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Abstract:

A method of moments (MM) formulation is presented for active and passive wire
radiators attached to, or near, bodies of translation( BOT), including open or closed cylinders
of arbitrary cross section as well as curved panels. This formulation builds on previous MM
analysis for BOT's and wires. The analysis incorporates a special junctions basis set for the
antenna attachment points. Total domain and piecewise continuous expansion functions are
used on the surfaces. The formulation is primarily intended for prediction of radiation patterns
of wire antenna (such as monopoles and loops) on asymmetric bodies of translation, open or
closed(capped). Fortran Power Station 90 was used to programming. Radiation patterns are
plotted by origin program.

Keywords: method of moments, body of translation, radiation patterns, the junction
problem.
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1. Introduction

The analysis methods for antennas
are based on equivalent magnetic current
distribution around the patch edges (similar
to slot antennas). The popular analytical
techniques such as transmission-line
model, which described the microstrip
radiator element as a transmission line
resonator with no transverse field
variations[1].

The moment method, which depend
on the surface currents are used to model
the  microstrip  patch, and volume
polarization currents in the dielectric slab
are used to model the fields in the
dielectric slab. An integral equation is
formulated for the unknown currents on
the microstrip patches and the feed lines
and their images in the ground plane[2].

The earliest application of the
method of moments (MM) was used for
the analysis of thin wire radiators and
scatters .Recent investigators [3]-[4] have
used the MM technique to examine such
radiators on or near bodies of revolution
(BOR).In. many real-world situations
involving aircraft and spacecraft ,the
principle physical features of the antenna
platform adjacent to the antenna feed point
often can be modeled as a BOR. Often the
electrical size of the body to which the
antenna is attached is comparable to a few
wavelengths (A). In these cases , the entire
structure is coupled closely to the antenna
elements, so the whole configuration
becomes a radiator . To analyze such
configurations requires incorporation of
complex boundary conditions in the
electromagnetic formulation used. The
MM technique is the most appropriate
analytical tool for such problems.

To extend the usefulness of the MM
analysis for a significantly broader class of
radiating platforms, | developed a MM
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formulation for wire antennas attached to,
or near , finite asymmetric surfaces formed
by a generating curve translated along an
axis. For brevity , such surfaces are
denoted as bodies of translation(BOT) in
analogy to the earlier work for bodies of
revolution [3]-[4]. Subclasses of BOT
include finite cylindrical bodies of
arbitrary cross section either open or
capped. In practice, aircraft wings and
fuselages can often be approximated as
BOT's. An interesting limiting case of
BOT's are flat or curved plates. An earlier
BOT formulation treated the scattering
from such surfaces [5].

Previously , a MM formulation using
a wire was used to treat asymmetric
bodies. However, the computer resources
necessary to carry out such an analysis are
often prohibitive and limit its general use.
A simple analytical treatment is proposed
here allowing substantial configuration
flexibility for both the antennas and the
surfaces on which they are located. The
theoretical development parallels in part
the MM/BOR-wire [4] and MM/BOR [6]
formulations. ~ While  the  primary
motivation for our investigations is the
efficient analytical treatment of antennas
on or near BOT's, the results are extended
easily to the scattering from such
configurations. For examples of the
MM/BOR - wire formulation applied to
scattering[7].

2. Theory background

The electromagnetic radiated or
scattered fields are expressed in terms of
potentials from which a general integral
equation for the surface currents on the
radiating or scattering body can be
obtained. For maximum generality and
unity of treatment , the electric field
integral equation (EFIE) formulation is
chosen over the magnetic field formulation
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(MFIE) for the currents on both the off-
surface wire radiators and the BOT
surface. For this discussion , the generic
configuration shown in Fig.(1)a is used .
The overall (closed) body is composed of a
surface formed by an arbitrary generating
curve translated along the z-axis, denoted
as the BOT. The BOT can be terminated
by planar end caps with tangents normal to
the z-axis. The requirement of planar caps
is introduced to simplify the subsequent
discussion and can be removed if desired.
The vicinity of the antenna attachment
point is designated as the junction region,
consisting of a small annular disk on the
BOT and wire attachment segment on the
antenna nearest the BOT surface.
Imposing the usual boundary conditions on
the perfectly conducting surfaces in Fig.
1(a), the generalized EFIE expressed in
terms of integro-differential operators L(-)
on the BOT, caps, wire, junction, and edge
region is given by:

inc
tan

where (E™) denotes the tangential

component of the impressed fields on each
of the various surfaces (or regions) in Fig.
1(a), due to the antenna feed voltage . The
operator L refers to the BOT surface S,

and is given by[8]

L, =| jou]] Jms'-j%vs o, -J”)¢ds}|tan....(1a)

5 S,

S

where the free-space Green's function is

e—ij

¢ =
47R

density on S, R is the distance from a

. J denotes the surface current

source to a field point , Vs is the surface
gradient on the BOT defined subsequently,
o is the radian frequency. and p and ¢ are
the permeability and permittivity of the
medium, respectively. For the caps, the
operator L¢(*) is identical to Ls(*), except
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the domain of integration spans the caps.
Similarly, the operator L¢(*) is identical to
Ls(*), except the domain of integration
spans the edge region on either the BOT or
the caps. Analogously for the wire part,
. 2o Lodpd
()= quwLJqﬁdh L =
Where L, (*) is the one —dimensional
operator on the total wire current in the
thin wire approximation and uy, is a unit

wire

i-th stip

(a) 1 — th segment

Disk segment, Sy

(d)

Fig. 1 (a) Generic BOT-wire geometry .
(b) Enlargement of BOT- wire attachment
region. (c) Pulse approximation for triangle
functions on BOT surface. (d) Junction
region representation.[8]
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vector along the wire. The operator in the
junction region L;j(*) is Lw(*), when the
domain of integration is restricted to the
attachment segment S;, L;(*) is Ls(*) when
the surface integration is confined to the
disk part of the junction region Sy (Figs.
1(b) and 1(d) ).

To solve (1) for the unknown J on
the entire surface, explicit expressions
must be obtained for all operators . | used
the Galerkin (MM) technique to expand
the currents specific to each region,
subdividing the curved BOT surface into
axial strips, the caps into trapezoidal
patches, the wire radiators into connected
straight-wire segments, the junction region
into an attachment and a disk part, and the
edge region into patches on the BOT and
the caps. A set of basis and testing
functions for the unknown currents in each
of these regions is introduced. The basis
sets for the wires and the junctions are
identical to those in [4]

3. Calculating Basic Functions for the
Currents

First, the expansion of the currents
on the BOT surface is considered. The two
orthogonal components of the surface
currents on the BOT. i.e., J5¢ and /5% , are
expanded in terms of a total domain
expansion along Z and in overlapping
triangle functions along the t-direction
(Fig. 1(c)). Specifically, the currents on the
i-th axial segment of the BOT in terms of
the unknown coefficients I35 and I57 are:

+N

s _ st yst SZ7sz
]i - Z(Ini ni +Ini ni)

n=0

Where

A/m) ....(2)

J5e = 5, fEOVE(2), a=torz ..(2a)

And
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(jmrz> —
exp I a=
jnnz

exp( - )—(—1)" o .(2b)

Where N is the largest mode
considered, L is the half-length of the
BOT, u, is a unit vector along the BOT,
and the i-th surface triangle function f,*(t)
is defined as :

lt| <1

, ,t=t—t; ..2c
] > 1 '

a _ 1- |i'|,
fE® = { 0
Generally, ten triangle functions per
A yield accurate results. (The axial
component of current /5 is chosen to
vanish at the ends of the BOT.).

The cap surface is parameterized by
p =7r/7 (@) and t, where r is the distance
from the cap origin to any point on the cap;
7(@) is the radial distance from the cap
origin to the cap rim; t is the distance along
the rim (see Fig. 2). Note the cap surface is
mapped onto the rectangle {0 <p <
1,0 <t <t} Dy this parameterization.
The currents are expanded in terms of the
two components along . and 1, , yielding
for the I-th trapezoidal patch

JE =AY+ 0,117 (A/m) .. (3)
Where

Je = fEgl (), a=torp ..(3)

and f*() and g (p) are
overlapping triangle functions spanning the
cap surface in the t and p directions,
respectively. (In general, . - i, # 0 ).For
maximum flexibility in surface
representation, the patches are allowed to
be nonuniform so that the triangle
functions can vary from patch to patch.
(For alternate patch representations,[9] and

[10]).

junction currents are the same as in
[4], and for completeness, they are
repeated here. On the I-th wire segment,
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the filamentary wire current can be
expressed as
]_;W
=u)'1'T,(h) (A4), v (4)
where 1" is a unit vector along the I-
th segment, T;(h) denoted a triangle
function (Fig. 1(b)), and I;” is the unknown
wire-current coefficient associated with the
I-th segment. For a wire segment nearest
the attachment point, one-half of a wire
triangle function overlaps the half-triangle
basis term on the attachment segment. This
representation  yields a  piecewise
continuous (pc) current from the junction
to the wire.

The junction current j7 | in terms
of basis functions associated with the wire
attachment segment S, and the disk region
S4 . Is given as

J7(p)
(], pes
D L, T wm )
’ pesd
where
2j
a
- Ta(h)
=G, =, . (50)
2j
d
o1 (b—r) £
- urzn_r b—a ] ....( )

and u, and T,(h) are an outward-
directed unit vector and a half-triangle
function on the attachment segment,
retrospectively; , is an unit vector on the
(annular) disk surface away from the wire,
r is the radial distance on the disk, b is the
outer disk radius, a is the wire radius, and
I’ is the unknown junction current
coefficient. A similar formulation for the
junction currents is given in [11] and [12].
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The edge region spans the rims of the
caps (S.) and the ends of the BOT surface
(Ss) (Fig. 2(b)). The edge currents are
defined as

- Jee, p € cap edge patch
[ =]%43 A .. (6
Jite) {]fe, p € BOT edge patch @a/m) ... (6)
where
re=uf O .. (6a)

and in the neighborhood of the edge
atz = L,

3¢ =+, fEORE(Z) e (6b)

and h{(p) and hZ(z) denote half-
triangle functions on the cap and BOT
edge regions, respectively. (The t-
components of the currents in the edge
region are contained in the expansion set

for J¢tand J5¢).

Y k-th trapezoidal patch
i Cap rim (p=1) /7~ —
| ;
|
|
|
I _ = X
(a)
BOT
- /BoT edge __.;—'1]',
patch AT
| Capedge
| patch /
< f———Triangle function for
B B { edge transition
| -:urrent_,?gl
(b)

Fig. 2. Cap and edge geometry. (a) Cap
coordinates . (b) Detail of edge region

92



JOURNAL OF KUFA - PHYSICS, Vol.8, No.1, (2016)

4. Impedance Expressions

The expansions for the current on the
BOT surface, the caps, the wire segments,
the junction, and the edge regions, given in
[2]-[6] are substituted into (1). The inner
products of the integral operators L(*) in
(1) are formed with the testing functions (

w=J" ) via the Galerkin method, where
the asterisk denoted the conjugate operator.
A system of linear equations for the
unknown current coefficients,
L2 ISP, 1Y, and 16, written in
matrix form is

The right column vector above
represents a generalized voltage vector,
and the Z elements are the familiar
impedances defining the EM interactions
between various parts of the body in Fig.
1(a). For example, the BOT-surface
interactions are given by Z;>, . Similarly,
the cap-cap, BOT-cap, wire-wire, BOT-
wire, BOT-junction, wire-junction and the
junction-junction interactions are defined
by z¢¢, z5¢, ZWv, 75w, 75 7%i and 277,
respectively.

The elements in (7) with e
superscripts refer to the edge interactions.
The composition of the system matrix in
(7) is determined by the particular
configuration under analysis. For example,
if the radiating (or parasitic) wire element

IS,y e e e Z5% N VA Zfiv VA TIALY
ISy o i ZSW Zgi Z5¢ 75

75 v R Z85, .y i IR Z;j VA AT

2oL gy ez n e gwi gwe gwe

e Loap e ol pv i zr o

ZE_;V ng Z]f]s ch Zc] ZCC Zce

] ZE?V ng Z[%S zew Zej zec gee |

Is1|Vs

= D)

Plv

€1 |\ve

_Ie_ _Ve_
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in Fig. 1(a) is not attached to the BOT
surface (i.e., as in the case of radiative
coupling), the junction-related elements
can be deleted from the system matrix
(7).Similarly, if there are no wire antenna
on the BOT, the system matrix contains
only elements of Z;7,, Z¢, Z;°, and the
edge related elements.

Specific analytical expressions for
the various matrices in (7) can be obtained
by evaluating the inner products having the
form

Z = (w,L(J)) =
ﬂ dsﬂds:-jk [W-f—%(v-m(v-f)]@ ..(8)

where all superscripts and subscripts
on w and J are omitted for simplicity and S
and $ refer to surface containing that field
and source points, respectively; B = \/u/e
and k =2m/A. To evaluate (8), explicit
forms for the divergence must be obtained.

For any vector A on the BOT surface it can

be shown that V-4 = (% + 6;2, and
similarly on the caps,
> 04 24, A
V-A=1/pGH+5E+ L

The divergence terms for the
junction current are given in [4]. Using the
foregoing divergence expressions and the
various expansion functions in (2)-(6), (9)
can be evaluated for each of the regions of
the generic BOT-wire configuration in Fig.
1(a). The detailed derivation is given in
[13]. Only the formal definitions and
summary of results are presented here.

5. Junction- Independent Impedance
Elements

The BOT interaction matrix Z;y, can
be partitioned into submatrices
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corresponding to the t and z ditected
current components, i.e..

ss,tt . ss,tz
Z mn Z mn
Z5n = )
mn e e T
Ss,zt . $8,2Z
Zmn Zmn

The (i,j)th element of these
submatrices is obtained from

7559 = (psa | (]53)), ....(10)

mn,ij

where a, 8 are combinations of t and
z, and m and n are the mode numbers of

the axial expansion (2b); w;% and ] are

mi

the i-th testing and the j-th current ba3|s
functions, respectively, on the BOT
surface. Z,7, , summarized in Table 1, [8],
is canonically similar to the system matrix
arising from the MM analysis for BOR's
[6]. However, the set of expansion
functions used here is not orthonormal
with respect to Ls(*) as in the BOR case,
and thus there is no modal decoupling.
Hence all Z;5, matrices are present, not
just the diagonal ones. However, certain
symmetries exist for G, and Z;, that
reduce the full-time of the matrix.
Specifically, o = (Gonn)pr 23318

(Zss tt Zss tz)__ (ZTsnsT,lzt ) and
Zorit = (Zf,fnzz + , where (4), denotes
the transpose of A. In the implementation
of the analysis, only the lower triangular
quadrant of Z5¥ is computed, i.e., the
partitioned submatrices are field for
0 <m< N,and —m < n < m. The entire
Z%% matrix can be filled using the
following modal symmetries:

SS tt (ZSS tt) — ZSS tt_ — (ZSS ,tt

-m,—n -n,—m
ss zt _ (Zss tz) — is;nzt n (Zis;ltzm
ss tz _ (Zss zt) — iintz n (Ziilﬂm

Zfrfr,lZZ — (ZSS ZZ)t — Zi.s;nZZn (Zi?nZZm

The matrix fill times for each
impedance element in the MM/BOR and
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MM/BOT formulations are comparable.
Detailed examination of the G,,,,(i,))
function shows that it is maximum when
m=n and i=j, i.e., the largest values occur
on the main diagonal of the Z°5 matrix,
and the self-terms contribute the most.
These properties lead to a diagonally
strong overall matrix.

The (i,j)th element of the BOT-wire
interaction matrix Z;)’, partitioned in to t
and z components and defined as

Z30E = (W% L, (JW)), a=torz .(11)

m,il

are given in Table 1.

The wire-wire interaction matrix
elements Z}", are listed in Table 2,[7].
Similar expressions can be derived for the
cap interaction matrix Z<¢, partitioned into
t and p (=polar coordinate) components
depicted in Fig. 2(a). These as well as the
remaining junction —independent matrix
elements are derived in [10]. Brevity
products their reproduction here.

6. Junction- Dependent Impedance
Elements

The derivation of the junction-
dependent impedance elements parallels
the development in [4] for junction effects
on BOR surface. This discussion is limited
to a synopsis of its extension to BOT
geometries. The junction element ZY is
considered first. Referring to (5),
junction basis function consists of a disk
term and a wire attachment term. The
planar annular disk patch S, is assumed to
approximate the BOT surface at the
junction point (Fig. 1(d)). This assumption
is satisfactory when the disk radius b is
much less than the BOT radius of
curvature R at the attachment point (i.e.,
b < R ) and the disk diameter is small
compared to a wavelength. In practice, the
latter condition is always met since the
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disk diameter is taken to be the width of a
BOT surface triangle function (i.e., usually
< 0.14 in width). Analytical predictions
using this approach correlate satisfactory
with measured data even for input
impedances, confirming the efficacy of the
approximation. The expressions for

ZYand 7"’ are given in Table 1, [4].

The  BOT-junction
elements are given by

impedance

750 = (wse L(]a))+(W

mi

L (7)) --(12)

where @« =torz, m is the mode
number, and w,% is the testing function
associated with the i-th BOT axial strip.
The first term in (12) is obtained from
Z3'% (see Table 1[12]) by replacing T, by
a half-triangle on the wire segment nearest
the BOT. Explicit forms for the second
term (disk part) of (12) are listed in Table
2[13]. The junction-BOT matrix elements

sj,a

H jS,a’ J—
are obtained from Z.°" = Z7 .

7. Edge -
Elements

Dependent  Impedance

where a=torz, m is the mode

number, and w3 is the testing function

The edge transition region is
subdivided into a region on the BOT and
on the cap surfaces, respectively (Fig.
2(b)). This subdivision is analogous to the
two-region treatment of the junction
region. Detailed derivation and summary
of these elements are given in [13].

TABLE 1.
Junction- ___Independent __ Impedance
Elements. ( Impedance matrix for the BOT
surface, Z;3, [8]

4
jka Z {T} T cos(v, — 1)

p.q=1

1
_ﬁTt

tt,tt ~
( Zmn ij =

} mn (D> @)
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nml
(Zon Dy =7 s TE G (D, Q)
p,q=1
mnl
(28 = - 22 8 T3 Gun (,0)
p.q=1
4
(Z577),; = ki Z TZ TZ {(1
p.q=1
mnm?
- W) Gmn (D, @)
+ G (0, )}
where
Gmn = (_1)m+n600 - (_1)m60n
— (=1)"Gom
Gmn(pr q) =

L [ dE vy () (At,)(At,)

Umn(E)
1 £
—(1 —E>cosnz£ , m=n

T
S.Tl(n_zm)ZECOS(n_Zm

1 (_1)m—n+1
T n-m)m

) mE,m#n
Grn (0, @)

. At
= 212 f df e JkE {vmn(E) [—jkz—Lp + (¢
0

kE)1 at (Atp)z £2 ikE 2

HikeIn| 5+ (5r) —F kG
1 )

-1 +£<E_1)Umn(£)}-l’ +q

Impedance matrix for the BOT-wire
interactions, Z;

(ZSW t
Ax.cosv, + Ay sinv
Ejk Z {( T D Ve p) T;fTr
) VE,
p,T=
1
- ST 6o, D)
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Gm(p, 7)

23 yie = jke Z (e

p,T=1

- ( 1)mGO (p; T)]

]m 2
k2L T; TGm(p,T)}

where index 7 is associated with the
I-th wire segment and

th

L
Gmn(p' q) = AtpVET fL e L@ q(z)
TABLE 2.

Junction- Dependent Impedance
Elements. (BOT- junction impedance

matrix, Z,S,{: [8]

jka

Aty ~
(Zy") = 2

{smaq cos(v,
p,q=1

-n)% ()

1
_FT } Gmn (D, Q)

(Zm ™)

jkB \ ,(a—Db
== {cosaq T; (T) (G (0, @)

p.q=1

_( 1)mGO(p'Q))+k2L p mn(p'q)}

where

a+b
2

s s
a, =E(q—1)+z ;Tq =
Xq = Xq + T¢SINQA;C0SVy
Yq = Ya + TgSinagsinvg

Zg = Zg T 140080
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8. The Results

The voltage excitation [V] (i.e., right
column vector in (7)) is specified by the
location and electrical characteristics of the
wire antenna on the body. The nonzero
element of [V] corresponding to the
segment of the wire that is actively fed. For
an attached wire antenna , the junction
voltage V/ is specified. For a parasitic
radiator, on the other hand, V/ =0 . For
simplicity, in the present discussion |
exclude radiators on cap and edge regions.
The formulation was used to predict the far
fields radiated by wire antenna on various
BOT configurations. Both active and
passive wire radiators were considered on
open as well as closed (capped) bodies.
The unknown matrix column vector [I] of
the current coefficients is determined once
the applied excitation (voltage vector) is
specified.

To illustrate the versatility and
accuracy of this formulations for BOT, it
was applied on the foregoing cylinder is
shown in Fig. 3(a). The radiation pattern
was predicted for this BOT. The
comparison of measured and calculated
data with the results [8] for the foregoing
cylinder with a loop antenna are shown in
Fig. 3(b). There is good overall agreement
with in the shape and location of the major
pattern lobes and nulls. The results for loop
antenna mounted on the foregoing cylinder
are shown in Fig. 3(b). The loop was 0.691
long, offset [, = 0.1384 . The feed-point
was at the center of the cylinder. The effect
of deleting the junction at point B in the
BOT analysis for the yaw plane
calculations also is shown.

The configurations tested included a
cylinder, a cone-sphere shown in figs. 4-6.
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ln
—

i
ex=="

l,/A=0.138,1,/1 = 0.69,1./1 = 2.76,ka = 1.357

(@)

--- current work

Researchers[8 ]

=30 -
-35 4
40 4
-45 4
-50 4
55
-0 -
-55 o
50 4
-45 4
40 4

-35

-ap 4

(b)

0 — polarization-Yaw plane (dB)

Fig. 3 Comparison current work and
researchers work [8] computed Power
radiation pattern for cylinder mounted
antennas (loop antenna)

First, the simplest case was
examined, namely monopoles on open
cylinders. The validation baseline was the
predictions using the analysis in [4]. Fig. 4
depicts the yaw plane pattern in 6
polarization for opposing quarter-wave
active and passive (parasitic) monopoles,
mounted mid-point on an open cylinder
having a ka=1.2 and 2.4 A long . Next, a
capped cylinder of length I, =
0.6 Aand ka = 0.2 with two attached
quarter-wave elements was considered
Fig.5 .The element at the cylinder midpoint
was a base-fed monopole; the other
attached element (midway between the
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active element and the cylinder end) was
unfed (passive). The radiation pattern was
computed with and without the effect of
the junction (current ) interaction at the
base of the unfed element. The pattern is
plotted in power using a linear (not
decibel) scale and normalized to unity. The
results in Fig.5 clearly indicate the
crucially of including the junction
interactions.

Fig. 6 is shown the radiation pattern
for the cone-sphere with a loop antenna.
The feed point was at the cone-sphere
junction, and the total length of the loop
was 0.2A, and of f — set 0.074 from
the surface of the cone-sphere. In the
calculation two junctions were used on the
loop, namely, one at the feed point and the
other at the connection point to the cone-
sphere surface.

9. Conclusions

The BOT-wire-junction problem has
been formulated in terms of the electric-
field integral equation and solved by
method of moments. The present approach
is applicable to analyses of the radiation
characteristics of a variety of off-surface
wire and loop radiators. By obvious
extension, this method can be used to treat
wire antennas attached to, or near, various
curved and flat reflectors.

The information on surface current
distribution is also useful in assessing the
degree of electromagnetic  coupling
between monopoles in the case of multiple
antennas.

Radiation  pattern is  shown
distribution the energy from the antenna to
the astrosphere. It is important for limiting
the practical applications for antenna.

Antenna characteristics such as gain ,
directivity and efficiency may be
computed.
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The results are useful for impedance

50

matching between transmission Line and 025+
antenna's input impedance. 020 -
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Fig. 5. Power radiation pattern for cylinder
mounted antennas monopoles
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Fig. 4. Power radiation pattern for cylinder
mounted antennas (opposing monopoles)
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Fig. 6. Pitch-plane radiation pattern for
cone-sphere with loop
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