Effect of Sputtering pressure and partial pressure on Structural Properties of TiO₂thin Films

Raaed S.Atea

Mahdya A.Yeser

University of Kufa / College of Science / Physics Department

Abstract:

Effect of sputtering pressure and partial pressure on structural properties of TiO_2 films prepared using DC-sputtering to glass substrate was investigated. sputtering pressures are changed (1.8,2.8,3.8,4.3 pa) at constant O_2 /Ar Ratio(5%). Measurements reveal that the TiO₂ films at the sputtering pressure 1.8 pa is amorphous, while at increasing pressure to 2.8 pa becomes crystalline with Rutile phase (110) and when we increase the pressure to 4.3 pa get crystalline structure with anatas phase (101). Grain size is calculated per crystalline structure of the anatas and rutile (15.7) nm and(14.2) nm respectively. For constant sputtering pressure (2.8pa) and changedO₂/Ar Ratio(10% ,15% ,20% ,25% ,30% , 35%),TiO₂ thin films are a amorphous, except percentage (25%) is crystalline with anatas phase (101) and with grain size (15.7 nm).

Key words: Structural properties, TiO2 thin films, DC-Sputtering .

تاثير ضغط الترذيذ والضغط الجزيئي على الخصائص التركيبية لأغشية ثنائي اوكسيد التيتانيوم المحضرة باستخدام الترذيذ بالتيار المستمر

رائد ستار عطية مهدية احمد يسر جامعة الكوفة /كلية العلوم/قسم الفيزياء

الخلاصة:

تم في هذا البحث دراسة تاثير كل من ضغط الترذيذ والضغط الجزيئي على الخصائص التركيبة لاغشية ثنائي اوكسيد االتيتانيوم المحضرة باستخدام منظومة الترذيذ بالتيار المستمر على ارضيات زجاجية . الخطوة الاولى في البحث تم تثبيت الضغط بتثبيت الضغط الجزيئي للاوكسجين عند النسبة (5%) وتغير ضغط غاز الترذيذ (1.8,2.8,3.8,4.3pa) وثانيا تم تثبيت ضغط الترذيذ عند الضغط (28 pa) وتغير الضغط الجزيئي للاوكسجين (35,30%,30%,25%,20%,15%) . من قياسات حيود الاشعة السينية تبين ان الاشعة عند الضغط (1.8 pa) عشوائية التركيب ولكن عند الضغط (2.8 pa) تصبح بلورية التركيب وبطور الروتيل وبزيادة الضغط اكثر تصبح الاغشية وبالتحديد الضغط (2.8 pa) بلورية التركيب وبطور الروتيل وبزيادة الضغط اكثر تصبح الاغشية وبالتحديد الضغط (2.8 pa) بلورية التركيب وبطور الاوتيل (101) , بينما عند تثبيت النسبة وزيادة الضغط سوف نحصل على تركيب بلوري وبطور الاناتاس وبتوجيهة (101) عند النسبة .

قُمنا بحُساب الحجم الحبيبي للاغشية المحضرة كدالة لكل من ضغط الترذيذ مرة والضغط الجزيئي مرة اخرى.

الكلمات المفتاحية : الخصائص التركيبية ، الاغشية الرقيقة للثنائي اوكسيد التيتانيوم، الترذيذ بالتيار المستمر.

1- Introduction:

Titanium oxide (TiO₂) can exist as an amorphous layer and also in three crystalline phases: anatase (tetragonal), (tetragonal) rutile and brookite (orthorombic). Titanium oxide (TiO₂) is one of the most extensively studied materials, and is known to exist in an amorphous form and to crystallize in three distinct structures: two tetragonal phases, anatase (a = b=3.785 °A, c = 9.514 A°) and rutile (a = b=4.593 A°, c = 2.959 A°), and a third orthorhombic phase, brookite ($a = 5.456 \text{ A}^{\circ}$, b = 9.182 A° , c = 5.143 A°). Among them, rutile is not only the densest, but also thermodynamically the most stable phase, so it is interesting for optical .The coatings [1, 21 figures (1a),(1b)and(1c) are represented three crystalline phases: anatase (tetragonal), (tetragonal) rutile and brookite (orthorombic) for TiO₂ The [3]. refractive index at 500 nm for anatase and rutile bulk titania is about 2.5 and 2.7 respectively [4]. TiO2 anatase nanoparticles were synthesized from a titanate for application in dye-sensitized solar cells[5]. These remarkable properties make them suitable for wide applications, such as dye-sensitized solar cells[6,7,8], gas sensors[9], and dielectric applications[10] . It was found that the rutile phase crystallinity increased with decrease in total pressure[11]. Pure anatase phase is only attained when the total pressure is higher than 0.7 Pa [12]. XRD results show that the rutile phase is dominant at low pressure range (0.3-0.6 pa)whereas the anatase phase is

2-conclusion:

Effect of sputtering pressure and partial pressure on structural properties of TiO_2 films prepared using DC-sputtering to glass substrate was investigated. sputtering pressures are

predominant in the high pressure range (0.8-2 pa)[13]. There are many deposition methods used to prepare TiO₂ thin films, such as electron-beam evaporation , ion-beam assisted deposition , DC reactive magnetron sputtering, RF reactive magnetron sputtering , Sol-gel methods , chemical vapor deposition and plasma enhanced chemical vapor deposition .

Fig. (1) a. Rutile structure for crystallineTiO₂. b. Anatase metastable phase for crystalline TiO₂ . c. Brookite structure for crystalline $TiO_2^{[3]}$.

changed (1.8,2.8,3.8,4.3 pa) at constant O_2 /Ar Ratio(5%). Measurements reveal that the TiO₂ films at the sputtering pressure 1.8 pa is amorphous , while at increasing pressure to 2.8 pa becomes crystalline with Rutile phase (110) and when we

increase the pressure to 4.3 pa get crystalline structure with anatas phase (101) .Grain size is calculated per crystalline structure of the anatas and rutile (15.7) nm and(14.2) nm respectively $d = \frac{0.9 \lambda}{\beta \cos \theta}$

3-Experimented setup :

The TiO₂ films were grown on unheated substrates from glasses by DC- sputtering with sputtering voltage 1kv. The purity of the titanium target fixed on the holder represent the cathode was 99.9 % with diameter (Φ 60×2mm). The base pressure was changed (1.8,2.8,3.8 and 4.8 pa), at constant O_2 /Ar Ratio(5%). the Deposition time was constant at 1:15 h. The desired total pressure for deposition was maintained by flow matter vacuum valve with vacuum pumpe . High purity argon (99.999 %) and oxygen (99.98 %) were used as the sputtering and the reactive gases. Sputtering chamber is made up of sintered hard glass, which can observe the whole sputtering process directly. DC-sputtering system provided with circulation of cooling water The circulation of cooling water is carried out by water tank and pump in the system, thus guarantees the requirement temperature of water for normal operation. There is no special requirement for the water resource in laboratory.

X-ray diffraction (XRD) is a very important experimental technique in revealing the crystal structure of bulk solid microstructure of thin films . Xray diffraction device has been used with properties. Source: Cu tube . Wave length :1.5406A° . Voltage : 40.0 (kV). Current : 30.0 (mA). Full-width at half –maxima(FWHM) data was analyzed by scherer s formula to determine average particle size .Scherers equation is given by^[]

.....(1-2)

Where λ is the X-ray wavelength $,\beta$ is the peak width and θ is the bragg s angle.

4-Results and discussion:

The XRD pattern in fig-2-reveal that the TiO_2 films deposited at sputtering pressure(1.8 pa) are amorphous. This is attributed to decrease deposition rate, hence decrease crystalline size. while Fig.(3) shows the XRD pattern at increasing sputtering pressure to 2.8 pa the structure of films become crystalline with rutile phase .This is attributed to increasing rate of deposition . Fig.(4) sputtering pressure(3.8pa) of TiO₂ films are amorphous, that due to collisions between ions and gas atoms the next from the target .and when we increase sputtering pressure(4.3 pa) lead to get the anatase phase as showen in fig. (5).this agrees with researchers H. Toku et al.[12] and Ab. Benyoucef et al.[13]. The fig. (6) shows formation anatase phase orientation (101) to percentage (25%) and agrees with researchers Yuh-Fan Su el al[14]. The fig. (7) shows that the grain size increase with increasing sputtering pressure which agree with Wei Zhou [15]. The fig. (8) shows the grain size as a function of partial pressure. The maximum value get at percentage due to the increasing (25%) this percentage which lead to increase energy gap ,hence formation anatase phase and this agree with M. Stamate and I. Vascan[16].

Fig. (2) XRD spectra of TiO₂ deposited at sputtering pressure(1.8 pa) andO₂/Ar percentage (5%).

Fig. (4) XRD spectra of TiO₂ deposited at sputtering pressure(3.8 pa) andO₂/Ar percentage (5%).

2θ [Deg.]

Figure (6) XRD spectra of TiO₂ deposited at sputtering pressure(2.8 pa) andO₂/Ar percentage (25%).

Figure (7) grain size as a function of sputtering pressure at O₂/Ar percentage (5%).

Figure (8) size as a function of partial pressure [O_2/Ar] at sputtering pressure (2.8 pa).

References:

1.K. N. Rao and S. Mohan, J. Vacuum Sci. Tech. A 8, 3260(1990).

2.K. Balasubramanian, X. F. Han and K. H. Guenther, Appl. Opt. 32, 5594 (1993).

3. Haidar H. Hamdan Al-Eqaby," Fabrication of TiO₂ Nanotubes Using Electrochemical Anodization". M.Sc. Thesis, College of Science, University of Baghdad,(2012).

4.Q. Ye, P. Y. Liu, Z. F. Tang, L. Zhai, "Hydrophilic properties of nano-TiO2 thin films deposited by RF magnetron sputtering," Vacuum,vol. 81, 2007, pp. 627-631.

5.Kai-Ping Wang and Hsisheng Teng," Structure-intact TiO2 nanoparticles for efficient electron transport in dyesensitized solar cells", APPLIED PHYSICS LETTERS,No. 91, p.173102 (2007).

6. Wenxi Guo, Chen Xu, Xue Wang, Sihong Wang,Caofeng Pan, Changjian Lin and Zhong Lin Wang," Rectangular Bunched Rutile TiO₂ Nanorod Arrays Grown on Carbon Fiber for Dye-Sensitized Solar Cells", Journal of the American Chemical Society,p.A,(2012).

7. Hyun-Joong Kim , Jae-Deok Jeon , Dong Young Kim , Jung-Joong Lee and Seung-Yeop Kwak," Improved performance of dye-sensitized solar cells with compact TiO₂ blocking layer prepared using low-temperature reactive ICP-assisted DC magnetron sputtering", Journal of Industrial and Engineering Chemistry, p. 1, (2012).

8. Márcio Sousa Góes, Ednan Joanni, Elaine C. Muniz, Raluca Savu, Thomas R. Habeck, Paulo R. Bueno, and Francisco Fabregat-Santiago," Impedance Spectroscopy Analysis of the Effect of TiO_2 Blocking Layers on the Efficiency of Dye Sensitized Solar Cells", The Journal of Physical Chemistry C, p. 12415,(2012).

9. Stefan Boyadzhiev, Velichka Georgieva and Milka Rassovska," Characterization of reactive sputtered TiO_2 thin films for gas sensor applications", Journal of Physics(IOP),p.1,(2010).

10. Wenli Yang, Colin A. Wolden, Thin Solid Films 515 (2006) 1708.

11. Swati S. Pradhan , S.K. Pradhan , V. Bhavanasi , Sambita Sahoo , S.N. Sarangi , S. Anwar and P.K. Barhai," Low temperature stabilized rutile phase TiO_2 films grown by sputtering", Thin Solid Films 520 (2012) 1809–1813.

12. H. Toku, R.S. Pessoa, H.S. Maciel, and M. Massi," Influence of Process

Parameters on the Growth of Pure-Phase Anatase and Rutile TiO2 Thin Films Deposited by Low Temperature Reactive Magnetron Sputtering", Brazilian Journal of Physics, vol. 40, no. 3, p.340, (2010).

13. Ab. Benyoucef, Am. Benyoucef, F. Lapostolle, D. Klein and Β. Benyoucef," Structural and morphological study of TiO₂ magnetron sputtering thin film for a photovoltaic application", Revue des Energies Renouvelables ICRESD-07 Tlemcen (2007) 61 - 65.

14. Yuh-Fan Su, Tse-Chuan Chou, Tzong-Rong Ling, and Chih-Cheng Sun Photocurrent Performance and Nanostructure Analysis of TiO₂ ÕITO Electrodes Prepared Using Reactive Sputtering", Journal of The Electrochemical Society, 151 (9) A1375-A1382 (2004)

15. Wei Zhou, Xiaoxia Zhong, Xiaochen Wu, Luqi Yuan, Qiwei Shu and Yuxing Xia," Structural and Optical Properties of Titanium Oxide Thin Films Deposited on Unheated Substrate at Different Total Pressures by Reactive dc Magnetron Sputtering with a Substrate Bias", Journal of the Korean Physical Society, Vol. 49, No. 5, November (2006), pp. 2168_2175.

16. M. Stamate. I. Vascan." VARIABLE OPTICAL BAND GAP FOR TiO2 THIN FILMS DEPOSITED D.C. IN А MAGNETRON SPUTTERING SYSTEM", ANALELE STIINTIFICE ALE UNIVERSITATII "AL.I.CUZA" IASI Tomul XLV -XLVI, s. Fizica Stării Condensate, 1999 - 200, p. 173. 175.