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Abstract: 

Ground state energies and other properties of the atomic systems at  open shell of three 

electron systems for  N+4 and O+5  are given by Hartree-Fock-Roothan wavefunction 

published by Clementi and Roetti(see ref.41) (1974). The radial expectation values for one 

electron 〈𝑟1
𝑚〉 and for inter electrons〈𝑟12

𝑚〉where m=(-2,-1,0,1,2) ,repulsion energies 〈Vee〉 

,attraction energies 〈Ven〉 ,potential energies 〈𝑉〉 ,kinetic energies 〈𝑇〉 , and Hartree-Fock 

energies are tabulated by using partitioning technique ,wherever in this series there are three 

shells K-shell ,αLα-shell, βLα-shell . with analysis the one electron radial density function 

D(r1) and inter electron density function f(r12) for each shell . 

Keywords: Hartree-Fock-Roothaan method, ion  N+4 and ion O+5ـ     

 

ثلاثية الالكترون من ات الذرية للحالة الارضية للانظمة الطاقة وبعض الخواص الذرية للقشر دراسة

 روثان -فوك -تحليل الدالة الموجية لهارتري

 قسم الفيزياء/كلية العلوم /جامعة الكوفة الخفاجي قاسم شمخي     الفيزياء/كلية العلوم /جامعة الكوفة  رقية جابر دوش قسم

 : الخلاصة

طاقة الحالة الارضية وخواص اخرى للانظمة الذرية ذات الاغلفة المفتوحة للحالة الارضية للايونات الشبيهة بالليثيوم لايون 

روثان المنشورة بواسطة  -فوك -اعطيت باستعمال الدالة الموجية لهارتري 5O+وايون الاوكسجين    4N+النتروجين

Clementi and Roetti (4791)  القيم المتوقعة القطرية لالكترون واحد  (14)مصدر .〈𝑟1
𝑚〉  ولالكترونين〈𝑟12

𝑚〉  حيث

m=-2,-1,0,1,2  طاقات التنافر〈𝑉𝑒𝑒〉 ,  طاقات التجاذب〈𝑉𝑒𝑛〉 , طاقات الجهد〈𝑉〉 ,  الطاقات الحركية〈𝑇〉 ,  وطاقات

والغلاف , Kحسبت باستعمال تقنية التجزئة حيث يوجد في هذه السلسلة ثلاثة اغلفة هي الغلاف قد  〈𝐸〉 هارتري فوك

KαLα  والغلافKβLα  . 1(تحليل الدالة القطرية لالكترون واحد تمD(r  والدالة القطرية للمسافة البينية بين الكترونين

)12f(r لكل غلاف من الاغلفة. 

  O+5وايون الاوكسجين   N+4 روثان, ايون النتروجين-فوك-الكلمات المفتاحية: طريقة هارتري
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.Introduction 

The formulation and development of 

quantum theory in the first half of the 20th 

century has led to a revolution in our 

understanding of fundamental physics. 

Quantum theory has demonstrated surprising 

accuracy and predictive power, and the 

importance of quantum theory is 

unchallenged. The Schrodinger equation, 

which is the fundamental equation of 

quantum mechanics, cannot be solved 

analytically for any but the most trivial of 

systems. Numerical many-body approaches 

provide powerful tools for solving this 

equation. In electronic structure calculations 

the treatment of electron-electron 

interactions is the main source of difficulty. 

These interactions cannot easily be 

separated out or treated without 

approximation  [1].we must be content with 

approximate solutions to the Schrodinger 

equation. The underlying difficulty is that 

many particles are interacting with one 

another simultaneously. This is the many-

body problem .For all such systems, 

approximate rather than exact solutions to 

their respective equations of motion must be 

sought [2]. The most widely used 

computational techniques are based on the 

Hartree-Fock HF method, these calculations 

are begin with the central-field 

approximation in which the electrons are 

uncorrelated [3]. This method is based on 

the mean-field approximation. This 

approximation implies that interelectron 

coulomb repulsion is accounted for by 

means of an average integration of the 

repulsion term, i.e. the interaction of one 

electron with the others are accounted for as 

the interaction of this electron with an 

average field induced by other electrons. 

The electron correlation (interaction 

between electrons) for the electrons of 

opposite spin is completely neglected. A 

certain amount of electron correlation is 

already considered within the HF 

approximation, found in the electron 

exchange term describing the correlation 

between electrons with parallel spin [4]. 

  

The Theory 

the Hartree-Fock method is one of the 

simplest approximations of the electronic 

structure of atoms and molecules. By 

assuming minimal correlation between the N 

electrons, it reduces Schrödinger’s equation, 

a linear partial differential equation, to the 

Hartree-Fock equations, a system of N 

coupled nonlinear equations [5]. The aim of 

this approximation is to replace the original 

wave-function dependent on coordinates of 

all electrons by the system of equations 

dependent only on coordinates of one-

electron, in which this electron moves in an 

average electric field of the other electrons 

and nuclei. The main defect of the HF 

method is that it does not treat electron 

correlation properly  [6]. The fundamental 

principle of condensed matter physics and 

chemistry is given in the many body 

schrodinger equation, which is 

 

ℋ̂𝜓(𝑥1, 𝑥2, … , 𝑥𝑁) = 𝐸𝜓(𝑥1, 𝑥2, … , 𝑥𝑁)      

…(1) 

This is a schrodinger equation of N electrons 

under the Born-Oppenheimer approximation 

, ℋ ̂is the electronic Hamiltonian operator 

describing kinetic and potential electronic 
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energy, and E  is the energy of the system, 

The electronic wave function 

𝜓(𝑥1, 𝑥2, … , 𝑥𝑁)is a quantity directly related 

to the electronic distribution in an atomic, 

whose absolute square represents an 

electronic density. The electron wave 

function 𝜓(𝑥1, 𝑥2, … , 𝑥𝑁) must be 

antisymmetric in the exchange of arbitrary 

two spin coordinates 𝑥𝑖 and 𝑥𝑗 . One of the 

central problem in condensed matter physics 

and chemistry is to find the solution of (1) 

and the ground state energy E0 of the given 

system [7]. We consider the Hamiltonian of 

the atome  with N non-relativistic electrons 

and fixed nuclei of (positive) charges Z in 

atomic unit , given by [8], 

 

ℋ̂ =
1

2
∑ ∇2

𝑖 + ∑
𝑍

𝑟𝑖

𝑁
𝑖=1

𝑁
𝑖=1 +

1

2
∑ ∑

1

𝑟𝑖𝑗

𝑁
𝑗≠𝑖

𝑁
𝑖=1         

…(2) 

Where ∇2 Laplace operator and it is a 

differential operator , Z is the atomic 

number  , 𝑟𝑖 the position of the ith 

electron, 𝑟𝑖𝑗 the distance between ith and jth 

electrons, N is the number of electrons . The 

interpretation of this Hamiltonian is as 

follows: the first term corresponds to the 

kinetic energy of the electrons, the second 

term is the one-particle attractive interaction 

between the electrons and the nuclei, and the 

third term is the standard two-particle 

repulsive interaction between the electrons 

[9]. the electron wavefunction 

𝜓(𝑥1 , 𝑥2 … . 𝑥𝑁) must be antisymmetric in 

the exchange of arbitrary two spin 

coordinates xi and xj according to Pauli 

exclusion principle [10,11], 

 

𝑝̂𝜓(x1 , … , x𝑖 , xj, … . x𝑁) =

−𝜓(x1 , … , x𝑗 , xi, … . x𝑁)   ...(3) 

 

Where 𝑝̂ is an operator which performs one 

of the N! possible permutations of the N 

electrons. The total antisymmetry of a 

wavefunction can thus be written compactly: 

 

𝑝̂𝜓 = (−1)𝑝𝜓                  ….(4) 

 

with (−1)p the parity of this permutation, 

(−1)p= 1 for even permutations and 

(−1)𝑝= −1 for odd permutations. From a 

given wavefunction 𝜓, we can project out a 

totally antisymmetric part using the 

antisymmetrizer as : 

 

𝒜 =
1

√𝑁!
∑ (−1)𝑝

𝑝 𝑝̂                      ...(5) 

 

in the Hatree-Fock approximation, the many 

body wavefunction 𝜓(𝑥1 , 𝑥2 … . 𝑥𝑁)is 

approximated by a single slater determinant 

. 
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We can write wavefunction as [12,13,14], 

                 

ΨHF = det(𝜙1(x1)𝜙2(x2) … . . 𝜙N(xN))                

... (6) 

 

ΨHF =
1

√N!
|

𝜙1(x1) 𝜙1(x2) ⋯ 𝜙1(xN)

𝜙2(x1) 𝜙2(x2) ⋯ 𝜙2(xN)
⋮

𝜙3(x1)
⋮

𝜙3(x2) ⋯
⋮

𝜙3(xN)

|           

….(7) 

 

The factor 
1

√N! 
 ensures the normalization 

condition on the wavefunction . Here the 

variables xi include the coordinates of spin 

and space , 𝜙i(xj)  terms are called spin 

orbitals and these spin orbitals are 

orthonormal functions, which are spatial 

orbitals times a spin functions. The 

wavefunction ΨHF  in equation (7) is clearly 

antisymmetric because interchanging any 

pair of particles is equivalent to 

interchanging two columns and hence 

changes the sign of the determinant. 

Moreover, if any pair of particles are in the 

same single-particle state, then two rows of 

the Slater determinant are identical and the 

determinant vanishes, in agreement with the 

Pauli exclusion principle.  

we can write the wave function ΨHF  as[15], 

 

ΨHF =
1

√𝑁!
∑ (−1)𝑝 𝑝(𝜙1, 𝜙2, ⋯ , 𝜙𝑁)𝑁!

𝑝=1           

…(8) 

 

 (𝜙i) being a set of spin-orbitals (one 

electron function) . 

The one-electron orbitals used to construct 

the 𝜙𝑖 each consist of a radial function 

Rnl(r),a spherical harmonic 𝑌𝑙𝑚(𝜃, ϕ) and a 

spin function 𝜎𝑚𝑠
(𝑠)  as [16,17,18], 

 

𝜙 = Rnl(r)𝑌𝑙𝑚(𝜃, ϕ)𝜎𝑚𝑠
(𝑠)            ….(9) 

 

The spatial part of one-electron spin orbital 

may be expressed as linear combination of 

Slater type orbital called basis functions,  

 

Φnlm(r, θ, ϕ) = ∑ ci 𝒳ii                  …(10) 

 

Where  ci  the expansion coefficient 

determined by minimizing the energy using 

one of several procedures and this process is 

continued until 𝐻̂HF and ΨHF  converge, at 

which point a self-consistent field (SCF) has 

been achieved. This usually yields the 

lowest-energy single determinant within the 

basis . 𝒳i is a Slater type orbital.  

The Hartree–Fock–Roothaan (HFR) or 

basis-set expansion method is a convenient 

and powerful tool for the study of electronic 

structure of atoms and molecules .It is well 
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known that the choice of the basis functions 

is very important when the algebraic 

approximation is employed, because it 

determines both the computational 

efficiency and accuracy of the results 

obtained within a given approach. The most 

frequently used basis functions for atomic 

calculations are Slater type orbitals (STO) 

defined as [19], 

𝜒𝑛𝑙𝑚(𝜉, 𝑟) =

∑
(2𝜉𝑖)𝑛𝑖+(

1
2

)

[(2𝑛)!]
1
2

 rni−1exp(−ξir)𝑌𝑙𝑚(𝜃, ϕ)𝑖              

…(11) 

 

Here, 𝑌𝑙𝑚(𝜃, ϕ) a spherical harmosnic,ξi > 0 

is the orbital exponent . The quantity n 

occurring in eq. (11) is a positive principal 

quantum number of (STO). The 

determination of nonlinear parameters n and 

ξ is very important for describing the atomic 

orbitals.  

3.Atomic properties  

3.1: second-order reduced density matrix 

Γ(r1,r2) 

Most of the physically interesting properties 

of a quantum mechanical system can be 

calculated from the two-particle reduced 

density matrix for the system Γ(𝑥1, 𝑥2), 

without reference to the full wavefunction 

,If we can determine it, the wavefunction 

can be eliminated from the quantum 

mechanics and the Γ(𝑥1, 𝑥2) take over its 

role [20,21].The two electron reduced 

density matrix contains all of the 

information necessary to calculate the 

energy and many properties of the atom. It is 

obtained by integrating the spin and spatial 

coordinates of all electrons except two (1,2) 

from the N-particle density matrix [22]. 

 so the two-electron reduced density matrix 

Γ(𝑥1, 𝑥2)  is then given by [23,24], 

  

Γ(𝑥1, 𝑥2) =

𝑁(𝑁−1)

2
∫ … ∫|𝜓(𝑥1, 𝑥2, … . 𝑥𝑁) |2 𝑑𝑥3 … . 𝑑𝑥𝑁        

….(12). 

Where 𝑥𝑖=(𝑟𝑖, 𝑠𝑖) combined space and spin 

variable [25]. 
𝑁(𝑁−1)

2
  represents the number 

of electron pairs which can be obtained by 

integrating the second-order reduced density 

matrix, so  Γ(𝑥1, 𝑥2) is normalized to the 

number of independent electron pairs  within 

the system as [26,27].   

∫ ∫ Γ(𝑥1, 𝑥2)𝑑𝑥1𝑑𝑥2 =
𝑁(𝑁−1)

2
         ...(13) 

3.2 : two-electron radial density function 

𝑫𝟐 (𝒓𝟏, 𝒓𝟐) and one-electron radial 

density function 𝑫(𝒓𝟏)  : 

The two-electron radial density function 

D(r1, r2)is given by [28], 
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𝐷(𝑟1, 𝑟2) =
𝑁(𝑁 − 1)

2
 𝑟1

2𝑟2
2 

∫|𝜓(𝑥1, 𝑥2, … . 𝑥𝑁)|2 𝑑𝑥3, . , 𝑑𝑥𝑁𝑑Ω1𝑑Ω2  

….(14) 

𝑑Ω𝑖 = sin 𝜃𝑖𝑑𝜃𝑖 𝑑∅𝑖         …..(15) 

where (ri , Ω𝑖 ) is the polar coordinate of the 

vector ri . The two-electron radial density 

function represents the probability density 

that, one electron is located at a radius r1 and 

the other electron at a radius r2 

simultaneously. The two-electron radial 

density 𝐷(𝑟1, 𝑟2) can be written as [29]. 

  

𝐷(𝑟1, 𝑟2) = ∫∫  (r1,r2) 𝑟1
2𝑟2

2  𝑑Ω1𝑑Ω2     

…(16) 

While the one-electron radial density 

function D(r1) represents the probability 

density function of finding an electron at a 

distance between r1 and r1 + dr1 from the 

coordinate origin i.e nucleus and defined 

as[30]. 

𝐷(𝑟1) = ∫ 𝐷(𝑟1, 𝑟2)𝑑𝑟2
∞

0
     …(17) 

3.3 :Inter –particle distribution function 

𝒇(𝒓𝟏𝟐) 

The radial electron-electron distribution 

function 𝑓(𝑟12), which describes the 

probability of  locating  two electrons 

separated by distance 𝑟12 from each other 

,was first introduced by Coulson and 

Neilson in their study of electron correlation  

for He(1S ) in the ground state. [31,32].Pair 

distribution function can be written as [33]. 

𝑓(𝑟12) =

8𝜋2𝑟12 [∫ 𝑟1𝑑
𝑟12

0
𝑟1 ∫ Γ(𝑟1, 𝑟2)𝑟2𝑑𝑟2 +

𝑟1+𝑟12

𝑟1−𝑟12

∫ 𝑟1𝑑𝑟1 ∫ Γ(𝑟1, 𝑟2)𝑟2𝑑𝑟2
𝑟12+𝑟1

𝑟12−𝑟1

∞

𝑟12
]…(18) 

3.4 one –electron expectation value and 

inter-electron expectation value: 

The one-electron expectation value 〈r1
m〉 is 

determined from the expression as [34],  

 

〈𝑟1
𝑚〉 = ∫ 𝐷(𝑟1)𝑟1

𝑚∞

0
𝑑𝑟1  …(19) 

Where m integer number  ( −2 ≤ 𝑚 ≤ 2)  . 

The inter-electron expectation values  〈 𝑟12
𝑚〉  

for each shell is given by the relation [31].                             

〈 𝑟12
𝑚〉 = ∫ 𝑓(𝑟12)𝑟12

𝑚 𝑑𝑟12
∞

0
 …(20) 

where  r12  represents the distance between 

two-electrons.  

3.5 energy expectation value 〈𝑬〉: 

the average values of the energy for the  

wavefunction 𝜓, takes the formula [35]. 

〈𝐸〉 =
⟨𝜓|𝐻̂|𝜓⟩

⟨𝜓|𝜓⟩
         …(21) 
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Since our wavefunction 𝜓  is normalized 

,the denominator of Eq. (21) is unity then , 

the energy thus is given by the expression 

[36,37]. 

〈𝐸〉 = ∫ 𝜓∗ [−
1

2
∑ ∇2

𝑖 + ∑
𝑍

𝑟𝑖

𝑁
𝑖=1

𝑁
𝑖=1 +

1

2
∑

1

𝑟𝑖𝑗

𝑁
𝑗≠𝑖 ] 𝜓 𝑑𝜏 …(22) 

Hartree-Fock method satisfied the virial 

theorem . The virial theorem is necessary 

condition for the stationary state, the 

condition of the virial theorem is [38], 

〈𝑇〉 + 2〈𝑉〉 = 0 …(23) 

Where 〈𝑉〉 is the total expectation value of 

potential energy and 〈𝑇〉 is the expectation 

value of kinetic energy. From the theorem, 

we are led to 

〈𝐸〉 = 〈𝑇〉 + 〈𝑉〉 …(24) 

〈𝐸〉 = −〈𝑇〉 =
〈𝑉〉

2⁄  ..(25) 

Expectation value of potential energy 

proportional to the expectation values of  

〈𝑟1
−1〉 and 〈𝑟12

−1〉 respectively , where 

[39,40]. 

〈𝑉〉 = −𝑍〈𝑟1
−1〉 + 〈𝑟12

−1〉 …(26) 

4.Result and discussion 

In this research we are using the atomic data 

for Hartree-fock wavefunction for Li(2S)       

isoelectronic series for Clementi and Roetti      

[41]. The atomic properties such as inter-

particle distribution function f(r12 ),one-

particle radial distribution  function D(r1 ) 

,two-particle radial density function 

D(r1,r2),all expectation values 〈𝑟1
𝑚〉 

,〈𝑟12
𝑚〉,〈𝑉〉, 〈𝑉𝑒𝑒〉, 〈𝑉𝑒𝑛〉, 〈𝑇〉,〈𝐸〉,are obtain 

numerically by using Mathcad 2001i each 

plot in this work is normalized to unity and 

all the result of the expectation values 

checked according to the normalization 

condition .Also we used the atomic units in 

calculations in this work. Table (1) shows 

the calculated one electron expectation 

values for the elements Z=7,8 (N+4,O+5) for 

Li-isoelectronic series and table (2) 

presented the inter –electron expectation 

values for these systems, while in this series 

there are three shells K-shell , KL -shell 

and KL -shell. We noted for each 

electronic individual shell and for total 

system the expectation value for one 

electron and inter electrons when m is 

negative increases as atomic number Z, 

increases and vice-virsa when m takes 

positive values ,also we can note the 

expectation values for one and inter 

electrons for K-shell are greater than those 

for KL -shell and KL-shell when m is 

negative and vice-versa when m is positive 

values.   
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 Plot (1) represented the relation between 

one electron radial density function D(r1 )  

and r1 ,we can note the maximum values of 

D(r1) increase  as Z increases and decrease 

their positions towards the nucleus as Z 

increases according to Coulomb law ,we can 

find also there is one peak in the K-shell 

which represented the probability of finding  

the electron in the -shell ,while in the KL 

-shell and KL -shell it is found there are 

two peaks for αLα and βLα Shells. The 

first peak represented the probability of 

finding the electron in the  -shell , the 

second peak represented the probability of 

finding the electron in the L-shell and we 

can see also the probability of finding an 

electron in the -shell is larger than that in 

the L-shell because - shell is closer to the 

nucleus than L-shell ,so that attraction force 

between the nucleus and the electron is 

larger for -shell than for L-shell According 

to coulomb law.  

 

 

 

 

 

 

Table(1) values of one-electron expectation values 

for three electron systems. 

 

Table(2) values of inter-electron expectation values 

for three electron systems. 

Ion shell 〈r1
−2〉 〈r1

−1〉 〈r1
0〉 〈r1

1〉 〈r1
2〉 

N+4
 

K 90.3772 6.6784 1 0.2269 0.0692 

L
≡

k𝛽𝐿𝛼 

48.9737 4.0240 1 0.6398 0.6810 

total 
 

847..26 270966 1 970944 972..0 

O+5
 

K 119.2467 7.6778 1 0.1971 0.0522 

L
≡

k𝛽𝐿𝛼 

64.9274 4.6494 1 0.5457 0.4925 

total 
 

6379336 078060 1 972400 97320. 

Ion shell 〈r12
−2〉 〈r12

−1〉 〈r12
0 〉 〈r12

1 〉 〈r12
2 〉 

N+4
 

 

K 4070964 270200 1 973308 970360 

L 07280. 079098 1 079600 073800 

k𝛽𝐿𝛼 476.40 070040 1 07969. 073800 

total 
 

0074640 470240 1 97634. 970020 

O+5
 

K 30793.0 27..90 1 974669 970922 

L 479069 074692 1 970430 970620 

k𝛽𝐿𝛼 37002. 072922 1 970004 970609 

total 
 

007908. 472620 1 97.092 978002 
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Figure (2) represent the relation between 

inter electron density function and inter 

distance r12 for three shells. We noted the 

maximum probability of pair distribution 

function f(r12)increases as atomic number 

increases and their locations decreasing 

because the influence of increasing in 

attraction nuclear force. We can see from 

plot (2) there is one peak in the shell and 

αLα-shell which represented the 

probability of finding two electrons in the 

small distance between them while there are 

two peak in the βLα-shell. First peak 

indicates the probability of finding two 

electrons simultaneous in small distance  r12 

and the second peak represented the 

probability of finding two electrons in the 

big distance r12 . in table (3) we are present 

the expectation values of energies 〈𝑉𝑒𝑛〉, 

〈𝑉𝑒𝑒〉,  〈𝑉〉, 〈𝑇〉𝑎𝑛𝑑 〈𝐸𝐻𝐹〉.It is clear when Z 

increases the expectation values of all 

energies increase too, we can note also the 

expectation values of all energies in the K-

shell larger than those in the αLα and 

KβLα  -shells because K-shell closer to the 

nucleus than other shells. 

 

 

 

 

 

 

 

 

 

 

 

Fig.(1.b)the one- particle radial  density     

function for αLα and K𝛽𝐿𝛼  -shells of      

N+4 and O+5 ions . 
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(A)shell         r12 

      

                         

   (B)  αLα-shell r12 
                                                                  

 

 

 

 

 

 

Table(3):The expectation values for all attraction, repulsion, kinetic and Hartree-Fock energies 

for K, KL , K𝛽L -shells and total systems of three electron systems. 
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〈𝑉𝑒𝑒〉 −〈𝑉𝑒𝑛〉 shell Ion 

61.3.12 61.3.12 26.2.36 2.1244 22.4264 𝐾 

N+4 
13.4362 13.4362 64..446 1..0.4 66.1240 𝐾L 

13.2642 13.2642 62.0443 1.1064 66.1240 𝐾𝛽𝐿𝛼 

26.3646 
 

26.3646 02.2444 2.2664 1.3..623 total 

66.3623 66.3623 42.2462 2.44.1 21.2664 𝐾 

O+5 

 

14.0442 14.0442 34.0126 1.66.2 34.1046 𝐾L 

14.6042 14.6042 34.40.6 1.2.22 34.1046 𝐾𝛽𝐿𝛼 
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4.2426 134.613. total 
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Fig(2) the inter-particle density distribution function of three electron systems for N+4 and O+5 ions 
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Conclusion: 

1-One-electron density function D(r1) 

increases as atomic number increases. For 

three shells and their locations are 

decreasing towards the nucleus which means 

increasing in probability of finding the 

electron when there is increasing in atomic 

number. Also inter particle density function  

f(r12)increases when atomic number 

increases refer  to important of nuclear 

charge on the electrons. 

  2-The results of K-shell is larger  than 

those in the KL and 𝐾𝛽𝐿𝛼 -shells for 

D(r1) , and f(r12) because K-shell is closer to 

the nucleus from others ,so the Coulomb 

attraction force becomes larger.  

3-Expectation value of one electron 〈r1
m〉 

and expectation value of two electrons when 

m=-1,-2 is increase as atomic number 

increases and when m=1,2 , these values 

decrease by increasing in atomic number. 

 4-Values of energies 〈Ven〉 , 〈Vee〉, 〈V〉 , 

〈T〉 and   〈EHF〉 is increase when the atomic 

number increases which is interpreted  as the 

influence of nuclear charge for all shells and 

for total system. 
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