time relative to the distance from radioactive source(Co^{60})

		Air	Air	Air
	Distance	Dose	Dose	Dose
	/cm	In one	In 2	In 3
		hour(m	hours(m	hours(m
		Gy)	Gy)	Gy)
	10	0.00031	0.00062	0.00093
		059	118	177
	20	0.00007	0.00015	0.00023
	20	7691	5382	3073
	20	0.00003	0.00006	0.00010
	50	4539	9078	3617
	40	0.00001	0.00003	0.00005
Co-		9401	8802	8203
60	50	0.00001	0.00002	0.00003
		2354	4708	7062
	60	0.00000	0.00001	0.00002
		86304	72608	58912
	70	0.00000	0.00001	0.00001
-		63423	26846	90269
	80	0.00000	0.00000	0.00001
	80	48546	97092	45638
	00	0.00000	0.00000	0.00001
	90	38367	76734	15101
	100	0.00000	0.00000	0.00000
	100	31059	62118	93177

.Fig.1: Show the exposure rate in unit of (R/hr) versus the distance (cm) from the radioactive source (Cs^{137}) .

Fig.2: Show the exposure rate in unit of (R/hr) versus the distance (cm) from the radioactive source (Co^{60}).

Fig3: Show the exposure(R) for three periods of time relative to the distance from radioactive source(Cs^{137}).

Fig.4: Show the exposure(R) for three periods of time relative to the distance from radioactive source (Co^{60}).

Fig.5: Show the air dose in (mGy) for three periods of time relative to the distance from the radioactive source(Cs^{137}).

Fig.6: Show the air dose in (mGy) for three periods of time relative to the distance from the radioactive source(Co^{60}).

Fig.7: Show the skin dose in (mGy) for three periods of time relative to the distance from the radioactive source (Cs^{137}).

Fig.8: Show the skin dose in (mGy) for three periods of time relative to the distance from the radioactive source(Co^{60}).

3.Discussion:

The External Radiation Dose Calculationdetermines the radiation dose from a shielded gamma source. The source can be a point source, or a cylindrical volume source with an evenly distributed concentration of radionuclides[8]

The results of this project show significantly the effect of the inverse square law on the both the exposure and the absorbed dose, so as the distance between the source and the persons increase the exposure and the dose increase proportionally and vice versa ,this parameter was studied by [9] as he was interested in the distance between the patient who are up taking radiopharmaceutical drug and considering the patient as portable radiation source.

Other parameters was time of the exposure that which clarify that as the time of exposure increase the radiation dose increase significantly and this come in agreement

With [10].

Regarding the activity of the radiation source we found that the activity has significant effect on the radiation absorbed dose , so as the activity increase the exposure and dose increase so , where in this project despite of the high energy of Co-60 (average 1.25 Mev ,1.09 μ ci) ,but the absorbed dose from Cs-137 was higher than Co-6 we think that the reason belong to the higher activity of Cs¹³⁷(123.29, 0.333Mev).

Many of the projects were dealing with the calculation and measurement of skin absorbed for the persons [11] and for patient [12], but by the x-ray.

Finally the highest absorbed dose that calculated by this project was in the safe side for the staff and students as the dose threshold of 2 Gy for deterministic effects was not approached, [13].

4.References:

1. ANL-"Operational Health Physics Training"; Moe, Harold; Argonne National laboratory, Chicago 88-26 (1988).

2. Gollnick, Daniel; "Basic Radiation Protection Technology"; Pacific Radiation

Press; 1983.

3.Radiation Effects on Animals-- Man; ;Cobalt 60—energy spectra ;electron Radiation doses distribution ;skin radiation doses ;gamma sources;man;scattering ;

Med.Phys. 10 Sept. Vol.10 (1983).

4.Slobodien, M. "Radiation hazards in the laboratory," in laboratory safety: Theory and Practice, Fuscaldo, A.A., Erlick, B.J. and B., eds., Academic Press, New York, 1980.

5.Bethesda,MD:Radiation Protection and Measurements; NCRP Report No. 124 Vol. :21.1996

6. F. H. ATTIX, Introduction to Radiological Physics and Radiation dosimetry, New York, John Willy & Sons, (1986).

7.Greening .J.R, fundamental of radiation dosimetery ,2nd edition , medical physics (1985)

8.International Commission on Radiation Units and Measurements (ICRU), Dosimetry of external beta rays for radiation protection, Bethesda, MD: ICRU Report 56, (1997).

9.Jeffry A. Siegel, Carol S. Marcus,, calculating the Absorbed Dose from Radioactive Patients: The Line-Source Versus Point-Source ,, Nucl Med;Vol: 43 P:1241–1244; 2002;

10.Monitoring of radiation exposure, guide ST 7.1, STUK, Helsinki, 25 February 2000.

11. Radiation Protection Dosimetry ; Skin dose measurements on patients for diagnostic and interventional neuroradiology: a multicentre study,Vol: 114(1-3): P:143-146(2005).

12.Nuclear regulatory commission. aelease of aatients administered radioactive materials. Washington, DC: U.S. Nuclear Regulatory Commission; 1997.

13.Donald L. Miller, MD, Stephen Balter, Patrick T. Noonan, and Jeffrey D. Georgia ;Minimizing .