Theoretical investigation into Electronic Properties of Donor-Acceptor BH₃-CO Molecule

Abbas H. Raheem

Kufa University - Science Faculty- Physics Department

Abstract

This work deals with structural and electronic properties of trihydroborane -carbonyl BH₃-CO as a donor-acceptor molecular system. B3LYP density functional theory was employed with various basis sets to calculate some structural and electronic properties for this system. The calculations include the bond length and angles between atoms. And some electronic properties of the studied compound were investigated include the total energy, electronic states, electron affinity, chemical hardness, softness and electrophilic index. The results show that 6-31G (d, p) level of theory gave good agreement values of geometrical parameters with experimental data in comparison with other levels.

Key words: DFT, energy gap, ionization potential, hardness and IR- spectrum.

Introduction

Charge transfer has long been recognized as the key process in many fields of chemistry, physics, and biology [1–7] monographs [8–10]. This work stand on the design of donor-acceptor and then can in future contact the donor and acceptor by a either Π or δ bridges to determine the quantity of charge transfer. A convenient model system often used to probe the mechanism of CT in molecular objects with nanoscale dimensions comprises a donor (D) and an acceptor (A) of electrons or holes connected by molecular bridge (B) [11-17]. The number and variety of such donor-bridge acceptor (D-B-A) systems have grown explosively in recent years. Molecular bridges linking between an electron donor and an electron acceptor are known to control charge transport in molecular systems. Extensive studies emphasized the role of different factors controlling the charge transport mechanism of donor-bridge- acceptor systems including inter-site electronic coupling, electronic energies and electronic - nuclear coupling, present work focuses on calculating the structural and electronic properties of BH₃-CO as a donor-acceptor system and compute the amount of charge transport as a measure the maximum electronic charge that saturates the system, it is a measure of the electronic transfer that a system may accept.

Theory and Computational Details

In this work, density functional theory has been used to calculate the electronic properties of the studied molecules at (B3LYP) functional with various basis sets. The geometry optimization, energies and IR-spectrum have been done using Gaussian 09 program [18].

According to the density functional theory, the total energy can be written as [19] :

 $E_0 = E_v(\rho_0) = T[\rho_0] + \int V_{en}(r)\rho_0(r) dr + J[\rho_0] + E_{NC}(\rho_0) \dots (1)$ For a normalized wave function Ψ , the particle density is given by $\rho(r)$:

$$\rho(\mathbf{r}) = \sum_{i}^{ni} [\psi_i(\mathbf{r})]^2$$
(2)

Where ni is the number of electrons in orbital (i), and the summation is over the occupied molecular orbital. The kinetic energy of the system is [20]:

$$T[\rho] = T_{S}[\rho] + J[\rho] + V_{en}[\rho] + E_{XC}[\rho] \dots (3)$$

Where $T_S[\rho]$, $J[\rho]$, $V_{en}[\rho]$ and $E_{XC}[\rho]$ are the kinetic energy of non interacting electron system, classical coulomb energy, and exchange–correlation energy, respectively.

$$V_{en}[\rho_{o}] = \frac{1}{2} \iint \frac{\rho_{o}(r_{1})\rho_{o}(r_{2})}{|r_{1} - r_{2}|} dr_{1}dr_{2} + E_{xc}[\rho] \dots(7)$$

According to B3LYP function, the exchange correlation energy E_{XC}^{B3LYP} is given by [21]:

Where the three parameters : a $_{\rm o}$ = 0.20, $~a_x$ = 0.72 and $~a_c$ = 0.81.

The ionization potential (IP) and the electron affinity (EA) of the molecule are calculated according to the following relations (Koopman's theorem) [21]:

$$IP = - E_{HOMO}$$
(9)

 $EA = -E_{LUMO}$ (10)

Where E_{HOMO} and E_{LUMO} are the high occupied molecular orbital and lower unoccupied molecular orbital energies, respectively. The electronic chemical potential (χ), the chemical hardness (η) and the softness (s) are given by [21]:

And the electrophlicity index (ω) of the molecular is given by [21]:

Results and Discussion

Figure (1) shows the geometrical structure of BH₃ (acceptor), CO (donor) and BH₃-CO (acceptor-donor) optimized at B3LYP density functional theory. The total energy in (a.u), symmetry and total dipole moment in (Debye) for studied molecules computed by B3LYP/6-31G(d, p) are presented in Table (1).

	_					
	Species	Total Energy (a.u)	Symmetry	Total D. M. (Debye)		
	CO (D)	- 113.325536206	Cinfv	0.0580		
	BH₃ (A)	-26.6153236	D _{3h}	0.0004		
CO (D)	BH₃-CO (A-D)	-139.887	C _{3v}	3.2799		

Table (1): Total energy, symmetry andtotal dipole moment for structures.

BH₃-CO (A-D)

Figure (1): The optimized structure of donor - acceptor system

It is clear from Table (1), that total energy for each molecule depends on the number of atoms in the molecule, it is decreasing with the increase number of atoms that the molecule included. Table (1) shows also the symmetry of studied structures, the trihydroborane molecule is a planar with inversion center and it has D_{3h} symmetry (high symmetry) with low total dipole moment (0.0004 Debye), while the carbon monoxide molecule has infinity Cinfy symmetry (low symmetry) and the donoracceptor system has C3v symmetry with dipole moment equals to (3.2799 Debye). It should be noted that imaginary frequency is not found in acceptor-donor, this may refers to good geometrical optimization obtained from the best B3LYP with large 6-31G (d, p) level of theory.

Table (2) declare the results of geometrical parameters included the bond length (in Angstrom) and bond angles in (degree). The computational levels of theory used in this work give good results of length linking between donor and acceptor, the bond B-C obtained from 6-31G(d, p) equals (1.548A⁰) in a good agreement with experimental value (1.500 Å), H-B-H bond equals 113.630° [15]. Other levels of theory gave approximately values of these parameters nearly to experimental results.

Table (3) shows the values of the electronic states (HOMO and LUMO) and the energy gap (E_{LUMO} – E_{HOMO}) of trihydroborane -carbonyl BH3-CO as a donor-acceptor system calculated by B3LYP density functional theory with many levels of theory. The energy gap for the new structure is taken place in the range about (5.45-4.357) eV and the differences in the value of energy gap depends on the level used in calculation. Table (3) tells us that STO-3G give more larger value for band gap, this may be come from that level of theory is a small to describe the donoracceptor systems in comparison with large basis sets, such as, 6-31G(d) and 6-31G(d, p) levels of theory. Figure (2) shows the shapes of HOMO and LUMO drawn from the calculations of 6-31G (d, p) basis sets, these shapes come from the distribution of electrons according to the linear combination atomic orbital-

Species	Bond	STO-3G	3-21G	4-21G	6-31G	6-31G	6-31G	6-311G	Exp.
						(d)	(d, p)		[15]
СО	C-0	1.142	1.129	1.128	1.129	1.115	1.126	1.122	1.128
BH₃	B-H	1.210	1.226	1.274	1. 258	1.214	1.192	1.108	1.189
	H-B-H	119.990	120.0	119.880	119.980	120.0	120.0	119.988	120.0
	B-H	1.308	1.320	1.315	1.312	1.307	1.208	1.206	1.205
BH₃-CO	B-C	1.835	1.585	1.602	1.625	1.665	1.528	1.548	1.500
	C-0	1.145	1.125	1.228	1.123	1.118	1.140	1.122	1.128
	H-B-H	114.990	114.0	114.880	114.980	114.0	113.630	114.988	113.502

Table (2): Bond lengths in Angstrom and angles in degree for donor-acceptor system.

Table (3): HOMO, LUMO and energy gap for donor-acceptor system.

Droportu	570.30	2.210	4.210	6.216	6-31G	6-31G	6 2110
Property	310-36	3-216	4-216	0-310	(d)	(d, p)	0-5110
HOMO (eV)	-6.6805	-6.0211	-6.3365	-6.1159	-6.05584	-5.818	-5.900
LUMO (eV)	-1.2269	-1.0065	-0.9885	-0.99854	-1.322479	-1.460	-1.4258
Energy Gap (eV)	5.4536	5.31464	5.24801	5.11738	4.733361	4.357	4.364

номо

LUMO

Property	STO-3G	3-21G	4-21G	6-31G	6-31G (d)	6-31G (d, p)	6-311G
IP (eV)	7.6805	6.0211	4.3365	6.1159	5.05584	5.818	5.7858
EA (eV)	1.2269	1.0065	0.9885	0.99854	1.322479	1.460	1.3258
χ (eV)	-4.9537	-3.5138	-2.1625	-3.05722	-3.189159	-3.639	-3.5058
W (eV)	3.221724	2.852108	2.192546	2.626424	2.935504	3.038	3.00809
ΔΝ	0.607119	0.591376	0.618410	0.598694	0.635870	0.65877	0.61607

Table (4): Electronic properties for donor-acceptor system.

Table (5): Average polarizability for donor-acceptor system.

Species	Polarizability (a. u)						
	CLxx	α _{γγ}	αzz	αave			
BH₃	10.542	18.507	18.509	15.852			
со	11.908	11.908	15.420	12.968			
BH₃ - CO	31.086	31.089	70.478	44.214			

The results of ionization potential (IP), electron affinity (EA), chemical potential (χ), electrophlicity index (ω) and charge transfer (Δ N) are presented in Table (4). As we see from the above Table, the largest value of charge transfer (0.65877) between two systems (donor - acceptor) was results by employing B3LYP/6-31G (d, p), this value corresponding to high ionization potential value (5.818 eV). This level of theory give good result for electrophlicity index ($\omega = 3.038$ eV), this may help to interact this system with effective surrounding molecular system. The amount of charge transfer in BH₃ - CO donor acceptor system results from other basis sets gave approximately the same few lower value.

The results of exact polarizability obtained from the calculations for donor, acceptor and donor- acceptor system using B3LYP density functional theory with 6-31G (d, p). High polarizability means high chemical reactivity. The donor - acceptor system has more reactivity than other species in which the polarizability of this approximately system is triple the polarizability of the donor and acceptor, as we see in Table (5). So the results satisfy that the tensors of polarizability in three dimensions are $\alpha_{xx} < \alpha_{yy} < \alpha_{zz}$.

Figure (3) represents the IR spectrum for BH₃-CO donor-acceptor system. The number of modes was calculated by the relation 3N-6, where N is the number of atoms in the structure, the bending of B-C bond lies at (751.47 cm⁻¹). For B-H bond, the stretching of B-H bond lies at (2551.59cm⁻¹) and the bending is at (823.32 cm⁻¹) in which it corresponds to intensity (77.999 Km/mol). The large value of frequency (2216.93 cm⁻¹) for the stretching of C-O bond and it corresponds to (1400.54Km/mol) infrared intensity.

Figure (3): The IR spectrum of BH₃-CO donor - acceptor system.

Conclusions

The density functional theory used in this study is a powerful method and B3LYP functional is a suitable and an efficient function for studying the electronic properties of these structures. 6-31G (d, p)

agreement results give a good for geometrical parameters with experimental data. The geometric structures, symmetry and total energies donor - acceptor system show that this structure is more stable and has high symmetry. The donor acceptor system has large average polarizability comparing with donor and acceptor and this system has high reactivity than others. The results obtained in this work help us to select a type of bridges to interact the donor and acceptor to calculate the physical properties of donor-bridgeacceptor.

References

[1] Marcus, R. A.; Sutin, N. *Biochim. Biophys. Acta* **1985**, *811*, 265–322.

[2] Barbara, P. F.; Meyer, T. J.; Ratner, M. A. J. Phys. Chem. **1996**, 100, 13148–13168.

[3] Bixon, M.; Jortner, J. Adv. Chem. Phys. **1999**, *106*, 35–208.

 [4] Berlin, Y. A.; Kurnikov, I. V.; Beratan,
D.; Ratner, M. A.; Burin, A. L. *Top. Curr. Chem.* 2004, 237, 1–36.

[5] Matyushov, D. V.; Voth, G. A. *Rev. Comp. Chemistry* **2002**, *18*, 147–210.

[6] Adams, D. M.; Brus, L.; Chidsey, C. E. D.; Creager, S.; Creutz, C.; Kagan, C. R.; Kamat, P. V.; Lieberman, M.; Lindsay, S.; Marcus, R. A.; Metzger, R. M.; Michel-Beyerle, M. E.; Miller, J. R.; Newton, M. D.; Rolison, D. R.; Sankey, O.; Schanze, K. S.; Yardley, J.; Zhu, X. J. Phys. Chem. B 2003, 107, 6668–6697.

[7] Weiss, E. A.; Wasielewski, M. R.; Ratner, M. A. *Top. Curr. Chem.* **2005**, *257*, 103–133.

[8] Kuznetsov, A. M. Charge Transfer in Physics, Chemistry and Biology; Gordon & Breach: New York, 1995.

- [9] Kuznetsov, A. M.; Ulstrup, J. *Electron Transfer in Chemistry and Biology*; Wiley: Chichester,**1999**.
- [10] Balzani, V., Piotrowiak, P., Rodgers, M. A. J., Mattay, J., Astruc, D., Gray, H. B., Winkler, J., Fukuzumi, S., Mallouk, T. E., Haas, Y. de Silva, A. P., Gould, I., Eds.; *Electron Transfer in Chemistry*; Wiley-VCH Verlag GmbH: Weinheim, 2001, Vols. 1-5.

[11] Wasielewski, M. R. Chem. Rev. **1992**, 92, 435–461.

- [12] Schuddeboom, W.; Ktijnen, B.; Verhoeven, J. W.; Staring, E. G. J.; Rikken, G. L. J. A.; Oevering, H. *Chem. Phys. Lett.* **1991**, *179*, 73–78.
- [13] Ratner, M. A.; Jortner, J. In *Molecular Electronics*; Ratner, M. A., Jortner, J., Eds.; Blackwell:Oxford, UK, 1997; pp 5-72, and references therein.

[14] Lindsay, S. M.; Ratner, M. A. Adv. *Mater.* **2007**, *19*, 23–31.

[15] Schuster, G. B., Ed.; Springer: Berlin, **2004**; Vols. *236* and 237and references therein.

[16] Jordan, K. D.; Paddon-Row, M. N. *Chem. Rev.* **1992**, *92*, 395–410.

- [17] Warman, J. M.; De Haas, M. P.; Verhoeven, J. W.; Paddon-Row, M. N. Adv. Chem. Phys. **1999**, 106, 571–601.
- [18] Trucks, M. J. G. W.; Schlegel, H. B. et al., Gaussian 09, Revision A.02, Gaussian, Inc., PA, Wallingford CT. 2009.
- [19] Lee, C.; Yang, Parr, W. R.G. Phys. Rev. B 37. **1988**, 785.
- [20] Beck, A. D.; Phys. Rev. A 38. **1988**, 3098.
- [21] Beck, A. D.; J. Chem. Phys. 98.**1993**, 5648.